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ABSTRACT 

We propose two multipath rate control algorithms that guarantee 

bounded end-to-end delay in multihop wireless networks. Our 

work extends the previous research on optimal rate control and 

scheduling in multihop wireless networks, to support inelastic 

delay requirements. Using the relationship between dual variables 

and packet delay, we develop two alternative solutions that are 

independent from any queuing model assumption, contrary to the 

previous research. In the first solution, we derive lower bounds on 

source rates that achieve the required delay bounds. We then 

develop a distributed algorithm comprising scheduling and rate 

control functions, which requires each source to primarily check 

the feasibility of its QoS before initiating its session. In the second 

solution we eliminate the admission control phase by developing 

an algorithm that converges to the utility function weights that 

ensure the required delay bounds for all flows. Both solutions 

carry out scheduling at slower timescale than rate control, and 

consequently are more efficient than previous cross-layer 

algorithms. We show through numerical examples that even when 

there are no delay constraints, the proposed algorithms 

significantly reduce the delay compared to the previous solutions.    

Categories and Subject Descriptors 

C.2.1 [Computer-Communication Networks]: Network 

architecture and design – wireless networks. 

G.1.6 [Numerical Analysis]: Optimization – constrained 

optimization, convex programming. 

General Terms 

Algorithms, Performance. 

Keywords 

Cross-layer optimization, QoS, Multihop wireless networks, 

Delay, Rate control. 

1. INTRODUCTION 
Multihop wireless networks are becoming an important part of the 

future communication systems because of their flexibility and 

self-organizing features. Communication between nodes in these 

networks is performed over multiple hops and paths, resulting in 

an improved network capacity and coverage. As such, these 

networks can be potentially used for real-time voice and video 

communications in areas with no access to communication 

infrastructure. However supporting such delay-sensitive 

applications pose challenging problems as they typically have 

stringent QoS requirements for bandwidth and delay. Higher bit 

rates allow audio or video streams to be encoded at higher 

qualities. Moreover, packets arriving later than their playout 

deadline are discarded, resulting in severe quality degradation as 

decoding errors propagate to the subsequent packets.  

In this paper we are concerned with the design of multipath rate 

control strategies for supporting delay-sensitive traffic in multihop 

wireless networks. We assume that the network uses multipath 

routing where each source can send its data over multiple paths to 

their destination. Furthermore, we assume that the delay-sensitive 

applications require a bounded end-to-end packet delay, but are 

flexible in their bandwidth requirement. Specifically, the signal 

quality is a strictly concave function of bandwidth. Utilizing the 

elasticity of these applications, we design multipath rate control 

strategies that ensure bounded queuing delay and fair allocation of 

resources. As network layers and flows are tightly coupled due to 

the shared nature of wireless medium, we adopt a cross-layer 

optimization approach similar to [1], which also incorporates the 

resource allocation decisions at the underlying layers (which are 

referred to as scheduling in the literature). Such cross-layer 

optimization approach also enables us to design a more efficient 

layering of the protocol stack, as discussed in [2]and [3]. 

Previous work on multipath routing has largely focused on 

maximizing the probability of successful reception of data. 

Examples include [4] where a multipath scheme is proposed based 

on diversity coding, which chooses the optimal data allocation to 

minimize packet drop rate and improve end-to-end delay. 

Moreover, routing protocols for ad hoc networks which support 

multipath routing such as [5], use redundant paths as means of 

increasing network robustness. The problem of joint rate control, 

routing and scheduling in multihop wireless networks has been 

extensively studied (see [2] and [3] for a comprehensive survey), 

however, the main focus has been on the scheduling problem (see 

e.g. [1] and [6]) and the delay requirements have not yet been 

included in the model. Explicit modeling of QoS requirements in 
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the optimization framework has been shown to be intractable in 

many cases (see e.g. [7] and references therein). In [7], a convex 

programming formulation that captures average and probabilistic 

delay requirements for wired networks is presented. The 

optimization model is nevertheless based on M/G/1 queue 

approximation of link dynamics, and the proposed algorithm for 

solving the optimization problem is partly centralized. 

We propose an alternative approach for guaranteeing bounded 

end-to-end delay in multihop wireless networks. We use the same 

optimization framework as in [1] but, instead of explicit 

formulation of the delay constraints, we use the relationship 

between dual variables and packet delay to develop two 

alternative solutions that are independent from any queuing model 

assumption. In the first solution, we derive lower bounds on 

source rates that achieve the required delay bounds. The lower 

bounds on source rates can be interpreted as the inflection points 

of the rate-adaptive applications utility functions described in [9]. 

