
Programming in C++
Session 9 – A generic class with dynamic allocation

Declarations and definitions
Program structure

Dr Christos Kloukinas

City, UoL
https://staff.city.ac.uk/c.kloukinas/cpp

(slides originally produced by Dr Ross Paterson)

Copyright © 2005 – 2023
Dr Christos Kloukinas (City, UoL) Programming in C++

https://staff.city.ac.uk/c.kloukinas/cpp (slides originally produced by Dr Ross Paterson) Copyright © 2005 – 2023
1 / 35

This session

Two parts:

1 Completing memory management: a generic class with dynamic
allocation

2 Program structure and separate compilation
Revision: declarations and definitions
Separate compilation in C++

Dr Christos Kloukinas (City, UoL) Programming in C++ 2 / 35

Part I

Generic Class with Dynamic Allocation

Dr Christos Kloukinas (City, UoL) Programming in C++ 3 / 35

Writing our own vector class

An array to hold the elements
(efficiency) Array often longer than needed for the elements held
Implement various vector operations
The array is dynamically allocated, so must free it in a destructor
Because we have a non-trivial destructor, we also need a copy
constructor and an assignment operator Gang of Three!!!
An iterator
A swap method is also useful

Dr Christos Kloukinas (City, UoL) Programming in C++ 4 / 35

https://staff.city.ac.uk/c.kloukinas/cpp
https://staff.city.ac.uk/c.kloukinas/cpp

A vector class

template <typename Elem>
class my_vector {

size_t vsize;//# of elements stored - "vector size"
size_t asize;//size of the array - "array size"
Elem *array;

//INVARIANT: 0<= vsize<= asize && array.size()==asize
public:

my_vector() : vsize(0), asize(1),
array(new Elem[1]) {}

size_t size() const { return vsize; }

Elem & operator[](size_t i) { return array[i]; }
};

array(new Elem[1]) – why not array(nullptr)?
Dr Christos Kloukinas (City, UoL) Programming in C++ 5 / 35

A vector class

template <typename Elem>
class my_vector {

size_t vsize;//# of elements stored - "vector size"
size_t asize;//size of the array - "array size"
Elem *array;

//INVARIANT: 0<= vsize<= asize && array.size()==asize
public:

my_vector() : vsize(0), asize(1),
array(new Elem[1]) {}

size_t size() const { return vsize; }

Elem & operator[](size_t i) { return array[i]; }
};

array(new Elem[1]) – why not array(nullptr)?

20
23

-1
2-

04

Programming in C++

A vector class

array(new Elem[1]) – why not array(nullptr)?

Because of the invariant !

For the invariant vsize <= asize to hold, array must be an actual
array, otherwise asize is not defined.
And array.size() must be equal to asize.

Why not asize(0), array(new Elem [0]) ? Invariant is
satisfied.

⇒Because of the implementation of push_back on the next slide.
(and because it’d be silly – avoid 0-length arrays)

Shrinking and growing the vector

void pop_back() { vsize--; }

void push_back(const Elem & x) {
if (vsize == asize) {

asize *= 2; // Why *= 2 instead of ++? [*]
Elem *new_array = new Elem[asize];
for (size_t i = 0; i < vsize; ++i)

new_array[i] = array[i];
delete[] array;
array = new_array;

}
array[vsize] = x;
++vsize;

}

[*] try adding 1000 elements into a vector. . .
Dr Christos Kloukinas (City, UoL) Programming in C++ 6 / 35

Destructor and Copy constructor

This class allocates dynamic memory, so it should reclaim it:

virtual ˜my_vector() { delete[] array; }

Because we have a non-trivial destructor, we also need a copy
constructor and assignment operator. Gang of Three!!!

my_vector(const my_vector<Elem> & other) :
vsize(other.vsize), asize(other.asize),
array(new Elem[other.asize]) {

for (size_t i = 0; i < vsize; ++i)
array[i] = other.array[i];

