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Abstract. In previous work we considered a model of a dynamically evolving

network of interactions between a group of individuals, where each individual

has an optimum level of social engagement with other group members. A
randomly selected individual will form or break a link to obtain the required

number of contacts. These interactions were formulated as a graph realisation

problem. This short paper considers a game-theoretical version of the model,
where individuals strategically choose the specific link to form or break. This

game is known from previous work to be very complex for all but almost

trivial cases, with the exception of an example with three players considered
by Broom and Cannings. We revisit this example and show that even this

is more complex than previously thought. In this paper, we find a general

expression for the payoff functions for all possible strategy combinations. In
addition to the three Nash equilibria previously found, we find a set of six

more. The considerations of all possibilities proves to be infeasible, leaving the
possibility of more solutions open.

1. Introduction.

1.1. A dynamic network population model. In this paper, we consider a group
of individuals, with no predefined graph structure connecting them. Broom and
Cannings [2] introduced the dynamic process and investigated its properties on the
minimal set of graphs, the graphs for which no mutually beneficial change in the
set of links is possible. They considered the properties of the minimal set in [3]
and in [4] they further developed the work on the minimal set, and introduced the
game-theoretical version of the model that we consider in this paper. We follow
an evolutionary process on a set of fixed vertices v = {v1, v2, ..., vn} and a set of
dynamically evolving edges Xτ = xij ;xij = xji = 1 if there is a link between nodes
vi and vj and xij = xji = 0 otherwise. This process takes place on a set of simple
graphs G(v,X) which will continue evolving until a minimal graph G(v,X) can be
reached.

At each step, an individual will be selected to enhance their links following the
evolutionary process. At time τ , individual vi has ei,τ edges, the numbers of edges
for the individuals collectively being given by the sequence eτ = (e1,τ , e2,τ , . . . , en,τ ).
Each vertex vi is assigned to a target number of links ti for i = 1, . . . , n and will
attempt to be as close as possible to that target by the end of the interactions, the
sequence t = (t1, t2, . . . , tn) is termed the target sequence. The individuals involved
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2 RANEEM AIZOUK AND MARK BROOM

will try to obtain a number of links as close as possible to the target by breaking
or forming links between themselves. We assume that ti ≥ tj for all i < j.

The desire for a certain level of social contact, or sociability, is relevant to a wide
range of animal species living in groups, including humans, and typically varies
between individuals. Studying sociability, it is of interest to try to measure the
advantages of social relationships and estimate how long such relationships last,
which may be influenced by such factors as an individual’s age, gender, dominance
etc.

Jackson and Wolinsky [8] discussed the influence of human social networks on
behaviour and economic effects. Their research included theoretical analyses of
the role of social networks in markets and exchange, they studied a case closely
related to ours, where individuals’ payoffs depend upon the network, taking into
consideration the incentive for individuals to form networks. Related to this is
the theory of biological markets created by Noe and colleagues [10, 11]. They
established the properties of human markets by relating them to social systems like
the peacock’s mating system, in which members of one group (often males, as in the
case of peacocks) gain by being picked by members of another (females, peahens,
for the peacocks).

Among dolphins [12] two degrees of social alliances were noticed when observing
dolphins in Shark Bay, Australia, with 14 out of 400 dolphins forming highly unsta-
ble alliances, while others formed more solid alliances. According to the research,
the complexity of bottlenose dolphins’ social relationships may be related to their
large brain size. Variation in social alliances might be due to several factors, such
as in male baboons (Papio Cynocephalus), where they develop alliances as a condi-
tional strategy, which is mostly utilised by mid-ranking males against high-ranking
males. Giraffes [9], tend to develop solid social relations in societies with short path
lengths throughout the network.

In sheep [14], a social network was observed and investigated to see the level of
their proximity to others when grazing in a group, and whether their tendency to
move away from the group was caused by a desire to graze preferred vegetation (long
grass). It was discovered that the trade-off between keeping close to one another
and grazing further apart on longer grass was relatively small, and so individuals
relocating further away mainly reflected other factors, including sociability.

1.2. Definitions.

Definition 1.1. The degree of a vertex vi of a graph G, degG(vi), is the number
of links going out of the vertex, which connects the vertex with other vertices.

Definition 1.2. A finite sequence ē = ē1, ē2, . . . , ēn of non-negative integers is
called a degree sequence of graph G if the vertices of G, v = v1, v2, v3, . . . , vn,
are such that degG(vi) = ei for all i = 1, 2, 3, . . . , n (see [15, 13]). We denote by
e = (e1, e2, . . . , en) a degree sequence of G.