With the additional rate constraints, however, the optimization 

problem may become infeasible. The feasibility of a required 

bandwidth depends on the required delay bounds as well as utility 

function weights. The proposed algorithm therefore includes an 

admission control phase in which each source checks the 

feasibility of its required QoS given the current network priorities.    

In the second solution we eliminate the admission control phase 

by developing an algorithm that converges to the utility function 

weights that ensure the required delay bounds for all flows. In 

other words, the proposed algorithm adjusts the QoS or utility 

gained by a particular bandwidth, on the basis of the impact of the 

optimal bandwidth on the end-to-end delay. This way, the 

algorithm also defines a new measure of fairness for allocating the 

available bandwidth among sources, based on their delay 

requirements. Both algorithms allow distributed implementation 

over rate control and scheduling layers. Moreover, at equilibrium 

they achieve equal end-to-end delay on active paths, in contrast to 

the dual-based algorithms used in [1] and [8] for solving 

multipath network utility maximization problems, which result in 

equal number of packets on active paths.  

The rest of this paper is organized as follows. The system model 

and the problem definition are presented in Section 2. Our 

solutions are developed in Section 3. In Section 4 we compare the 

performance of our proposed algorithms with the dual based 

algorithm that solves the same optimization problem without the 

delay constraints. We conclude the paper in Section 5. 

2. SYSTEM MODEL 
We consider a multihop wireless network with L  links and 

S sources of delay-sensitive traffic. Let { }1, ,L L= …  and 

{ }1, ,S S= …  denote the set of links and sources, respectively. 

Let { }1, ,
s s

N N= …  denote the set of available paths for source 

s S∈ . The set of links used by source s ’s paths are given by 

s
L N×  matrix 

s
R with elements 

s
1, if path i N  uses link l L

.
0, otherwise

s

li
R

∈ ∈
=




 

Let
ss S

N N
∈

=∑ be the total number of paths. The L N×  routing 

matrix R  is defined by 1
[ ]

S
R R R= … . Each source s  transmits 

at the rate of s

i
x over path 

s
i N∈ , and at the total rate of 

ˆ
s

s s

ii N
x x

∈
=∑ . Let ( )1

, ,
s

s s s

N
x x x= …  and ( )1

, ,
S

x x x= …  be the 

vectors of path rates for source s  and path rates for all sources, 

respectively.  

Let ( )1
, ,

L
c c c= … denote the vector of link transmission rates. 

Because of the shared nature of the wireless medium, link rates 

depend on the scheduling policy used. A scheduling policy may 

incorporate power control in which case link rates are a function 

of global power assignments. If power control is not allowed, then 

a set of non-conflicting links are scheduled to transmit at their 

fixed rate at each time slot. In either case it is assumed that at 

different timeslots different sets of links are scheduled to achieve 

maximum capacity. Specifically, the feasible link rate region is 

defined as  

( )Coc C∈      (1) 

Where C is the set of feasible link rates and ( )Co C  is the 

convex hull of C and assumed to be compact. Moreover, total 

flow rates on links cannot exceed their achievable rates, i.e. 

Rx c≤       (2) 

Each source s  is assumed to have a maximum playout delay 

denoted by 
s

d . Packets arriving later than the playout delay will 

be lost, resulting in severe quality degradation. The end-to-end 

delay requirement is therefore formulated as an inelastic QoS 

constraint. In particular, let ( )1
, ,

L
T T T= …  denote the vector of 

packet delay at each link. The packet end-to-end delay on each 

path must not be more than the required playout delay, i.e. 

,  
s T

s
R T d s S≤ ∈      (3) 

The bandwidth allocated to each source is considered as an elastic 

QoS requirement. Thus, each source s obtains a utility ( )ˆ s

s s
w f x , 

0
s

w >  when it transmits at total rate of ˆ s
x packets per second. 

The functions ( )ˆ s

s
f x  are assumed to be continuously 

differentiable, increasing and strictly concave.  

The cross-layer multipath rate control problem is to find path rates 

x , and link rates c  , such that 

( )
, 0

ˆMax
s

s s
x c

s S

w f x
≥

∈

∑  Subject to (1)-(3)   (4) 

3. DISTRIBUTED ALGORITHMS 

3.1 Case with no Bounded Delay 

Requirements 
To develop a distributed algorithm for the optimization problem 

(4), we first consider the solution to the problem without the end-

to-end delay constraints (3), which has also been addressed in 

detail in [1].  



The optimization problem (4) without constraint (3) is a convex 

problem and can be conveniently solved using dual methods. For 

now, we ignore the lack of strict concavity of the objective 

function in (4) with respect to x  and c , and the problems it 

causes in recovering primal optimal solutions, when dual method 

is used. This issue will be addressed when the algorithm for the 

original problem is developed. 