}

Dr Christos Kloukinas (City, UoL) Programming in C++ 7 / 35

Assignment operator

my_vector<Elem> &
operator=(const my_vector<Elem> & other) {

if (&other != this) {
vsize = other.vsize;
if (asize < vsize) { // Reuse if possible!

delete[] array;
asize = other.asize;
array = new Elem[asize];

}
for (size_t i = 0; i < vsize; ++i)

array[i] = other.array[i];
}
return *this;

}

REUSE!!! Compare with 8-21 & 8-26 !
Dr Christos Kloukinas (City, UoL) Programming in C++ 8 / 35

An iterator

Recall that in C++, an iterator is a type that supports ==, ++, * and ->.
A simple iterator for this type is pointers to elements:
typedef Elem *iterator; // I.e., iterator is a

// pointer to an Elem
typedef const Elem *const_iterator;

iterator begin() {return array;}
iterator end() {return array + vsize;}

const_iterator cbegin() const {return array;}
const_iterator cend() const {return array + vsize;}

}; // end of my_vector class

An alternative is to define a class (*), and overload the ++, ==, * and
-> operators.
(*) Can be an internal class !

Dr Christos Kloukinas (City, UoL) Programming in C++ 9 / 35

Swap function

When designing classes we should think how they’ll behave with
standard algorithms
(so we should know the standard algorithms. . .)

The header <utility> defines a general swap function:

template <typename T>
void swap(T & x, T & y) {

T tmp = x; x = y; y = tmp;
}

Works for vectors too (T is my_vector<Elem>)
But is *very* inefficient

Dr Christos Kloukinas (City, UoL) Programming in C++ 10 / 35

Efficient swap function for vectors

Add a member function to the my_vector class:

void fast_swap(my_vector<Elem> & other) {
std::swap(vsize, other.vsize);
std::swap(asize, other.asize);
std::swap(array, other.array);

}

Define an overloading of swap for vectors outside the class:

template <typename T> //"C++ template specialization"
void swap(my_vector<T> & x, my_vector<T> & y) {

x.fast_swap(y);
}

(constraining the parameter type to my_vector<T> means this
applies to our class only)

We’re done! :-)
Dr Christos Kloukinas (City, UoL) Programming in C++ 11 / 35

Part II

Program Structure — Declarations vs
Definitions

Dr Christos Kloukinas (City, UoL) Programming in C++ 12 / 35

Program structure

In C++, X (class, function, variable) must be declared before use
Can declare X, and . . .
Define it fully later

C++ programs can have millions of lines
Impossible (too slow) to recompile everything all the time

⇒ Programs are partitioned into several files for separate compilation
Common declarations and partial class definitions are placed
in header files (they serve as interfaces)

Dr Christos Kloukinas (City, UoL) Programming in C++ 13 / 35

Declaration before use

C++ designed for one-pass compilers: must declare entities before use

class A { ... };

class B { A *p; ... }; // OK

Defining these classes in the opposite order is illegal. Problems:
limits presentation.
prohibits recursion.

Dr Christos Kloukinas (City, UoL) Programming in C++ 14 / 35

Forward declarations

Solution: Declare first, and fully define later:

class A; // declare A as a type

class B { // define B
A *p; // OK - pointer size is known
...

};

class A { B b1; ... }; // fully define A - OK

Dr Christos Kloukinas (City, UoL) Programming in C++ 15 / 35

Limitations

However, this is NOT allowed:

class A; // declare A

class B { // define B
A a; // don’t know the size of A here
...

};

class A { ... }; // define A

Because the size of a member must be known when it’s used

Dr Christos Kloukinas (City, UoL) Programming in C++ 16 / 35

Recursive class definitions

This is allowed:

class A; // declare A

class B { // define B
A *p; // pointer size is known
...

};

class A { // define A
B b1; // size of B is known here
...