Definition 1.3. A sequence ē1, ē2, ē3, . . . , ēn is graphical if there exists a graph G
such that e(G) = (ē1, ē2, ē3, . . . , ēn).

Definition 1.4. The distance between the target sequence t and sequence ē is given
by: Z(t, ē) =

∑n
i=1 |ti − ēi|.

We define the deviation of the graph G as Z(e(G), t) =
∑n
i=1 |ti − ei|.

Definition 1.5. Individual ei ∈ e is in deficit when ei 6= ti.
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Definition 1.6. The score of target sequence t is s(t) = minGZ(e(G), t); G ∈ G
where G is the set of all graphs. i.e. the score is the minimum deviation of all
graphical sequences from the target sequence t.

1.3. Score 1 games. It is well known that not all degree sequences can be realised
as undirected graphs. The Havel-Hakimi algorithm [6, 7] characterises those that
can. When the sequence is graphic, all individuals will eventually be on target (i.e.
the score will be zero) and this situation is of minimal interest, as then the process
will evolve no further. We are more interested in non-graphical sequences where
not all the individuals can be on target simultaneously, and more precisely, we want
to find the sequences, and associated graphs, with the lowest possible deviation
from the original required target, which we classified into a set called the minimal
set, denoted by J(min) for the sequences and K(min) for the graphs. To reach
the minimal set, the competitors should use rational decisions that prioritise them
in getting the desired number of links to achieve their targets. We will consider
a particular case of the type of target sequence considered in [5], those as close
as possible to the regular graphical sequences, with a score equal to 1. In this
model, within the minimal set only one individual is off-target and so only this one
individual has an interest in changing its number of links. In particular in any state
within K(min) only one individual will attempt to improve its payoff by changing
its strategy from any state, and so we know which individual will make the next
change irrespective of the order of selected individuals, as all others will “pass”.
We will revisit an example game that was considered in [5].

2. The sequence 111. Let us consider the target sequence 111, which has n =
3 individuals, represented by the vertices of a graph. It is easy to identify the
transitions between the states in this case, and we can see that the transition graph
will have 6 vertices which are shown in Figure 1. When the individual is selected
and in deficit, it will break one of its links if it has too many links (a Breaker),
and it will form a link if it has too few (a Joiner). In particular, the individual to
be broken with/ connected to will not be chosen at random, as in the transition
probabilities displayed in Section 4.1 in [1], but will be selected strategically.

This particular sequence is of interest as it was (previously considered) the most
straightforward “non-trivial” sequence for the game-theoretical model. When
considering all possible sequences with up to four individuals, we would have two
types of situation. Firstly, there are those with straightforward strategies within
the minimal set (although see an unusual game from [1] where optimal play can
lead to the minimal set being left) in which only one individual ever has a strategic
choice to make; for example for the sequence 200 the 0 individuals can have at
most a single link, and their optimal strategy is always to break it. Secondly, when
this does not occur, we will have a game that has a considerable complexity in
analysing the optimal behaviour, for example, the sequence 3210 with J(min)=7
and K(min)=8, which was studied in [4]. It was shown there that there are multiple
pure Nash equilibria, and the analysis of mixed equilibria would have been very
complex. Similarly, the sequence 2200, which has J(min)=4 but K(min)=16, would
lead to the complex computation of the resulting stationary distribution over the
16 states. Sequence 111 is the most straightforward nontrivial sequence found (and
likely possible) with J(min)=2 and K(min)=6. Note that the sequence 11111 is
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4 RANEEM AIZOUK AND MARK BROOM

vastly more complex, as analysis from [5] has shown. In this paper, we show that
even 111 is more complicated than previously thought.

Figure 1. Transition graph of the sequence 111 showing the min-
imal set in every possible move at each of the six vertices. Vertex 1
represents the sequence 211, i.e. individual v1 is the one in deficit
and moves clockwise to sequence 101 with probability p1

3 and an-

ticlockwise to 110 with probability 1−p1
3 , it will stay in the same

state with probability 2
3 . Similarly, vertex 2 represents sequence

101, vertex 3 represents sequence 112, vertex 4 represents sequence
011, vertex 5 represents sequence 121 and vertex 6 represents se-
quence 110.