The partial dual problem for  (4) without constraint (3) is defined 

as 

( )
0

Min  g
λ

λ
≥

     (5) 

where 

( ) ( ) ( )
, 0

ˆMax
s T

s s
x c

s S

g w f x Rx cλ λ
≥

∈

= − −∑  Subject to (1) 

where ( )1
, ,

L
λ λ λ= …  denotes the vector of Lagrange multipliers, 

which can be interpreted as link implicit costs. Problem (5) can be 

decomposed into two subproblems ( ) ( ) ( )1 2
g g gλ λ λ= +  

where 

( ) ( )( )1
0

ˆMax
s T s s

s s
x

s S

g w f x R xλ λ
≥

∈

= −∑   (6) 

and 

( )
2

0

Max
T

c

g cλ λ
≥

=  Subject to (1)   (7) 

Subproblems (6) and (7) correspond to the rate control and 

scheduling problems, respectively. The two problems are coupled 

via link implicit costs λ . 

Consequently, the master dual problem (5) can be solved using 

the projected gradient method as follows 

( ) ( ) ( ) ( )1

s

k k s s k k

l l li i l

s S i N

R x cλ λ β

+

+

∈ ∈

= + −
  
  
  

∑∑ , l L∈  (8) 

where ( ) ( )( )k ks s

i i
x x λ∗

=  and ( ) ( )( )k k

l l l
c c λ∗=  are the solutions of  

(6) and (7), respectively. Algorithms (6) and (8) can be 

implemented in a fully distributed fashion. Specifically, in (8), 

each link implicit price is updated using the current link 

transmission rate, and aggregate flow that passes over the link. 

Each source updates its rate by solving (6), given its utility 

function and its current paths implicit costs. The link transmission 

rates are updated by solving (7). The scheduling problem (7) is 

generally a complex problem, however, for some simple 

interference models efficient distributed algorithms have been 

developed [2]. 

3.2 Case with Bounded Delay Requirements 
Algorithm (8) shows that the link implicit cost and the queue 

length are closely related. Let ( )k

l
η denote the queue length at step 

k, then 

( ) ( )
,  

k k

l l
l Lη λ β= ∈     (9) 

If the link rates were fixed at each iteration of (8), i.e. 
( ) 0

,  
k

l l
c c l L= ∈ , modifying the step size in (8) to 0ˆ

l
cβ β= , 

relates the link implicit cost directly to the packet delay instead  

( ) ( )
,  

k k

l l
T l Lλ β= ∈

�
    (10) 

Consider the partial Lagrangian for the original problem (4) 

( ) ( ) ( )
1

ˆ, ,
s T T

s s

s S

L x w f x x Rx cλ ω ω λ
∈

= + − −∑  

Where ( )1

, ,
s

ω ω ω= …  and ( )
1
, ,

s

s s s

N
ω ω ω= … . The Karush-

Kuhn-Tucker (KKT) optimality conditions for the original 

problem (4) with respect to x  is then given by 

( )ˆ 0, ,
s s s

s s l li i s

l L

w f x R s S i Nλ ω
∗

∗ ∗

∈

′ − + = ∈ ∈∑   (11) 

0,  ,  
s s

i i s
x s S i Nω

∗ ∗

= ∈ ∈     (12) 

From (12) s

i
ω ∗  must be zero for paths with positive flow; paths 

with no flow can be ignored as they clearly have zero delay.  

Thus, replacing (10) in (11) results in the following relationship 

between the end-to-end delay on each path, and the source’s 

utility at its optimal rate 

( ) ˆˆ ,  ,
s s

l li s s s

l L

T R w f x s S i Nβ
∗ ∗

∈

′= ∈ ∈∑ .  (13) 

Equation (13) also implies that for each source, paths with 

positive flow have the same end-to-end delay.  Based on the 

above result, we propose two alternative solutions for the 

optimization problem (4): 

3.2.1 Solution 1: Replacing delay bounds (3) with 

minimum acceptable source rates 
From  (13) we conclude that the following inequalities 

( ) ˆˆ ,  
s

s s s
w f x d s Sβ

∗′ ≤ ∈     (14) 

guarantee the delay bounds (3) at optimality conditions. Assuming 

that the sources’ utility functions can be approximated by a 

logarithmic function through an appropriate choice of weights, i.e.  

