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Chapter 2 

Slide 5 
Note how a labelled transition system with only two states can produce an infinite 
execution trace! 

Slide 7 
Which one of the three specifications of SWITCH is the best? 

The first one is the best one, because it’s the most modular. Consider someone who 
decides to write a Java program and ends up with a huge main() method that 
does all the work without ever calling another method. This is like the third 
version of SWITCH. Breaking its specification into multiple parts allows us to 
better understand what the process is supposed to be doing. 
 
The LTS for SWITCH has two states. This is evident in the first version, since we 
know that SWITCH = OFF and that there’s another state called ON. But when the 
LTSA tool is given the third version of SWITCH, how does it know that there should 
be two different states? 

a) It knows that the initial state (0) will represent the process SWITCH (that 
is always the case). 

b) It knows that at that initial state, SWITCH can perform action on and move 
to some unspecified state, from where it can perform action off. 

That’s why it creates a second state – because the on action does not move into a 
previously defined state. That’s also why it doesn’t create a third state – because 
the off action specifically says that it will take the system to the state SWITCH, 
which we know already. 

Slide 9 
Why do we need two states for orange? 

Because the action orange is supposed to be followed by two different actions in 
each case (red & green), so we need to distinguish between these two cases by 
using separate states. 
This would have been easier to see if we had used explicit state names (i.e., sub-
processes) instead of relying on implicit states: 
TRAFFICLIGHT = PREPARE_TO_STOP, 

  PREPARE_TO_STOP = (red -> MUST_STOP), 

  MUST_STOP = (orange -> PREPARE_TO_GO), 

  PREPARE_TO_GO = (green -> MUST_GO), 

  MUST_GO = (orange -> PREPARE_TO_STOP). 

Slide 11 
- What’s the probability of observing coffee instead of tea? 

We have no idea. Probabilities are not defined on the choices a process can make. 
A choice can therefore represent all different types of systems – those where an 
action x is more probable than another action y and those where it’s the opposite. 

- What are the possible execution traces of the DRINKS machine? 
There an infinite number of traces and each one of them is infinite in length!!! 
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Slide 12 
In the previous slide, actions red & blue determine the choice of the process’s 
future behaviour. But in the COIN process, toss doesn’t determine the choice of 
the process’s future behaviour (HEADS or TAILS). So we call this a non-
deterministic choice. 

Slide 13 
What’s the probability of failing to transmit a message according to the CHAN 
process? 

Slide 14 
DANGER!!! 

When you write: 
BUFF = (in[i:0..3] -> out[i] -> BUFF). 

Then, after the in[i:0..3] action you should realise that there are 4 implicit 
states, not just 1!!! 
This is because the above specification is simply a way to describe a choice for the 
different possible values of the index i, without writing too much. As the slide says, 
it’s equivalent to: 
BUFF = (in[0] -> out[0] -> BUFF 

       |in[1] -> out[1] -> BUFF 

       |in[2] -> out[2] -> BUFF 

       |in[3] -> out[3] -> BUFF). 

Slide 15 
Why’s there only one transition from state 0 to state 2 and it has two labels – 
in.1.0 & in.0.1? 

Think: After action in[1][0] process SUM is supposed to behave like which sub-
process? What about after action in[0][1]? 

Slide 33 “CountDown timer example” 
Unlike the LAMP process that we’ve implemented in tutorial 1 as a simple Java 
class with on/off methods, the COUNTDOWN process here is an active one, that’s 
supposed to be performing actions on its own, instead of simply waiting to 
respond to calls from others. So we need to implement it as a thread! 

Slide 35-36 “CountDown class…” 
Why are actions start & stop been implemented as separate, public methods, 
while tick & beep are private methods? 
Think: active vs passive behaviour – who’s supposed to perform each of these? 
 
In the Java implementation of action stop, do you understand how private 
attribute counter is used to terminate the thread? 
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Chapter 3 

Slide 4 
- Why do we get an arbitrary relative order of actions from different processes? 
Because as a previous bullet item says, we assume that the processes are executing 
with an arbitrary speed! 
Arbitrary means that it may very well change during the process’s execution, so 
you may observe lots of actions from one process, then lots of actions from another 
process, then again lots of actions from the first process, and so on. 
 
This asynchronous model of execution is essentially the opposite of the 
synchronous model of execution. 
In the synchronous model of execution, all processes synchronise and execute 
with the same speed. There is effectively a global clock that is telling every 
process when they’re supposed to perform their next action. 
Examples of synchronous systems: 

- People rowing on a boat – everybody pulls at the same time. 
- People passing buckets in a line to put out a fire – everyone is supposed to 

pass their bucket down/up the line at the same time. 
- Soldiers marching. 
- Hardware, especially processors – the internal clock tells all the circuits 

when to read their inputs and produce their outputs. That’s why we’re 
interested in the Hz of processors (i.e., number of actions per second). 