2.1. States and transitions. Sequence 111 has a transition graph with 6 states.
If a vertex not in deficit is selected to update its links, it will make no change. If
the vertex in deficit is selected, it will either have two links, one of which it will
break, or no links, in which case it will form one of those available. Thus there are
two possible transitions.

A collection of probabilities p1, . . . , p6 corresponds to a set of strategies to be
played by all individuals. So all combinations of probabilities correspond to all
possible strategy sets for this game. We define π[i]; i = 1, . . . , 6 as the stationary
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probability distribution for our Markov chain, which will (under the usual assump-
tions) be the long term probability distribution of the occupancy of the states.
The deficit vertex individual in state i will move clockwise with probability pi or
anticlockwise with probability (1− pi), the value of pi being a strategic choice.

The numbered vertices represent the sequence/graph described in the caption of
Figure 1 (for example, vertex 1 represents v1 connected to both other individuals,
with the link between the others broken), and the corresponding possible transitions
are shown as an arrow moving clockwise and anticlockwise. Transitions occur as
follows:
The individual that is potentially to move is chosen at random. This leads to one
of the two following cases when in any state i:

1. When the selected individual is neutral, it will decide not to make any tran-
sition and to stay at the same position; this occurs with a probability of 1

3 for
each such individual, giving a total probability of 2/3 of the state remaining
unchanged, see Figure 1.

2. When the selected individual is in deficit, it will have the choice to move
clockwise and (link/break) with the individual who is in deficit at the corre-
sponding vertex with probability pi or move anticlockwise and (link/break)
with the other individual with probability (1− pi). We thus have:

Figure 2. Transition graph of the sequence 111 showing the min-
imal set in every possible move at each of the six vertices. Vertex
vi will move clockwise to vertex vi+1 with probability pi. Vertex vi
will move anticlockwise to vertex vi−1 with probability 1− pi.
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6 RANEEM AIZOUK AND MARK BROOM

π[1] = π[6] ∗ p6/3 + π[1] ∗ 2/3 + π[2] ∗ (1− p2)/3; (1)

π[2] = π[1] ∗ p1/3 + π[2] ∗ 2/3 + π[3] ∗ (1− p3)/3; (2)

π[3] = π[2] ∗ p2/3 + π[3] ∗ 2/3 + π[4] ∗ (1− p4)/3; (3)

π[4] = π[3] ∗ p3/3 + π[4] ∗ 2/3 + π[5] ∗ (1− p5)/3; (4)

π[5] = π[4] ∗ p4/3 + π[5] ∗ 2/3 + π[6] ∗ (1− p6)/3; (5)

π[6] = π[5] ∗ p5/3 + π[6] ∗ 2/3 + π[1] ∗ (1− p1)/3. (6)

This leads to the transition matrix P :

P =



2
3

p1
3 0 0 0 1−p1

3
1−p2

3
2
3

p2
3 0 0 0

0 1−p3
3

2
3

p3
3 0 0

0 0 1−p4
3

2
3

p4
3 0

0 0 0 1−p5
3

2
3

p5
3

p6
3 0 0 0 1−p6

3
2
3

 . (7)

The stationary distribution π can be found by solving π ∗ P = π, in conjunction
with the knowledge that

π1 + π2 + π3 + π4 + π5 + π6 = 1. (8)

We found the stationary distribution values in terms of p1, p2, p3, p4, p5, p6 along
with the payoff of the individuals, see the Appendix.

However, only one individual is in deficit, and only that individual would choose
to move. Thus the state will be unchanged until eventually that individual is
selected. Since staying probabilities are the same in any state, we could effectively
assume that the individual is chosen immediately see Figure 2; here, the figure is
written using the above equivalence for simplicity.

The payoff for individual v1 is minus the probability that it is in deficit, i.e. it
is minus the probability that the Markov chain is in states 1 or 4. Thus the payoff
for v1 is: −(π[1] + π[4]), and so similarly the payoffs to individuals v2 and v3 are
−(π[2] + π[5]) and −(π[3] + π[6]) respectively. In [5] three Nash equilibria were
found. Since the system will move clockwise if pi = 1 for all i and anticlockwise if
pi = 0 ∀i, in each of these situations each state occurs with a frequency of 1/6, so
the payoff to each individual is −1/3. These two sets of strategies are pure Nash
equilibria. They also found a mixed Nash equilibrium when pi = 1/2 ∀i, again
with payoffs of −1/3 to all individuals. In [5] they showed that when pi = 1/2, the
solution is not stable since minor deviations from 1/2 would subsequently favour
strategies that deviate further by running many simulations.