( ) ( )ˆ ˆlog
s s

s s s
w f x w x= , we obtain the following lower bound 

on source rates 

ˆ ˆ ,  
s

s s
w d x s Sβ ≤ ∈     (15) 

Rewriting the KKT conditions for the optimization problem (4) 

with (3) now replaced by (15) 

( )ˆ 0, ,
s s s

s s l li i s s

l L

w f x R s S i Nλ ω τ
∗

∗ ∗ ∗

∈

′ − + + = ∈ ∈∑  (16) 

( )ˆ ˆ 0,  
s

s s s i
w d x s Sτ β

∗ ∗

− = ∈    (17) 



where ( )
1
, ,

s
τ τ τ= … is the vector of Lagrange multipliers 

associated with (15). In order for (13) to hold in this case, τ  must 

be zero. From (17), a sufficient condition for 0τ = is that ˆ
s

x
∗

to 

be strictly feasible with respect to the constraints (15). To 

conclude, the solution of the following optimization problem 

guarantees the end-to-end delay bounds (3), providing it is strictly 

feasible with respect to the constraint (15) 

( )
, 0

ˆMax
s

s s
x c

s S

w f x
≥

∈

∑  Subject to (1), (2) and (15)  (18) 

The idea of modeling the utility of delay-sensitive applications as 

a strictly concave function subject to the minimum acceptable 

source rates is also consistent with the performance characteristics 

of rate-adaptive real-time applications described in [9]. The utility 

of rate-adaptive applications is strictly concave at rates greater 

than the bandwidth associated with the minimally acceptable 

signal quality. At rates smaller than this point the utility function 

becomes convex and the network can be overloaded. The lower 

bound in (15) can therefore be mapped to the inflection point of 

the rate-adaptive applications utility function, since it is the 

bandwidth below which the signal quality degrades severely as a 

result of end-to-end delay violations.  

Because of the rate bounds (15), the optimization problem (18) 

may not always have a feasible solution. Therefore in this solution 

the network requires an admission control mechanism, just like 

the networks supporting rate-adaptive applications [9]. The 

feasibility of  (18) can be established by solving the following 

optimization problem [10] 

, , 0

Min  1
T

x t c

t
≥

      (19) 

Subject to (1), (2) and 

ˆ ˆ ,  
s

s s s
w d x t s Sβ − ≤ ∈     (20) 

where ( )
1
, ,

s
t t t= … . The problem (18) has a feasible solution 

when 0t
∗

= . If there exists a source s S∈ for which 0
s

t
∗

> , 

then the corresponding constraint in (15) is infeasible, i.e. its 

minimum required bandwidth cannot be achieved by the optimal 

bandwidth allocation policy, which is based on the utility function 

weights. The feasibility of a required bandwidth therefore depends 

on the choice of utility function weights. We will exploit this 

property in our second approach to eliminate the admission 

control phase. Non-zero dual variables associated with a feasible 

source (i.e. s S∈ for which 0
s

t
∗

= ) will further identify 

constraints in (15) that are not strictly feasible.  The feasibility 

problem (19) can be solved in the same way as problem (4) 

without constraint (3) described in section 3.1. We summarize the 

proposed admission control policy as follows 

Algorithm A1: Admission control - Performed by each source  

1. Solve the feasibility problem (19) jointly with other sources 

2. Do not initiate session if 0
s

t
∗

> , or the associated dual 

variable is not zero, or the associated constraint in (20) is not 

strictly feasible 

To develop a distributed algorithm for solving (18) the dual 

decomposition method used in section 3.1cannot be applied, since 

link rates
( )k

l
c vary at each iteration of gradient algorithm (8) and 

the relation (10) does not hold, as explained previously. We 

instead use primal decomposition to transform (18) into a 

scheduling master problem  

( )
0

Max
c

c
≥

Φ  Subject to (1)    (21) 

where ( )cΦ is the optimal utility of the following rate control 

subproblem for a given c 

( )
, 0

ˆMax
s

s s
x c

s S

w f x
≥

∈

∑  Subject to  (2) and (15)  (22) 

It is easy to show that ( )cΦ  is a concave function of c and 

( )cλ
∗

is one of its subgradients, where ( )cλ
∗

 is the optimal 

Lagrange multiplier corresponding to constraint (2) [10].  The 

decomposition of (18) as above allows rate control problem (22) 

to be solved for a fixed link rate vector c, thus eliminating the 

problem of variation of c in the dual decomposition approach. 

Moreover, in this approach scheduling is performed at a slower 

timescale than rate control, which is highly desirable due to high 

computational complexity of the scheduling problem [2]. This is 

in contrast to the dual decomposition approach used in section 

3.1, in which the scheduling problem has to be solved for every 

link price update. 

The rate control problem (22) can be solved using the dual 

approach. However since the objective function in (22) is not 

strictly concave with respect to x, primal optimal solutions cannot 

be easily computed from the dual optimal solutions. Moreover, as 

discussed in [8], primal variables will not converge when dual 

approaches are used to solve this problem. Hence, the following 

equivalent problem is solved instead [11] 

( ) 2

2
, 0

1
ˆMax

2

s

s s
x y

s S

w f x x y
c≥

∈

− −∑    (23) 

Subject to (2) and (15). 