An example of an asynchronous system is a company – workers of that company 
work at their own speed – there’s no global clock to give them instruction to 
perform their next action. Another example is soldiers crossing a bridge – they 
stop marching, so as not to cause the bridge to synchronise and collapse(!) and 
instead walk each on their own rhythm, so that one’s steps are cancelled out by 
those of the others. 
What is an orchestra – a synchronous or an asynchronous type of a system? 

Slide 6 
Drawing the LTS of a parallel composition – the parallel composition’s state is 
essentially a combination (i.e., Cartesian product) of the states of the processes 
that are being composed in parallel. So the initial state of the system is the state 
(0,0) when we’re composing two processes. If the first process moves first, then 
we’ll move to (1,0). If the second process moves first, then we’ll move to (0,1).  By 
keeping track of which process has moved in this way, we can draw the complete 
LTS of their parallel composition, as is done on the slide. 
 
For two processes, one with 3 states and the other with 4 states, we get a matrix 
(Cartesian product) like this. Always draw LTSs in this way – impossible to get 
right otherwise!!! 
3 

2 

1 

0  x 

0 1  2  3  4 

“x” here corresponds to the (0,0) state, i.e., the one where both processes are at 
their first state. 
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Slide 8 
Since sharing the same action means that two (or more!) processes must 
synchronise and perform that action together, the only way we’ve got to control 
process interaction is by changing action names! Sometimes we want to change 
the names of some actions so that two (or more) processes don’t interact, in other 
cases, we want to change the names of some actions so that processes do interact. 
 
Try to use the nuclear bomb (aka “alphabet extension”) at your disposal, to see 
what happens: 
MAKER = (make -> ready -> MAKER). 

USER = (ready -> use -> USER) + { make }. // the bomb! 

||MAKER_USER = (MAKER || USER). 

What’s the LTS of MAKER_USER? Why is that the LTS? 
IF YOU DON’T UNDERSTAND THIS, POST ON MOODLE!!! 

What does a UML sequence diagram look like? Like processes, with local & shared 
actions! 

 

Slide 10-11 
Why is the model on slide 11 better than one on slide 10? 
Because it is more modular than the one on slide 10. It breaks down the system 
into sub-systems (MAKERS & ASSEMBLE), instead of presenting everything at the 
same level. For small models this may be overkill sometimes – a bit of judgement 
is needed. 

Slide 12-14 
These slides present two renaming mechanisms that apply themselves to all the 
actions of a process. 
 
The single colon (:) is used when we want to get different, independent instances 
of some process: 
||TWO_SWITCHES = ({a,b}:SWITCH). 

This creates two copies of the SWITCH process – the first one has all its actions 
prefixed with “a.”, while the second one has all its actions prefixed with “b.”. That 
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way, when we perform action a.on, process b:SWITCH is not forced to perform 

action b.on – the two switches are independent of each other. 
So, a single colon -> one separate process per prefix, all its actions prefixed! 

 
The double colon (::) is used when we want a single copy of some process but we’d 
like that process to be able to interact with many different processes at the same 
time. It’s mostly used when we want to represent some shared resource, that is 
going to be used by different processes, as is done on slide 13.  

So, a double colon -> only a single process always, its actions prefixed with all 
prefixes! 

 
Another way of specifying RESOURCE_SHARE is: 
||RESOURCE_SHARE = ( {a,b}:USER || {a,b}::RESOURCE ). 

The difference is only a single colon but the consequences are completely different 
– check the LTS’s on slide 14. 

Slide 21 
We didn’t focus much on structure diagrams but what’s the answer here? 
Well, the diagram shows two copies of the BUFF process, prefixed with a & b. So: 
||TWOBUFF = 

 ( {a,b}:BUFF ). 

The diagram also shows that the out action of a:BUFF is linked to the in action 
of the b:BUFF and that link is labelled a.out. That means that there we have an 
action renaming of a.out & b.in into a.out – we only need to rename b.in 
(since a.out is already called a.out!): 
||TWOBUFF = ( {a,b}:BUFF ) 

            / { a.out / b.in }. 

The diagram also shows a link between a.in and some external action, where 
the link label is in, and a similar link for b.out, which is labelled out: 
||TWOBUFF = ( {a,b}:BUFF ) 

            / { a.out / b.in 

      , in / a.in, out / b.out }. 