2.2. Finding Nash equilibria (NE). We used the payoffs as described above to
investigate the Nash equilibria of the game. A Nash equilibrium occurs if and only
if no individual has an incentive to change its strategy. For the choice at vertex 1:

p1is a NE iff


d(π1+π4)

dp1
> 0 p1 = 0

d(π1+π4)
dp1

= 0 0 < p1 < 1
d(π1+π4)

dp1
6 0 p1 = 1

(9)
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GAMES ON DYNAMICALLY EVOLVING NETWORKS I 7

Recalling that the expressions above in the derivative are minus the payoff to
v1, these conditions ensure that no change in p1 enables v1 to gain a higher payoff.
Equivalent conditions hold for the other five cases. We found the following Nash
equilibria:

1. pi = 1 for all i, every movement (transition) of an individual will be clockwise.
For pi = 1 we have

d(π1 + π4)

dp1
=
d(π1 + π4)

dp4
=
d(π2 + π5)

dp5
=
d(π2 + π5)

dp2
=
d(π3 + π6)

dp3
=
d(π3 + π6)

dp6
=

−1

18
,

which means that pi = 1 is a Nash equilibrium as in conditions 9.

2. pi = 0 for every i, every movement (transition) of an individual will be anti-
clockwise. For pi = 0 we have

d(π1 + π4)

dp1
=
d(π1 + π4)

dp4
=
d(π2 + π5)

dp5
=
d(π2 + π5)

dp2
=
d(π3 + π6)

dp3
=
d(π3 + π6)

dp6
=

1

18
,

which means that pi = 0 is a Nash equilibrium from conditions 9.
In cases (1) and (2) each state occurs with frequency 1/6 so the cost to each
individual is 1/3. If any individual at any state tried to act differently, then
the system will return that individual back to the previous state, and the
system will oscillate giving a cost of 1/2 to the individual who switches play.
Thus these two sets of choices are strict Nash equilibria.

Figure 3. Transition graph of the sequence 111 showing the first
solution of the cyclic set, solution 4: Straight arrows ↘: when
pi = 1, individual vi will move clockwise. Straight arrows ↖:when
pi = 0, individual vi will move anti-clockwise. Curved arrows: for
0 < pi < 1 the movement of individual vi to the next state could
happen in either direction, clockwise with probability pi or anti-
clockwise with probability 1− pi.

3. pi = 1/2 for all i. For pi = 1/2 we have

d(π1 + π4)

dp1
=
d(π1 + π4)

dp4
=
d(π2 + π5)

dp5
=
d(π2 + π5)

dp2
=
d(π3 + π6)

dp3
=
d(π3 + π6)

dp6
= 0,
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8 RANEEM AIZOUK AND MARK BROOM

and we again have a Nash equilibrium from conditions 9.
These results reproduce the Nash equilibria from the simpler analyses from
[5]. For 4 - 9 we have a set of cyclic solutions which satisfies

d(π1 + π4)

dp1
=
d(π1 + π4)

dp4
=
d(π2 + π5)

dp5
=
d(π2 + π5)

dp2
=
d(π3 + π6)

dp3
=
d(π3 + π6)

dp6
= 0

for every solution respectively, and we thus have Nash equilibria as well by
conditions 9.

4. p1 = 1, p2 = 1, p3 = 0, p4 = 0, 0 < p5 < 1, 0 < p6 < 1 , see Figure 3.
5. 0 < p1 < 1, p2 = 1, p3 = 1, p4 = 0, p5 = 0, 0 < p6 < 1.
6. 0 < p1 < 1, 0 < p2 < 1, p3 = 1, p4 = 1, p5 = 0, p6 = 0.
7. p1 = 0, 0 < p2 < 1, 0 < p3 < 1, p4 = 1, p5 = 1, p6 = 0.
8. p1 = 0, p2 = 0, 0 < p3 < 1, 0 < p4 < 1, p5 = 1, p6 = 1.
9. p1 = 1, p2 = 0, p3 = 0, 0 < p4 < 1, 0 < p5 < 1, p6 = 1.

Figure 3 illustrates solution 4 showing the movement of each individual. Solutions
5 - 9 are simple rotations of Figure 3.