The problem (23) is strictly concave with respect to x for fixed y, 

and strictly concave with respect to y for fixed x. The partial dual 

problem for (23), when y is fixed, is  

( )
0

Min  g
λ

λ
≥

     (24) 

where 

( ) ( ) ( )
2

2
0

1
ˆMax

2

s T

s s
x

s S

g w f x x y Rx c
c

λ λ
≥

∈

= − − − −∑  (25) 

Subject to (15) 



The primal problem (23) can be solved using the Proximal 

Optimization algorithm [11], but here we use the algorithm 

proposed in [8] as it is more suitable for distributed 

implementation. The algorithm for solving (22) is then 

summarized as follows 

Algorithm A2: Mutipath rate control- Performed jointly by each 

source and links that belong to its paths 

1. Set  

( ) ( ) ( ) ( ) ( )1,0 ,0 1 1

,  : 0
t t t t t

l
c c l cλ λ

′ ′ ′ ′ ′+ + +

= ∀ >   (26) 

where 
( ) ( )( )t t

cλ λ
′ ′∗

= is the optimal value of λ given 
( )t

c
′

. 

2. Solving (22) using algorithm proposed by [8]: At step 1t +  

a. Fix ( )y y t=  

b. Solving (23): At step 1k +  (repeat for 0K >  

times), given 
( )1, ,t t k

l
λ

′+

: 

( ) ( )

( )

( ) ( )

( )

1, , 1 1, , , 1

1

1

ˆ

: 0

s

t t k t t k s s t k t

l l li i lt

s S i N
l

t

l

R x c
c

l c

β
λ λ

+

′ ′ ′+ + + +

′+

∈ ∈

′+

= + −

∀ >

  
  
  
∑∑

 (27) 

where 
( ),t k

x  is the solution of (25) with 0
s

i
x =  if 

( )1

0
t

l
c

′+

=  for any : 1
s

li
l L R∈ = . 

c. Set 
( ) ( )1, 1,0 1, ,t t t t k

λ λ
′ ′+ + +

=  

d. Set ( ) ( ) ( ) ( )( )1y t y t z t y tα+ = + − , where 

( )z t solves (25) for 
( )1, 1,0t t

λ λ
′+ +

=  and 

0 1,  ,
s

i s
s S i Nα< ≤ ∈ ∈ . 

As explained previously, the step size in (27) ensures that packet 

delay at each link is related to the dual variable (link implicit cost) 

through equation (10). Since the link rates are updated at each 

iteration of A2, dual variables are initialized according to (26), in 

order for (10) to hold at the start of A2. Similar to algorithms (6) 

and (8) in section 3.1, A2 computation is carried out by sources 

and links using their local information. 

Computation of optimal schedule in (21) is less straight forward, 

as the feasible rate region (1) is generally difficult to characterize 

(see e.g. [6]), and no description of the objective function is 

available other than its value and its subgradient at query points. 

Cutting-plane methods [12] appear to be a suitable technique for 

this case, which also enables distributed implementation of the 

solution, as we next demonstrate for the case where scheduling 

does not incorporate power control. 

3.2.1.1 Solving scheduling problem (21)   
We consider the case where scheduling does not incorporate 

power control. Our formulation of the feasible rate region (1) is 

based on the model presented in [6], as it allows a distributed 

implementation of scheduling. In this approach, the notion of flow 

contention graph and contention matrix is used to model 

interference relations among links. In a flow contention graph, 

each vertex represents an active link and an edge between two 

vertices represents contention between the corresponding links, 

i.e. two links interfere with each other and cannot be active 

simultaneously. Maximal cliques in the contention graph capture 

local contention relation of the links and can be viewed as 

“channel resources”. Links within a maximal clique mutually 

interfere with each other and share the capacity of the clique. If a 

link belongs to several cliques, it can be active if and only if it is 

the only active link in all cliques it belongs to. Let { }1, ,K K= …  

denote the set of maximal cliques in the contention graph. The 

K×L contention matrix F is defined by 

0
1 if link l belongs to clique n K

0 otherwise

l

nl

c
F

∈
=




 

where 0

l
c  denotes the transmission rate of link l, when active. 

Since links in a maximal clique share the capacity of the clique, 

the feasible rate region can be written as 

0
,  0

l
Fc c cε≤ ≤ ≤     (28) 

where ε ≤ 1. The value of ε  depends on the local topology of the 

contention graph (e.g. ε = 1 for perfect graphs), and is difficult to 

determine in general. However, if 
0

0 or 
l

c c= , i.e. c corresponds 

to the independent sets of the contention graph, then ε = 1.  