Since the only externally visible actions are in & out (these are the only circles in 
the outer box representing TWOBUFF), we need to hide everything else and expose 
in, out only: 
||TWOBUFF = ( {a,b}:BUFF ) 

            / { a.out / b.in, in / a.in, out / b.out } 

            @ { in, out }. 

Slide 26 
Do you understand how the a.stop and b.stop have been renamed into a single 
stop action? 
Do you understand how this sharing of the two stop actions has been 
implemented in the corresponding Java program? (look up slide 30… the whole 
program’s stop method calls the stop method on each object.) 

Slide 30 
How’s the pause actions implemented? Check the source code of this applet… (it’s 
in book_applets/applets/concurrency/display/ThreadPanel.java) 
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Summary 
- In order to compose processes in parallel we use the parallel composition 

("||") operator: P || Q || W 
 

- Processes running in parallel *interleave* their actions 
 

- When two or more processes have an action with the same name then *all* 
of them must perform that action together (they *synchronise* on that 
action). These are called *shared* actions. 

 
- If even one process is unable to perform a shared action, then no process 

can perform it. 
 

- In order to control which actions are shared (and thus interaction) we can 
use a number of operators: 

 
◼ Colon: {a,b,c}:P -> creates three independent instances of P, 

each prefixed by a different prefix from the set {a,b,c}. 
 

◼ Double Colon: {a,b,c}::Q -> creates a *single* instance of Q, 
where each of its actions x has been replaced by as many actions as 
prefixes in the prefix set, each of these new actions prefixed with 
one of the elements of the prefix set (so here: a.x, b.x, c.x). 

 
▪ The double colon operator is used to introduce a process that 

models a shared resource (which interacts with many different 
process instances). 

 
◼ Action renaming: P / { new_name / old_name } -> replaces 

all instances of old_name inside P with new_name. 
 

◼ Action hiding: P \ {internal1, internal2} -> hides 
internal1 and internal2 from other processes, so they cannot 
synchronise with these actions. 

 
◼ Action exposure (the dual of hiding): P @ {external1, 

external2} -> exposes just external1 and external2 from P, 
hiding all its other actions, so that other processes can only 
synchronise with these – can think of these as P 's API. 

 
◼ Alphabet extension (from chapter 2): P + {action1, action2} 

-> adds action1 and action2 to the alphabet of P, even if P 
cannot perform them. So, if these are shared actions, we are 
effectively forbidding all other processes from ever performing 
action1 and action2 (we're mean...). 
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Chapter 4 

Slide 12 
 
Slide 12 in chapter 4 is the *most* important slide in the whole book. If you don't 
understand it 100% then you'll struggle with the rest of the material. 
 
The difficult points in it are: 
 

1) How does the TURNSTILE process manage to read the value that is held 
inside the VAR process? 

 
TURNSTILE's INCREMENT sub-process does a read[x:T] at some point (ignore 
the value. prefix for the time being). 

 
Given the definition of indexed actions, this means that it has a choice at that point 
- it can do read[0], read[1], ..., read[N].  
 
But, surprise, surprise, these are actions that are *shared* with process VAR. And 
process VAR *cannot* do them at all states. In fact, at each of the states of VAR, it 
can do only a single read action - the one indexed by u, the value currently held: 
 
VAR[u:T] = (read[u] -> VAR[u] 

 
Therefore, TURNSTILE does not really have a choice – it can only do the read 
action that VAR can do at this point, so it ends up reading VAR’s current value u! 

 (you may want to set N to 1, have the tool draw all the LTSs and simulate to see 
what's going on - with LTSA there's an option that allows you to draw multiple LTS) 
 

RE-READ THIS EXPLANATION UNTIL YOU'VE UNDERSTOOD IT – POST 
QUESTIONS ON MOODLE/ASK IN CLASS IF YOU DON'T!!! 

 
2) Why do we use the prefixing we use in the GARDEN composite process? 

 
Well, we need two independent instances of TURNSTILE, so we prefix one with 
"west:" and the other with "east:". Now their actions are not shared, so they 
can perform them independently. 
 
They both do actions value.read[x:T] and value.write[x+1] (before the 

prefixing with east/west). So, the VAR instance needs to be prefixed with 
"value:". 
 
Since there are two turnstile instances, the value:VAR instance needs to be 
prefixed with both east and west (this time using the :: operator, so as not to 
get two different copies of value:VAR, just a single copy). 
 