};

Dr Christos Kloukinas (City, UoL) Programming in C++ 17 / 35

Part III

Separate Compilation

Dr Christos Kloukinas (City, UoL) Programming in C++ 18 / 35

Separate compilation

General Idea

Avoid recompiling a huge program after each change
Break it into “modules”, each with an interface

Ideally: only recompile modules when the interfaces they use
have changed
If a module implementation (but not its interface) is changed, that
module must be recompiled, but its clients need not be
This should be automated (e.g., with make)

Dr Christos Kloukinas (City, UoL) Programming in C++ 19 / 35

Separate compilation in C++

Implementations go into source files, usually ending in “.cc”
Interfaces go into header files, usually ending in “.h”

Header files are included in source files and other header files
Never duplicate declarations (include them instead)
Recompilation decisions are based on inclusion relationships and
timestamps on files

(Other suffixes: .cpp, .cxx, .hh, .hpp, .hxx, . . .)

Inclusion relationships (as used by make) — try:
g++ -MM file.cc

g++ -M file.cc

Dr Christos Kloukinas (City, UoL) Programming in C++ 20 / 35

The compilation process

Compiling a source file X.cc yields an object file X.o
(like a .java file yields a .class file)
X.cc must be recompiled if it (or any of the header files it uses)
has changed more recently than X.o
(so don’t include header files unnecessarily)
Object files are linked together to make an executable program
(like an executable .jar file)
Re-compiling source files means the program must be re-linked
In Unix, this is all managed by the make command

Dr Christos Kloukinas (City, UoL) Programming in C++ 21 / 35

A Makefile
COMMANDS (e.g., rm) MUST START WITH A TAB CHARACTER!!!

DIR=.
CXX=g++-13 # or CXX=g++
CXXFLAGS=-I$(DIR) -x c++ -g -std=c++23 -pedantic -Wall -Wpointer-arith \
-Wwrite-strings -Wcast-qual -Wcast-align -Wformat-security \
-Wformat-nonliteral -Wmissing-format-attribute -Winline -funsigned-char

LDFLAGS=-L$(DIR) -lcity # Linking flags
CC=$(CXX) # Use the C++ compiler as the C compiler

(ensures linking is done according to C++)
CFLAGS=$(CXXFLAGS) # C flags are now C++ flags

all: cwk cwkt

clean:
-rm *.o cwk cwkt *˜ 2> /dev/null

cwk: sample.o Makefile libcity.a
$(CXX) sample.o -o cwk $(LDFLAGS)

cwkt: cwkt.o Makefile libcityt.a
$(CXX) cwkt.o -o cwkt $(LDFLAGS)t

...

Dr Christos Kloukinas (City, UoL) Programming in C++ 22 / 35

Include directives

#include includes the text of another file at that point.
To include a file from the system directories:

#include <vector>
#include <iostream>

To include a file from the local directories (-Idir1 -Idir2):
#include "point.h"

g++: You can see what the result is with -E
(-E runs only the C preprocessor on your file, doesn’t compile)

(and -c runs only the C compiler, doesn’t link)

Any file can be included, but the following rules are recommended

Dr Christos Kloukinas (City, UoL) Programming in C++ 23 / 35

Header files

These approximate interfaces, and may contain:

comments // what the class does

include directives #include "xyz.h"

class definitions class A { ... };

class declarations class B;

constant definitions const double pi = 3.14159;

type definitions typedef double real;

function declarations int sqr(int x);

They should not contain code, except inline function definitions.

Dr Christos Kloukinas (City, UoL) Programming in C++ 24 / 35

BE CAREFUL!

NEVER IN HEADER FILES!

global variable definition int counter = 0;

function definition int foo() { return 3; }

INSTEAD YOU SHOULD

DECLARE global variables extern int counter;

INLINE function definitions inline int foo() { return 3; }

Or DECLARE functions int foo();

Otherwise, global variables/functions are defined multiple times from
each source file that includes the header file & linker complains!

Dr Christos Kloukinas (City, UoL) Programming in C++ 25 / 35

The header file point.h, first version

class point {
protected:

int _x, _y;
public:

point(int x, int y);
int x() const;
int y() const;
void move(int dx, int dy);

};

Often, a header file and source file correspond to a single class, but
there are many other possibilities.