Throughout the rest of this paper, we consider the scheduling 

problem  (21) with feasible rate region characterized as (28). We 

will show later that in our proposed cutting plane algorithm it is 

not necessary to know the value of ε. Starting from the upper 

bound value ε = 1, the proposed algorithm checks for the 

feasibility of the query point using a simple heuristic and 

improves its estimation for ε as it converges to the optimal 

solutions. The proposed algorithm for solving the scheduling 

problem (21), and consequently the optimization problem (18), 

then proceeds as follows  

Algorithm A3  

1. Admission control: Run algorithm A1 

2. Solving scheduling problem (21) using cutting-plane method: 

Given initial polyhedron { }0

0
1,  0 ,

l
c Fc c l LcΡ = ≤ ≤ ≤ ∈ , 

at step 1t ′ + : 

a. Choose a point ( )1c t ′ + in 
o f

t t t′ ′ ′Ρ = Ρ Ρ∩ , where 
o

t ′Ρ and 

f

t ′Ρ denote the polyhedron of objective cuts and feasibility 

cuts, respectively. 

b. Check if ( )1c t ′ + is feasible using algorithm A4. If 

( )1c t ′ + is feasible, go to step c. Else, update 
f

t ′Ρ by 

replacing previous feasibility cuts with new ones, using 

estimated ( )1tε ′ +  returned by A4: 



( ){ }1

0
1 ,  0 ,

f

t l
c Fc t c l Lcε′+

′Ρ = ≤ + ≤ ≤ ∈ , and return 

to step a. 

c. Solve the rate control problem (22) given ( )1c t ′ + , using 

algorithm A2. If ( )( ) ( )1

1 0
t

c tλ λ
′+∗ ′ + = = , quit 

( ( )1c t ′ + is optimal). Else, update 
o

t ′Ρ  by adding new 

objective cut: 
( ) ( ) ( ){ }1 1

1
1

o o t T t T

t t
c c tcλ λ

′ ′+ +

′ ′+

′Ρ = Ρ ≤ +∩  

Step b in algorithm A3 uses algorithm A4 to establish the 

feasibility of the query point ( )1c t ′ + . A4 uses a simple heuristic 

based on the distributed scheduling algorithm proposed in [6], 

where the feasible rate region in the scheduling subproblem (7) is 

defined as   

0

1,  0 or 
l

Fc c c≤ =     (29) 

Note that since c is binary, it corresponds to the independent sets 

of the contention graph and thus ε = 1. Using dual decomposition, 

suboptimal schedule for (7) is then obtained by distributed 

computation over cliques of the contention graph, primarily 

ignoring the discrete constraint on c and then rounding up the 

value of c to
0

l
c or 0, whichever is closer (see [6] for details). 

 Algorithm A4 operates on a time frame consisting of a number of 

timeslots. During each time slot, a schedule is computed by 

solving (7) as described above. The link weights in the objective 

function are then updated based on the difference between the 

query point value and the average link rate achieved up to the 

current time slot. If this difference becomes sufficiently small at 

some point, the query point is assumed feasible. On the other 

hand, if after a certain number of timeslots this difference is still 

large, the query point is assumed infeasible and a new estimate for 

ε is returned based on the attained average link rate. Algorithm A4 

is summarized as below 

Algorithm A4: Check feasibility of ( )1c t ′ +  

 Given 
0

1θ = , at timeslot j 

1. Solve linear binary program 

Max
T

j
c

cθ  s.t. (29)    (30) 

using algorithm proposed in [6]. 

2. Update link weights 
j

θ according to 

( )
1

1 1
jj i

l l li
c jc tθ

=

′= − +∑    (31) 

3. If 
j

θ δ≤ ,  ( )1c t ′ + is feasible. Else, if j = M, declare 

( )1c t ′ + as infeasible and compute a new estimate for ε  

( )
1

1 1
jT i

i
t F c j Kε

=

′ + = ∑    (32) 

The maximum number of iterations M is chosen based on the size 

of the network and the required algorithm efficiency.  

Step a in A3 can use standard methods such as maximum volume 

ellipsoid (MVE) or analytic centre cutting plane methods 

(ACCPM) which result in speedy convergence of the cutting 

plane algorithms. These methods, however, involve solving a 

global optimization problem to find a new query point. It remains 

the subject of our future research to design efficient decentralized 

algorithms for choosing query points for this particular problem. 

The remaining steps of A3 use distributed algorithms as explained 

previously. Note also that in A3 scheduling is performed at a 

slower timescale than multipath rate control. Since scheduling has 

higher computational complexity than rate control, this can 

potentially result in significantly better performance than 

algorithms in section 3.1, where both scheduling and rate control 

run at a same frequency.   