Does it make sense? No? Set N to 1, and draw the LTSs. Observe the names of their 
transitions. Experiment with different cases: 
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{east,west}::VAR (no value:) 
 
value:VAR   (no {east,west}::) 
 
{east,west}:VAR (no value: and : instead of ::) 

Still unsure? ASK/POST ON MOODLE!!! 
 

3) Why in Heaven's name are we using alphabet extension in TURNSTILE?!?! 
 
<evil-grin> Heh, heh, heh... I love this part! </evil-grin> 

“Alphabet extension: used to forbid another process from doing an action.” 
 
Set N to 1 – what's the alphabet of VAR? 
{read[0], read[1], write[0], write[1]} 

 
What's the alphabet of TURNSTILE? (ignoring “value”.) 
{go, arrive, end, 

 read[0], read[1], _________ write[1], write[2]} 

 
MIND THE GAP!!! Actions read[0..1], and write[1] are shared so both 
processes (TURNSTILE & VAR) do them together. 
But what about action write[0]? It's not shared!!! So process VAR can do it 
whenever it wants, resetting itself!!! 
In other words, in our model VAR can *magically* change its value back to zero 
whenever it feels like it, ignoring the updates that TURNSTILE had done. <- NOT 

GOOD! 
So we need to use alphabet extension to add action write[0] to the alphabet of 
TURNSTILE. 
Now that it has this action in its alphabet it's also shared, so VAR can *never* do it 
(because TURNSTILE can never do it). 

“Alphabet extension: used to forbid another process from doing an action.” 
 

Sense much makes? Post on Moodle if not.      (I *know* it doesn't...) 
 
 
If you wanted to model GARDEN from scratch, would you have tried to create this 
LTS in one go? 
Check the model and see how the different parts of the system are modelled little 
by little. First we’ve got a model of the variable that holds the number of people 
inside the garden, then a model of a turnstile, both described using a number of 
sub-processes to make them easier to specify. 
NEVER try to specify something as one big blob – it’s bound to fail. Try instead to 
break your system into smaller parts (VAR, TURNSTILE) and then specify each of 
them little by little, using sub-processes. 
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Chapter 5 

Slide 3 “5.1  Condition synchronization” 
1) “does not permit cars to depart when there are no cars in the carpark” – to 
model reality, not really needed in a *real* system (still needed in our Java 
*simulation* of the real system). Even so, one may choose to implement it in a 
real system to ensure that the program’s view of the world and the world are in 
sync (Why did you detect a car leaving if your internal counter says there was no 
car? What’s going on – should a human go inspect?). 
 
2) “A controller is required” – a *very* *sad* fact, since controllers impose 
centralisation, which *reduces* concurrency. 
Centralised designs usually lead to less throughput and are less robust than 
decentralised ones – sometimes that’s the best we can do. Sometimes we choose 
them to increase other properties, e.g., max speed of processing one item (we 
accept to waste resources just so we can increase individual response time). 
For example, compare the centralised structure of military forces vs the usually 
far more decentralised structure of most civil societies. 

Slide 7 “carpark program” 
THESE ARE THE RULES TO TURN ANY MODEL INTO A CORRESPONDING 

JAVA PROGRAM! 
- “Active” processes are turned into threads. 
- “Passive” processes are turned into monitors. 
 
Note: Sometimes, one cannot say that a process is purely active or purely passive 
– consider the COUNTDOWN process of Chapter 2, slides 31-34. There we 

transformed it into a combination of a monitor and a thread. But again, its passive 
parts (begin, end) were transformed into monitor methods, while its active 
parts (beep, tick) were transformed into internal actions to be called by the 
COUNTDOWN’s internal thread. 

Slide 11 “Carpark program - CarParkControl monitor” 
Here, action arrive has been implemented as a synchronized Java method, which 
decreases the number of free spaces in the car park. The synchronized part is 
because car part is a passive process that waits to react to arrive/depart events, 
so it needs to be implemented as a monitor. 
But in the model of the car park says that the arrive action is only possible when 
the condition (i>0) is true, i.e., when the number of free spaces is greater than 0. 
So the Java implementation we’ve got on this slide is missing something – it 
shouldn’t decrease the number of free spaces if there aren’t any! 
What we’re missing here is the implementation of the model’s guarded condition 
“when (i>0)”. This is to be achieved through the wait()method of Java (see 
slide 13). 