Let us consider solution 4, where p1 = 1, p2 = 1, p3 = 0, p4 = 0, 0 < p5 < 1, 0 <
p6 < 1 . Here we alternate between states 2 and 3, with a payoff of 0 to v1 and -1/2
to both v2 and v3. We note that this case is a NE due to the following reasoning:
If we are in states 1 and 4 then v1 would not change strategy, as currently they
already receive the maximum payoff of 0 (though actually any change would leave
v1 with payoff 0 too).
If we are in state 5 (state 6) then it makes no difference what strategy the individual
in deficit v2 (v3) will use as they will end up in states 2 and 3 after enough moves.
In state 2, if v2 picked p2 = 0 instead of p2 = 1 the system will instead alternate
between states 1 and 2, leaving the payoff to v2 unchanged. If some value 0 < p2 < 1
was chosen, there would be alternation between state 2 and one of states 1 and 3,
with the same result. Similar reasoning holds for the choice of v3 in state 3. We note
from the above that a change in strategy at any vertex does not improve the payoff
of the corresponding individual (otherwise it would not be in Nash equilibrium),
but it does not make it worse either, and this explains why all the derivatives from
condition 9 are equal to 0, as opposed to those in solution 1, for example.

We note that reflecting this figure through its axes, e.g. through the axis from
vertex 1 to vertex 4, does not provide any new solutions, as this always leads to one
of the other six (for the reflection above, this leads from solution 4 to solution 7).

We have tried to find other sets of Nash equilibria, or to show that they could
not exist, but an exhaustive search has proved too complicated. We have been able
to demonstrate the absence of Nash equilibria in certain subsets of the parameters,
but there are many combinations outstanding.

3. Discussion. In this paper, we have considered the dynamically evolving model
of [2, 3, 4, 5] where the individuals are competing with each other trying to adjust
their links to achieve their desired target. In [5] a particular case of the model was
discussed where the sequence has a score equal to 1, this case being the closest
to the graphical sequence where the score is equal to zero, and all the individuals
are on target. In this paper, we discussed an exceptional example sequence 111
considered in that paper. Broom and Cannings defined three Nash equilibria for
this sequence, and at first sight it appeared that these were the only ones, yielding
a rare simple but non-trivial case for this game.
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GAMES ON DYNAMICALLY EVOLVING NETWORKS I 9

For this sequence we considered the individuals’ strategies more fully; the strat-
egy of each individual comprises the set of all of their choices at the states for which
they are in deficit. Following the chosen strategies, starting at a randomly chosen
initial state, transitions representing the individuals’ choices will continue indefi-
nitely leading to the distribution over the states following the unique stationary
distribution (or if there is not such a distribution, a weighted average over station-
ary distributions on irreducible subsets of the states). Thus we can find the payoffs
for any set of strategies, and thus potentially Nash equilibria for the game.

We identified a stable sets of strategies which led to another six cyclic Nash
equilibria for the game in addition to the original three solutions, but found no
other solutions. This does not mean that no such solutions exist, and a complete
analysis of the game would be very complicated. Thus although the game over
this sequence initially seemed relatively simple, in fact there has turned out to be
significant complexity. All target sequences thus seem to yield on the one hand
trivial games over the minimal set, where the number of players which can be
in deficit is 0 (i.e. graphical sequences with no game at all), 2 (leading to simple
pairwise swaps between the individuals) or more than two but involving a collection
of such simple swaps (such as the sequence 200); on the other hand we obtain
complex games involving three or more interacting individuals, with our example
as potentially the simplest of these.

An interesting question is whether this complexity is inherent in such games,
or relies on specific assumptions of our model. In future work we will consider
variants of this game which might be more amenable to analysis. In particular we
are considering an alternative model, where both individuals must agree to form a
link before it can be established, but where either individual can break a link.

Appendix. In the calculations in this section we use the following alternative rep-
resentation to minimise the number of subscripts used: x = p1, y = p2, z = p3, f =
p4, g = p5, h = p6. Substituting these values in the row vector π ∗P = π where π is
the stationary distribution, and replacing the last (redundant) row by the condition
that the row vector entries (probabilities) are non-negative and sum to 1, yields
−1 −y + 1 0 0 0 h
x −1 −z + 1 0 0 0
0 y −1 −f + 1 0 0
0 0 z −1 −g + 1 0
0 0 0 f −1 −h+ 1
1 1 1 1 1 1