3.2.2 Solution 2: Adjusting utility function weights to 

guarantee the delay bounds (3) 
Motivated by the fact that the feasibility of a required bandwidth 

in (15) (and thus the required delay bound) depends on the choice 

of utility function weights, in this approach instead of adding 

lower bound constraints on source rates, the utility function 

weights are dynamically adjusted based on (14) so that the end-to-

end delay is bounded at optimality conditions. In other words, the 

end-to-end delay constraints (3) are incorporated in the sources’ 

utility functions. The modified utility function therefore reflects 

the QoS gained by a particular bandwidth taking also into account 

its impact on the end-to-end delay. As a result, similar to best-

effort networks, this approach does not require an admission 

control phase, as it does not impose any hard constraints on 

source rates. The proposed algorithm only modifies step c of A3 

as described below 

Algorithm A5 

1. Run steps 1 to 2.b of algorithm A3 

2. Modified step c of A3:  

a. Update utility weights according to 

 
( ) ( ) ( )( )1 ˆ ˆMin ,

t t t

s s s ss
w w d f xβ

′ ′ ′+ ′=      (33) 

b. Solve the rate control problem (22) given ( )1c t ′ +  and 

( )1w t ′ + , using A2. 

c. If ( )( ) ( )1

1 0
t

c tλ λ
′+∗ ′ + = = , quit ( ( )1c t ′ + is optimal). 

Else, if 
( ) ( )1t t

w w
′ ′+

= , update 
o

t ′Ρ  by adding new objective 

cut: 
( ) ( ) ( ){ }1 1

1
1

o o t T t T

t t
c c tcλ λ

′ ′+ +

′ ′+

′Ρ = Ρ ≤ +∩ , else, 

update 
o

t ′Ρ  by replacing previous objective cuts with new 

ones: 
( ) ( ) ( ){ }1 1

1
1

o t T t T

t
c c tcλ λ

′ ′+ +

′+

′Ρ = ≤ +  
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Figure 1: Example network topology (left) and its contention 

graph (right). 

At step c of A5, if utility weights have been modified, the 

previous objective cuts are discarded, since the objective function 

has been modified, and replaced with new ones based on the 

gradient of the modified objective function. The following 

theorem proves the convergence of the proposed algorithm: 

Theorem 1: Algorithm A5 converges to the points ( ), ,x c w
∗ ∗ ∗

, 

where ( ),x c
∗ ∗

 are the stationary points of following 

optimization problem 

( )
, 0

ˆMax
s

s s i
x c

s S

w f x
∗

≥
∈

∑ Subject to (1)-(2)    (34) 

and the utility function weights w
∗
 guarantee the maximum end-

to-end delay (3) at optimality condition. 

Proof:  We only provide an outline of the proof due to space 

limitation. It is easy to see that the sequence ( ){ }
s

w t ′ is non-

increasing and bounded from below, hence it converges to the 

finite and unique limit point 
s

w
∗ . Let ( )t ′Φ be the objective 

function of (21) for ( )
s s

w w t ′= . It then follows that 

( ){ }t
∗′Φ → Φ , after which point algorithm A5 converges to the 

optimal solution of 
∗

Φ .    ■ 

4. NUMERICAL RESULTS 
To evaluate the performance of the proposed algorithms we 

consider the network in Figure 1. There are two flows: A-D and E-

H. Flow A-D has two available paths which contain links (1,2) 

and (3,4), respectively. Flow E-H has only one available path 

containing links (5,6,7). The interference regions are shown by 

dashed lines. Although paths do not share any links, they contend 

for the wireless channel due to interference among some of their 

links. For example nodes F and C are within the interference 

range of nodes A and E, respectively, and thus links 3 and 5 

cannot be active simultaneously. Moreover, nodes can neither 

transmit and receive at the same time, nor transmit to more than 

one node at a time. These link activation constraints are captured 

in the contention graph in Figure 1. The utility functions for flows 

A-D and E-H are ( )
1

ˆ2 log x and ( )
2

ˆlog x , respectively. The links 

data rate is 0
1

l
c =  packets/msec for all links.  
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Figure 2. Evolution of path rates and end-to-end delay for A3 

without delay control.  

We evaluate the proposed algorithms by considering two 

scenarios. First, we show that even when there are no delay 

constraints, algorithm A3  significantly reduces end-to-end delay 

compared to the joint rate control and scheduling algorithm (6)-

(8) presented in section 3.1. In the latter algorithm, since the ε 

value in the feasible rate region (28) is unknown, we use the 

estimated value for ε computed by A3. In the second scenario, we 

demonstrate that algorithm A5 can achieve the end-to-end delay 

bounds that are infeasible for algorithm A3. 