Slide 15 “condition synchronization in Java” 
Just like slide 7, THIS IS THE RULE TO TRANSFORM ALL GUARDED ACTIONS IN 

A MODEL INTO JAVA CODE!!! 
See Table 1 that follows (on page 12). 
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Table 1 FSP guarded actions in Java 

FSP: 
    when condition action -> NEW_STATE 

Java: 
public synchronized void action() 

                           throws InterruptedException {  

      while (! condition) wait(); 

      // do whatever action is supposed to do 

      notifyAll(); 

} 

 
Why? 
FSP’s action is supposed to be something atomic, i.e., it either happens entirely or 
it doesn’t happen at all. It is supposed to occur only when the guard condition is 
true. 
Therefore, the code: 

1) Checks inside a while loop (why a while and not an if?) that the condition 
holds. While it doesn’t it waits. 

2) If the wait() is interrupted, then the method throws this interruption 
exception to whomever called it, without performing any of the 
instructions for action. 

3) When the wait returns and condition holds, the instructions of action can 
be performed – no exceptions are allowed to be thrown here, as they would 
break the atomicity of action! All exceptions must be caught and either the 
instructions performed so far should be undone before leaving method action, 
or the processing of action should be completed (works like a transaction). 

4) At the end we notify all other threads that something has changed in the 
object and they may want to check if their conditions are now satisfied. 

BEWARE! 
This pattern makes a number of assumptions with regards to exceptions! 

1) The action implementation doesn’t throw any exceptions. The only 
exception that is potentially thrown is an InterruptedException inside 
wait(), which we forward. 

2) Actions form a kind of self-loop, in the sense that if a subsequent action is 
interrupted, then the system is fine. THIS IS A VERY QUESTIONNABLE 
ASSUMPTION!!! 
You need to think in terms of TRANSACTIONS – what will happen if an 
action fails? 
a) Is there something that I need to undo? (abandon the transaction) 
b) Should I persist, to ensure that the transaction completes? (force the 

transaction) 

Slide 19 “5.2  Semaphores” 
What does “Max” represent? 
It represents the maximum number of shared resources, e.g., printers, cinema 
seats, etc., that can be used concurrently. In a cinema with 100 seats, we’d only 
allow 100 (sit) down actions… 
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Why do we initialise the semaphore to 0? Why not initialise it to Max (or some 

number in between)? 
It depends on how many resources are ready to be used initially. 
For a cinema, you may want to initialise it to 0 initially, so as to get some time to 
clean up before you open the doors and do Max up actions to allow the people to 
enter. 
For another system where there are already x  (0 < x <= Max) resources that are 
ready to be used immediately (e.g., x printers), we’d initialise our semaphore to x: 
||SYSTEM = (SEMAPHORE(x) || …). 

 
- Which one is equivalent to a lock, SEMAPHORE(0) or SEMAPHORE(1)? 

Slide 28 “SEMADEMO program – MutexLoop” 
What happens when the critical section “while(ThreadPanel.rotate());” throws 
an exception? 
The mutex.up() statement will not be executed. One resource (the only resource) 
has been removed from the system permanently. 
For this reason, Java has introduced try-with-resources - 
https://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose
.html 
Each resource defines a method close() in its interface, which is called whether the 
try block terminates normally or through an exception (so it’s placed inside a 
finally clause). 
- Can you re-write this code so that instead of the plain mutex semaphore, we 

now have a resource that always calls the mutex.up() after the critical section? 
 
Would this code be good enough for all cases? In most cases, the program logic of 
a critical section goes like this: (a) read things, (b) calculate, and (c) update. If an 
exception occurs during reading/calculating, then there’s no issue – we can simply 
close() our resource and allow the exception to propagate. 
But what happens when the exception happens while we’re doing the updating? 
TRANSACTIONS: 
You must be able to either: 
- Bail Out/Rollback: Undo (rollback) the effects of any updates so far, to leave 

things consistent (as they were before you attempted the transaction). You 
need to figure out (i) what you’ve changed so far, and (ii) how you can undo 
that change (undo handlers). 

- Force Through/Commit: If the effects of what you’ve changed so far cannot 
be undone, then you need to force through the remaining updates and commit. 

For this reason, the updates are sometimes done in a local copy and then the actual 
“commit” of the transaction copies over these updates to the global, live copy using 
code that CANNOT throw an exception. This uses the Bail Out strategy – actual 
updates are abandoned (the local copy is discarded). 