Dr Christos Kloukinas (City, UoL) Programming in C++ 26 / 35

The implementation point.cc

#include "point.h"

point::point(int x, int y) : _x(x), _y(y) {}

int point::x() const { return _x; }
int point::y() const { return _y; }

void point::move(int dx, int dy) {
_x += dx; _y += dy;

}

This is why we’re so interested in defining methods outside a class!

Dr Christos Kloukinas (City, UoL) Programming in C++ 27 / 35

Separate compilation and templates?

NO
isocpp.org/wiki/faq/templates#templates-defn-vs-decl

C++ DOES NOT support separate compilation of template code
Generic method definitions must be included in the header file
WITH the template class definition

Wat Do?

Dr Christos Kloukinas (City, UoL) Programming in C++ 28 / 35

Generic code separation

// File: pointt.h
template <typename T>
class pointt {
pointt(T _x, T _y);

};
#include "pointt.cc" // <---- includes .cc !!!
// *End* of file pointt.h

// File: pointt.cc
// *NOT* including pointt.h! <---- !!!

// Definitions for pointt
template <typename T>
pointt<T>::pointt(T _x, T _y) {

...
}

Dr Christos Kloukinas (City, UoL) Programming in C++ 29 / 35

Code separation: Normal vs Generic

// point.h NORMAL // pointt.h GENERIC
template <typename T>

class point { class pointt {
point(int _x, int _y); pointt(T _x, T _y);

}; };
#include "pointt.cc" // !!!

// *End* of file point.h // *End* of file pointt.h

// File point.cc // File pointt.cc
#include "point.h" // *NOT* including pointt.h!!!
// Definitions for pointt // Definitions for pointt

template <typename T>
point::point(int _x, int _y){ pointt<T>::pointt(T _x, T _y){
... ...

} }

Dr Christos Kloukinas (City, UoL) Programming in C++ 30 / 35

Repeated inclusion

Suppose point.h is included by both line.h and polygon.h
Some drawing program might begin:

#include "line.h"
#include "polygon.h"

This includes point.h twice, causing the compiler to complain
about a repeated definition of point

Seems reasonable to expect the language to take care of this,
BUT

C++ doesn’t care about reasonable
We must add include guards to our header files

Dr Christos Kloukinas (City, UoL) Programming in C++ 31 / 35

https://isocpp.org/wiki/faq/templates#templates-defn-vs-decl

The header file point.h with an include guard

#ifndef POINT_H
#define POINT_H

class point {
protected:

int _x, _y;
public:

point(int x, int y);
int x() const;
int y() const;
void move(int dx, int dy);

};

#endif

Don’t use bloody #pragma’s! (non-standard/portable)

Dr Christos Kloukinas (City, UoL) Programming in C++ 32 / 35

Typical structure
For each class Foo, two source files:

Foo.h containing the class definition, but including only very
small methods. This is the place for comments
describing the interface of the class.

Foo.cc containing the method definitions for the class
(unless the class is very simple).
This should always include Foo.h.

Include header files only if necessary:
Bar.h should ONLY include Foo.h, when Foo is needed
for defining class Bar
But when class Foo is only needed for defining methods of
Bar, then include Foo.h only in Bar.cc

Never use namespaces inside header files (namespace polution)
Instead use full names: std::string, std::ostream, etc.

Exercise: break up date.cc in this way.
Dr Christos Kloukinas (City, UoL) Programming in C++ 33 / 35

Summary

In C++, things must be declared before use
Often, a partial declaration (interface) will suffice
(but the compiler needs to know how big things are)
Large programs are broken up into several source files
⇒separate compilation

Common declarations are placed in header files ,
to be included by several source files
Shared generic code must also be placed in header files

Learn how to use make
https://www.gnu.org/software/make/manual/

Dr Christos Kloukinas (City, UoL) Programming in C++ 34 / 35

Next Session

Exceptions in C++.
RAII — Resource Acquisition Is Initialization: a C++ technique
ensuring that resources are freed, even in the presence of
exceptions, without writing lots of exception-handling code
(Java’s try-with-resources on steroids)
Reading: Stroustrup 14.4.
RAII is a special case of the smart pointer and proxy patterns.