 ∗

π1
π2
π3
π4
π5
π6

 =


0
0
0
0
0
1

 .
Solving this set of equations by the inverse matrix method we obtained the values

of the stationary distribution π1, π2, π3, π4, π5 and π6 in term of x, y, z, f, g and h
as follows. Denoting the common denominator term for all components of the
stationary distribution by

A = (4f − 4gf + 4g− 2hf + 2ghf − 4gh+ 4h− 2fx+ 2fgx− 2gx+ 2hfx− 2ghxf

+2ghx−4hx+4x−2yf +2gyf −2gy+2ghy−2hy+2fxy−2fgxy+2gxy−2ghxy

+2hxy−4xy+4y−4fz+2fgz−2gz+2fhz−2fghz+2ghz−2hz+2fxz−2fhxz

+2hxz−2xz+2fyz−2fgyz+2gyz−2ghyz+2hyz−2fxyz−2hxyz+2xyz−4yz+4z−6),

the stationary distribution terms are:
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10 RANEEM AIZOUK AND MARK BROOM

π1 = f−fg+g−gh−fy+fgy−gy+ghy+y−fz+fgz−gz−fghz+ghz+fyz−fgyz+gyz−ghyz−yz+z−1
A

π2 = f−fg+g−fh+fgh−gh+h+fhx−fghx−hx−fz+fgz−gz+fhz−fghz+ghz−hz−fhxz+hxz+z−1
A

π3 = f−fg+g−fh+fgh−gh+h−fx+fgx−gx+fhx−fghx+ghx−hx+x+fxy−fgxy+gxy−ghxy−xy−1
A

π4 = g−gh+h−gx+ghx−hx+x−gy+ghy−hy+gxy−ghxy+hxy−xy+y+gyz−ghyz+hyz−hxyz−yz−1
A

π5 = h−hx+x−hy+hxy−xy+y−fz+fhz−hz+fxz−fhxz+hxz−xz+hyz−fxyz−hxyz+xyz−yz+z−1
A

π6 = f−fg−fx+fgx+x−fy+fgy+fxy−fgxy−xy+y−fz+fxz−xz+fyz−fgyz−fxyz+xyz−yz+z−1
A .

For the general game the payoff of the individuals is defined in [4] as the negative
of their expected long term deviation, thus the payoff to individual vi is:
Ri(UX) = −

∑
X εi(X) ∗ π(X)

where εi(X) is the deviation of vi in state X, and π(X) is the stationary distribution
over X.
We then have the following payoffs of the individuals in the sequence 111: the payoff
of v1 is −(π1 +π4), the payoff of v2 is −(π2 +π5) and the payoff of v3 is −(π3 +π6).

We then found the derivatives of the negative of the payoffs of each of the three
individuals, each the sum of two πi terms, at the two states where they are in deficit
with respect to the variable that govern the transition at the corresponding state.
Starting by differentiating (π1 + π4) with respect to x we get:

d(π1+π4)(x,y,z,f,g,h)
dx = α

β ,

where
α = −((−1 +h+ z−hz+hy(−1 + g+ z) + f(−1 +h+ y)(−1 + g+ z)− y(−2 + g+
2z))((1+g(−1+h))(−1+y)(−1+z)+f(−1+g+y−gy+z−yz+g(−1+h+y)z)))
and
β = 2{3− 2h− 2x+ 2hx+ f(−1 + g)(2 + h(−1 + x) + x(−1 + y)− y)− 2y + hy +
2xy− hxy+ g(−1 + h)(2 + x(−1 + y) + y(−1 + z)− z) + (2 + h(−1 + x)− x)(−1 +
y)z + f(2 + h(−1 + x)− x+ (−1 + x)y + g(−1 + h+ y))z}2

In the same manner we found d(π1+π4)(x,y,z,f,g,h)
df . We notice that finding the

derivatives is a complicated procedure which produces a long formula. Therefore
we used the symmetry of this dynamical system which made the calculations easier.
Due to the symmetry in the dynamical system we will have:

d(π1 + π4)(x, y, z, f, g, h)

dx
=
d(π2 + π5)(h, x, y, z, f, g)

dy
=
d(π3 + π6)(y, z, f, g, h, x)

dh

=
d(π1 + π4)(x, y, z, f, g, h)

df
=
d(π2 + π5)(h, x, y, z, f, g)

dg
=
d(π3 + π6)(y, z, f, g, h, x)

dz
.

We thus have all of the terms required to find Nash equilibria following Equation
9.
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