Check out the two-phase commit protocol (2PC) as well for a better 
appreciation of the complexity of transactions in a distributed setting (2PC is one 

of the simplest protocols): 
https://en.wikipedia.org/wiki/Two-phase_commit_protocol  

 

https://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html
https://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html
https://en.wikipedia.org/wiki/Two-phase_commit_protocol
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For more information on how to group actions together into different sections 
(and potentially pass them as arguments somewhere…), you may want to have a 
look at Lambda functions: 
https://blogs.oracle.com/java/post/java-se-8-lambda-quick-start 
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html 
https://docs.oracle.com/javase/tutorial/java/javaOO/whentouse.html  

Slide 30-35 “5.3  Bounded Buffer”-“bounded buffer prog - producer process” 
Buffer – an example of which is the car park in the first part of this chapter – is an 
extremely important notion in asynchronous systems. It’s a SYSTEM DESIGN 
PATTERN (some others: caching, pre-fetching, pipelining) 
In synchronous systems, the data that are produced by one process are 
immediately consumed by another process, since all processes operate at the 
same speed. 
But in asynchronous systems, the producer & consumer processes operate at 
different speeds. So we need some mechanism to make sure that the faster process 
doesn’t need to wait for the slower process all the time. That mechanism is the 
buffer – the longer it is, the longer it will take the faster process to have to delay 
so that the slower process can catch up. For differences in speed that are transient, 
i.e., processes delay a bit only occasionally, a buffer can ensure that the two 
processes never have to wait (well, at least minimise the probability that they’ll 
have to wait).  
If the producer is much faster than the consumer, then the only way to ensure that 
it’ll not have to wait is to have an infinite buffer! Identifying the correct length of a 
buffer is an extremely difficult problem (well, it’s impossible to solve really…). 

Slide 32 “bounded buffer  -  a data-independent model” 
Being able to model something in a data-independent model is amazing – it allows 
us to automatically verify very complex systems! 
But sometimes the property we care about needs the values, for example FIFO – 
how can we prove the element/data received at time t was processed/delivered 
at time after all previous elements/data, if we cannot even compare these 
elements (because we’ve abstracted their values away)? 
 
Here come some clever data abstractions to our rescue. Instead of simply 
abstracting entirely the value of the data away to the point that they’re 
indistinguishable from each other, we can use three values (blue, red, and green), 
to encode the property we want, along with carefully crafted senders/recipients. 
 
For FIFO, we can have the sender send messages in the order: blue* red blue* green 
blue* . Then at the recipient we only need to check that the red message gets 
received before the green one. 
If that’s the case, then we have proved that a message sent before another will 
always be received first. 
Why? That’s where the first two blue* parts come into play… They ensure that 
we’re not just proving FIFO for just a pair of messages but considering all possible 
pairs! 
SENDER = Prefix, 
  Prefix = (blue -> Prefix | red -> Middle), 
  Middle = (blue -> Middle | green -> Suffix), 

https://blogs.oracle.com/java/post/java-se-8-lambda-quick-start
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://docs.oracle.com/javase/tutorial/java/javaOO/whentouse.html
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  Suffix = (blue -> Suffix). 
RECIPIENT = NotSeenRed, 
  NotSeenRed = (blue -> NotSeenRed |red-> SeenRed |green-> ERROR), 
  SeenRed = ({blue,green} -> SeenRed | red -> ERROR). 
||SYS = (a:SENDER || {a,some}::IMPLEMENTATION || some:RECIPIENT). 
Where the IMPLEMENTATION takes a:X and produces some:X after some point. 

Slide 34 “bounded buffer program - buffer monitor” 
- Can you spot the bug? :-) 
 
Consider the scenario where there are two producers, two consumers, and a 
buffer with one slot. 
Here’s a possible execution trace: 
 
Consumer 1 blocks 
Consumer 2 blocks 
Producer 1 inserts a letter and does a notify 
Consumer 1 is notified but fails to get the lock 
Producer 1 blocks 
Producer 2 blocks  
Consumer 1 gets the lock 
Consumer 1 consumes the data 
Consumer 1 notifies 
Consumer 2 wakes up 
Consumer 2 blocks 
Consumer 1 blocks 
 

Moral of the story – use notifyAll() instead of notify()!!! 

Slide 46-47 “5.5  Monitor invariants”-“Class Invariant Properties” 
If you don’t know the invariants of your class, it’s most probably wrong. 

 
- What’s the class constructor(s) supposed to do? 

o ESTABLISH THE INVARIANT!!! (i.e., make it true) 
- What about the class public methods? 

o They can assume that the invariant is true when they start. 
o They must guarantee that it is true when they finish. 

- What about private methods? 
o These can break the invariant as they’re meant to be used by public 

methods as intermediate steps. 
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Chapter 6 

Slide 2 
With bad things there are TWO approaches: 

1) Try to identify when they happen and respond to them (e.g., fire alarm). 
2) Try to make them impossible/improbable (e.g., use fire-resistant material). 
3) Buy insurance in case they happen… (usually combined with 1 or 2) 

 
Here we’re trying to design our systems in such a way that deadlocks are 
impossible. Other approaches attempt to identify deadlocks at run-time and 
repair the system by terminating one of the processes involved in the deadlock. 