Dr Christos Kloukinas (City, UoL) Programming in C++ 35 / 35

https://www.gnu.org/software/make/manual/

Next Session

Exceptions in C++.
RAII — Resource Acquisition Is Initialization: a C++ technique
ensuring that resources are freed, even in the presence of
exceptions, without writing lots of exception-handling code
(Java’s try-with-resources on steroids)
Reading: Stroustrup 14.4.
RAII is a special case of the smart pointer and proxy patterns.

20
23

-1
2-

04

Programming in C++

Next Session

Final Notes – I
Why not initialize member array in my_vector’s default
constructor with nullptr? (slide 5)
Because then we’d be violating the class invariant :
vsize <= asize
If array is not pointing to an array, then asize isn’t defined.
my_vector’s assignment operator (slide 8) shows that
sometimes we can reuse resources instead of always destroying
the ones we’ve got and copying those of the other object.

Note the parameter type of the copy constructor and the
assignment operator (and the operator’s return type):

template <typename Elem>
class my_vector {
public:
my_vector(const my_vector<Elem> & o);
my_vector<Elem> &
operator=(const my_vector<Elem> & o);
...

};

The type is a generic one, as the class is generic; type
my_vector does not exist, only my_vector<Elem> exists!!!
Outside the class:
template <typename Elem>

my vector<Elem>:: my vector(const my vector<Elem> & o)
: ... {
...

}
template <typename Elem>
my_vector<Elem> &
my vector<Elem>:: operator=(const my vector<Elem> & o) {
...

}

Next Session

Exceptions in C++.
RAII — Resource Acquisition Is Initialization: a C++ technique
ensuring that resources are freed, even in the presence of
exceptions, without writing lots of exception-handling code
(Java’s try-with-resources on steroids)
Reading: Stroustrup 14.4.
RAII is a special case of the smart pointer and proxy patterns.

20
23

-1
2-

04

Programming in C++

Next Session

Final Notes – II
Implementation of the iterator type for class my_vector (slide 9)
Slide 11 – the swap specialised for objects of type my_vector,
is another example of partial specialization! The type of its
arguments is still generic but now we know that it’s a
my_vector of some T.

Things need to be declared (not necessarily defined) before
they’re used – slides 13–17.
Separate compilation – CLASS DEFINITIONS with METHOD
DECLARATIONS go into the HEADER file NAME.h, while the
method IMPLEMENTATIONS into the SOURCE file NAME.cc.
See slides 26–27.

Which file should include which?

If there’s no generic code, then we include NAME.h at the
top of NAME.cc and compile the latter into NAME.o

If there is generic code, then we include NAME.cc at the
bottom of NAME.h (compiler needs to see the
implementation of the generic code to be able to instantiate
it where it’s used) but do not ask the compiler to produce
NAME.o (pointless – it’ll be empty).

ALL other files that need to know the types defined in NAME.h
include NAME.h (NEVER NAME.cc).

To avoid “multiple definition” compiler errors, we surround the
entire contents of NAME.h with include guards (*NOT* pragma’s!!!):

// File: name.h - WITHOUT generic code
#ifndef NAME_H
#define NAME_H
...
#endif

This ensures that the compiler will see the contents only the first
time NAME.h is included (when NAME_H hasn’t been defined).

// File: name.cc - WITHOUT generic code
// Get declarations
#include "name.h"
...

Next Session

Exceptions in C++.
RAII — Resource Acquisition Is Initialization: a C++ technique
ensuring that resources are freed, even in the presence of
exceptions, without writing lots of exception-handling code
(Java’s try-with-resources on steroids)
Reading: Stroustrup 14.4.
RAII is a special case of the smart pointer and proxy patterns.