Figure 2 shows the evolution of path rates and end-to-end delay, 

when A3 is run when there are no delay constraints. Aggregate 

source rates at the end of experiment are 
1

ˆ 0.55x = and 
2

ˆ 0.29x =  

packets/msec. End-to-end delay on both paths of flow A-D is 36, 

and on flow E-H path is 34 msec. The estimated value for ε in 

(28) is 0.85. The evolution of end-to-end delay for the joint rate 

control and scheduling algorithm (6)-(8) is shown in Figure 3. ε is 

set to 0.85 already estimated by A3. It can be seen that end-to-end 

delay exceeds 850 msec on all paths, which is more than 10 times 

higher than the delay achieved by A3 without employing delay 

control. 
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Figure 3. Evolution of end-to-end delay for algorithm (6)-(8). 
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Figure 4. Evolution of path rates and end-to-end delay for A5. 

Next, we consider the case where the required end-to-end delay 

bound on all paths is 30 msec. From (15), this needs minimum 

source rates of 
1

ˆ 0.67x = and 
2

ˆ 0.33x = , which cannot be 

supported by A3.  As Figure 4 shows, algorithm A5 achieves an 

end-to-end delay of less than 10 msec, by reducing the utility 

weights of flows A-D and E-H to 0.52 and 0.26, respectively. 

Aggregate source rates at equilibrium are
1

ˆ 0.57x = and 
2

ˆ 0.28x =  

packets/msec, which are very close to rates attained in the first 

scenario. 

5. CONCLUSION AND FUTURE WORK 
In this paper, we develop two distributed rate control algorithms 

that guarantee bounded end-to-end delay in multihop wireless 

networks, using an optimization framework. The first algorithm 

solves an optimization problem with delay bounds replaced by 

lower bounds on source rates, and includes an admission control 

phase. The second algorithm instead dynamically adjusts the 

utility function weights in order to support the required QoS for 

all flows. Both algorithms are performed over scheduling and rate 

control levels. Numerical examples show that both algorithms 

achieve better than expected delay performance; however their 

efficiency could still be improved. Moreover, fully distributed 

solutions for the scheduling problem remain an open problem. 

Addressing theses issues will be the subject of our future research. 

6. REFERENCES 
[1] Lin, X., and Shroff, N.B. 2006. The Impact of Imperfect 

Scheduling on Cross-Layer Congestion Control. Wireless 

Networks. IEEE/ACM Trans. Netw. 14, 2, (2006), 302-315. 

[2] Lin, X., and Shroff, N.B. 2006. A Tutorial on Cross-Layer 

Optimization in Wireless Networks. IEEE J. Sel. Areas 

Comm. 24, 8, (2006), 1452-1463. 

[3] Chiang, M., Low, S., Calderbank, A.R., and Doyle, J.C. 

2007. Layering As Optimization Decomposition: A 

Mathematical Theory of Network Architectures. In Proc. of 

the IEEE. 95, 1, (2007),  255-312. 

[4] Tsirigos, A., and Haas, Z.J. 2004. Analysis of Multipath 

Routing-Part I: The Effect on The Packet Delivery Ratio. 

IEEE Trans. Wireless Comm. 3, 1, (2004), 138-146. 

[5] Nasipuri, A., and Das, S.R. 1999. On-demand Multipath 

Routing for Mobile Ad Hoc Networks. In Proceedings of 

ICCCN’99, 64-70. 

[6] Chen, L., Low, S.H., and Doyle, J.C. 2005. Joint Congestion 

Control and Media Access Control Design for Ad Hoc 

Wireless Networks. In Proceedings of IEEE INFOCOM 

2005, 2212 – 2222. 

[7] Saad, M., Leon-Garcia, A., and Yu, W. 2007. Optimal 

Network Rate Allocation under End-To-End Quality-Of-

Service Requirements. IEEE Trans. Netw. and Serv. 

Management. 4, 3, (2007), 40-49. 

[8] Lin, X., and Shroff, N.B. 2006. Utility Maximization for 

Communication Networks with Multipath Routing. IEEE 

Trans. Automatic Control. 51, 5, (2006), 766-781. 

[9] Shenker, S. 1995. Fundamental Design Issues for the Future 

Internet. IEEE J. Sel. Areas Comm. 13, 7, (1995), 

[10] Boyd, S., and Vandenberghe, L. 1999. Convex Optimization. 

Cambridge University Press. 

[11] Bertsekas, D.P., and Tsitsiklis, J.N. 1989. Parallel and 

Distributed Computation: Numerical Methods. Prentice-Hall. 

[12] Bertsekas, D.P. 1995. Nonlinear Programming. Athena Sci.

 