Slide 7 
When checked, the system has no deadlocks – HURRAY!!! 
But it has a problem with progress – it fails this test. Yet, we do not bother 
changing it so as to resolve the progress violation – why? 
Because knowing there’s a problem doesn’t mean that we should solve it 
necessarily. Sometimes the cost of introducing a solution is much higher than the 
actual cost of the problem itself. Consider for example credit card issuing 
companies – they know that there are fraudulent transactions and they know that 
if they improved the technology of the card readers, etc. then the percentage of 
fraud would drop. But they don’t do it because the cost of replacing all card readers 
is far higher than the cost of the fraudulent transactions themselves! 
Same here – it’s much simpler to introduce some timeout that’s long enough (and 
random enough) that the progress violation happens rarely. 

Slides 8-19 
The dining philosophers problem is one of the most famous classic problems in 
operating,distributed systems and concurrency. 

The dining philosophers problem is one of the most famous classic problems in 
operating/distributed systems and concurrency. 

The dining philosophers problem is one of the most famous eclassic problems in 
operating/distributed systems and concurrency. 

 
Why? Because it’s about managing resources, in a way that avoids deadlocks. 
 
Study it well! 
 
Note: The modulo (remainder) operator helps constrain a value within a range but 
note that: 
  

0 ≦ (i % N) ≦ N-1 ⟶ N ≦ (i % N) + N ≦ 2N-1 when 0 < i ∧ 0 < N 
Or when N < 0 < i 

-N+1 ≦ (i % N) ≦ 0 ⟶ 1 ≦ (i % N) + N ≦ N when i < 0 ∧ N < 0 
Or when i < 0 < N 

The C++ & Java code in Table 2 demonstrates that: 
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Table 2 Testing modulo sign in C++ & Java 

#include <iostream> 

using namespace std; 

int main() { 

   cout 

   <<  1 %  3 << endl 

   <<  1 % -3 << endl 

   << -1 % -3 << endl 

   << -1 %  3 << endl;   

   return 0; 

} 
//https://ideone.com/mkXOAg 

class Ideone { 

 public static void 

 main (String[] args) { 

   System.out.println( 1 %  3); 

   System.out.println( 1 % -3); 

   System.out.println(-1 % -3); 

   System.out.println(-1 %  3); 

 } 

} 

 
// https://ideone.com/B7KzEQ  

Slide 14 
Note how field “taken” encodes the state of the fork – initially it’s false, as the 

fork is not taken. 
 
Note that guarded actions need not appear as such in the model – here they’re hidden 
behind the sequence imposed! (see slide 15) 
 
Method put has no wait guard because it assumes that its callers are well 
behaved – an unsafe assumption to make in general! 

Slide 17 
Compare the initialisation of the philosopher threads with the fork objects against 
the model itself on slide 10. 

Slide 19 
What other solutions are there? 
- Introduce a timeout. 
- Introduce a butler process that doesn’t allow all N philosophers to sit at the 

table – only allows up to N-1 of them to sit at any time. 

Slide 20 
We can actually use the LTSA tool to find a solution to a problem, by representing 
the solution as a deadlock state. 

https://ideone.com/mkXOAg
https://ideone.com/B7KzEQ
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Chapter 7 

Slide 4 
An FSP property process encodes the acceptable behaviour of a system. If we 
have not specified that an action can be performed at some state, then that action 
becomes an error transition at that state by definition. 

Slide 6 
Very important to note that property processes *MUST* be deterministic! 
Otherwise we cannot compose them “transparently” – a non-deterministic 
property process might accept some trace in one case and reject it in another. 

Slide 7 
“A safety property must be specified so as to include all the acceptable, valid 
behaviour in its alphabet.” 
If you’re interested in specifying a safety property involving actions a1, …, aN, then 
a good approach is to start like this: 
property MyProp = P 

  , P = ? // Fill in this part 

  + {a1, …, aN}. 

In this manner, you declare from the start which are the actions that the property 
cares about, and decrease the chances of making a mistake by forgetting to state 
when some of these actions are acceptable (the tool’s reported violations will 
remind you that you forgot to specify these acceptable behaviours). 
 
Designing safety properties – focus on system behaviour, not on that of the 
mechanisms that you use to establish the properties (locks, semaphores, etc.). See 
how slide 8 does it. 
A possible test – try removing/commenting out the actions of the mechanisms (locks, 
semaphores, etc.) that you use to make the property true. Do your properties hold? 
If the mechanisms are indeed needed (always a possibility that they’re superfluous), 
then the property shouldn’t hold. 