20
23

-1
2-

04

Programming in C++

Next Session

Final Notes – III
Things change a bit with generic code:

// File: name.h - WITH generic code
#ifndef NAME_H
#define NAME_H
...
// Compiler needs to see the implementation
// of the generic code.
#include "name.cc"
#endif

and the source file:

// File: name.cc - WITH generic code
// No include of "name.h"!
...

Afterwards NAME_H will get defined, so the contents between the
#ifndef and the #endif will not be considered again.
Separate compilation is automated with the make tool. On the
terminal type: info make
Or read the GNU documentation of make on-line:

https://www.gnu.org/software/make/manual/

Next Session

Exceptions in C++.
RAII — Resource Acquisition Is Initialization: a C++ technique
ensuring that resources are freed, even in the presence of
exceptions, without writing lots of exception-handling code
(Java’s try-with-resources on steroids)
Reading: Stroustrup 14.4.
RAII is a special case of the smart pointer and proxy patterns.

20
23

-1
2-

04

Programming in C++

Next Session

Final Notes – IV
The C preprocessor (cpp) can do quite a lot of things (e.g., give
you a headache. . . – advanced, not to be examined):
en.wikibooks.org/wiki/C_Programming/
Preprocessor

X-Macros (for meta-programming with macros):
en.wikibooks.org/wiki/C_Programming/
Preprocessor#X-Macros

www.embedded.com/design/
programming-languages-and-tools/4403953/
C-language-coding-errors-with-X-macros-Part-1#

www.embedded.com/design/
programming-languages-and-tools/4405283/
Reduce-C--language-coding-errors-with-X-macros---Part-2#

www.embedded.com/design/
programming-languages-and-tools/4408127/
Reduce-C-language-coding-errors-with-X-macros--Part-3#

Hello headache! (No, I don’t understand these either. . . but that
doesn’t mean that you cannot use them!
Outta This World!!!
https://github.com/pfultz2/Cloak/wiki/
C-Preprocessor-tricks,-tips,-and-idioms

https://www.gnu.org/software/make/manual/
en.wikibooks.org/wiki/C_Programming/Preprocessor
en.wikibooks.org/wiki/C_Programming/Preprocessor
en.wikibooks.org/wiki/C_Programming/Preprocessor#X-Macros
en.wikibooks.org/wiki/C_Programming/Preprocessor#X-Macros
www.embedded.com/design/programming-languages-and-tools/4403953/C-language-coding-errors-with-X-macros-Part-1#
www.embedded.com/design/programming-languages-and-tools/4403953/C-language-coding-errors-with-X-macros-Part-1#
www.embedded.com/design/programming-languages-and-tools/4403953/C-language-coding-errors-with-X-macros-Part-1#
www.embedded.com/design/programming-languages-and-tools/4405283/Reduce-C--language-coding-errors-with-X-macros---Part-2#
www.embedded.com/design/programming-languages-and-tools/4405283/Reduce-C--language-coding-errors-with-X-macros---Part-2#
www.embedded.com/design/programming-languages-and-tools/4405283/Reduce-C--language-coding-errors-with-X-macros---Part-2#
www.embedded.com/design/programming-languages-and-tools/4408127/Reduce-C-language-coding-errors-with-X-macros--Part-3#
www.embedded.com/design/programming-languages-and-tools/4408127/Reduce-C-language-coding-errors-with-X-macros--Part-3#
www.embedded.com/design/programming-languages-and-tools/4408127/Reduce-C-language-coding-errors-with-X-macros--Part-3#
https://github.com/pfultz2/Cloak/wiki/C-Preprocessor-tricks,-tips,-and-idioms
https://github.com/pfultz2/Cloak/wiki/C-Preprocessor-tricks,-tips,-and-idioms

	Generic Class with Dynamic Allocation
	Program Structure — Declarations vs Definitions
	Separate Compilation