Slide 13 
Note that T starts from 0, while ID starts from 1! So, it’s not the same range. 

Slide 16 
- What’s RED[0] (& BLUE[0])? 
As the range of i is ID, and the guard on action exit that goes to RED[i-1] 

ensures that i is not 1, there is no such state as RED[0]. The model has been 

specified in such a way that both these two states correspond to ONEWAY actually. 

Slide 26 
“A progress property asserts that it is always the case that 
an action is eventually executed. Progress is the opposite of 
starvation, the name given to a concurrent programming 
situation in which an action is never executed.” *after some point* 
(i.e., the action can actually get executed a few million times – even more – but after 
some point it never gets executed -> that’s starvation). 
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Slide 27 
Note that the notion of “fair” & “infinitely often” here is a bit tricky. 
It doesn’t mean “as many times as” – for example, a coin that when tossed lands 
heads once every 100 times, is still a “fair” coin as far as we are concerned, since 
heads will come up an infinite number of times with infinite tosses. 

Slide 45 
“This is a direct translation from the model.” <- But we have a bug… :-( 
 
It’s not the merging of the request & enter actions into one method that’s the 
problem – we’d have a problem even if we hadn’t merged them (and it’d be worse, 
as then it’d be harder to control the transaction – one may have introduced 
extra calls between the request and the enter that we can’t!). 
 
The pattern to turn models into code doesn’t consider exceptions fully – here 
“request” is a pre-requisite for “enter” and these two atomic actions must happen 
as a transaction. If something happens in-between them, then we need to (i) abort 
the transaction; or (ii) force it through. 
 
- How should we have written this piece of code? 
 
Case 1: Abort Tx, undoing partial actions 
synchronized void redEnter()  // transaction aborts, undoing partial results 

       throws InterruptedException { 

  try { 

    ++waitred;                                         //<-- Tx action 1 

 

    while (nblue>0||(waitblue>0 && blueturn)) wait(); }//<-- Tx action 2 

  // don’t catch it! 

  finally { --waitred; } // success or exception – decrement waitred 

  ++nred; 

} 

/* Undo handler of Tx action 1 happens to be part of Tx action 2, so we can 

do it in the finally clause. But more generally: */ 

synchronized void redEnter()  // transaction aborts, undoing partial results 

       throws InterruptedException { 

  try { 

    ++waitred;                                         //<-- Tx action 1 

 

    while (nblue>0||(waitblue>0 && blueturn)) wait(); }//<-- Tx action 2 

  catch (InterruptedException e){ --waitred; throw e;} //catch, undo, throw! 

  --waitred; // this is part of Tx action 2 

  ++nred; 

} 

 
Case 2: Force through Tx 
synchronized void redEnter()  // transaction forces through 

       throws InterruptedException { 

  ++waitred;                                         //<-- Tx action 1 

 

  while (nblue>0||(waitblue>0 && blueturn))          //<-- Tx action 2 

    try { wait(); } 

    catch (InterruptedException e){} // catch & ignore it! 

  --waitred; // this is part of Tx action 2 

  ++nred; 

} 

 
Moral of the story: 
1) When you divert from the patterns, you’re in *very* dangerous territory!!! 
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2) The patterns are not 100% full-proof – check for transactions!!! 

Slide 65 
First edition had a simple notify, which is no longer safe here, since we might wake 
up a reader who’s waiting because writers are waiting… :-( 
 
 
public synchronized void acquireRead() throws InterruptedException { 

    while (writing || waiting>0) wait(); 

    ++readers; 

}  

public synchronized void releaseRead() { 

    --readers; 

    if (readers==0) notify();     // BUG! DON’T OPTIMIZE!!!! 

}  

So, “optimisations” can bite even experts in the field – be extremely careful with 
them (avoid if possible). 
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Chapter 8 
Chapter 8 discusses in more detail the general approach that we’ve been following 
so far in the book: 
 

1) do: 
a. Model the system in FSP 

How? 
i. Identify actions 

ii. Identify processes 
iii. Identify safety/progress properties 
iv. Do a structural diagram 
v. Model in FSP 

b. Simulate & verify to make sure the model & your properties: 
i. Do what you intended; and 

ii. Have no errors, 
2) while ! satisfied (rinse & repeat) 
3) Translate the model into Java code, BEING VERY CAREFUL to follow the 

patterns! 
Even then, watch out for a) “optimisations”, and b) transactions! 
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Chapter 9/10 
(no commentary yet) 
 


