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Abstract

We consider a finite structured population of mobile individuals that strategically
explore a network using a Markov movement model and interact with each other via
a public goods game. We extend the model of Erovenko et al. (2019) from complete,
circle, and star graphs to various random networks to further investigate the effect
of network topology on the evolution of cooperation. We discover that the network
topology affects the outcomes of the evolutionary process only for networks of small
average degree. Once the degree becomes sufficiently high, the outcomesmatch those
for the complete graph. The actual value of the degree when this happens is much
smaller than that of the complete graph, and the threshold value depends on other
network characteristics.

1 Introduction
The consideration of population structure is often important when trying to build real-
istic evolutionary models. This has been done in a number of ways, for example using
meta-populations [17] including the island model structure [8]. A particularly influential
methodology is that of evolutionary graph theory [22, 18, 21, 23]. Here individuals re-
side on vertices connected by edges and interact with their neighbours through playing
games. One significant area of research, which is also a central aspect of the current pa-
per, is the evolution of cooperative behaviour. Using the Prisoner’s Dilemma and related
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games, various results about the evolution of cooperation have been shown, for example
that under weak selection on a regular graph, under the death-birth dynamics with selec-
tion on birth (DBB) cooperation can evolve if the benefit to cost ratio exceeds the graph
degree [23].

One disadvantage of evolutionary graph theory is that the games played are naturally
pairwise through the edges (although it is also possible to playmultiplayer games amongst
specific groups). However, real populations involve multiplayer interactions [13, 34, 27]
of various types among groups of variable sizes. To facilitate this, a more general and
flexible modelling framework was developed [6, 7, 4, 3]. Whilst maintaining most of the
elegant features of evolutionary graph theory, this framework allowed for populations
to form variable sized groups which could involve correlated movement [2] and also the
history of the process. The evolution of cooperative behaviour has also been considered
in such populations, and distinctive results included (again for DBB) the powerful ben-
efit to cooperation of small sub-populations [25]. Here sub-populations produced the
assortment necessary to promote cooperation and the smaller the sub-population, the
smaller the barrier that needed to be overcome from when cooperation first enters a new
sub-population, which in isolation is well-mixed and so unfavourable for cooperators. In
particular, history-dependence was introduced using Markov movement models in [26].
Here individuals moved around the territory interacting with whichever other individuals
shared their vertex at any time, before returning to their home vertex for the reproduc-
tion phase; the precise process is described in Section 2 of the current paper. In this work,
only an underlying complete graph was considered, so potential structural effects were
obscured.

This model was further and more systematically investigated in [10], where three un-
derling graphs were considered, the complete graph, the circle graph and the star graph.
These three graphs are particularly interesting, as they form extremes for two key topo-
logical properties of graphs, the clustering coefficient and degree centralization. The com-
plete graph, circle graph and star graph have clustering coefficients and degree central-
izations of (1, 0), (0, 0) and (0, 1) respectively. They exhibited very different evolutionary
outcomes as we outline below, and one conjecture is that the two aforementioned graph
properties are central to which type of outcomes result for graphs more generally. In com-
mon with [25] a multi-player public goods games (the charitable prisoner’s dilemma, see
[5]) was considered where an individual’s strategy was comprised of two components,
its interactive strategy (defect or cooperate) and its staying propensity (influencing how
much it moved around the graph). Movement around the graph incurred a cost, and the
size of this cost was an important factor. Two population scenarios were considered;
mixed populations, representing situations where mutations occurred in either strategy
with equivalent frequency and mutant-resident populations representing the alternative
scenario, where mutation in the movement strategy was much more likely.

In [10] we observed that for mixed populations cooperators did better on the complete
graph and worse on the star graph. The cooperation strategy outperformed the defection
one for all but the largest movement costs on the complete graph, for small (but non-zero)
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to intermediate costs on the circle, and (to a small extent) for intermediate movement costs
on the star graph, with otherwise defectors performing better. For mutant-resident pop-
ulations, the defectors could not replace a cooperator population (i.e., the fixation prob-
ability was less than neutral drift) on a complete graph (for large enough populations),
could replace cooperators only for sufficiently high movement costs for the circle graph,
and could replace cooperators in all cases on the star. Mutant cooperators could replace
defector populations for sufficiently small movement costs for all three graphs. Taking
all together, we saw that cooperation performed best on the complete graph and worst
on the star. This is an interesting difference to the evolutionary graph theory case de-
scribed previously, where the graphs with lower average degree were more favourable
for cooperation.

An important message from [10] was that the stability of a population of defectors is
determined by the movement cost, whilst the stability of a population of cooperators is
determined by the network topology. In the current paper, we build upon the above work
by considering a more general and realistic set of underlying graphs, looking at the effect
of network topology beyond the extreme cases of the complete, circle, and star graphs.

The above three types are very regular in structure, and so some of the properties
exhibited could be influenced by that regularity. What about more randomly generated
graphs? Here we consider different classic methods of generating random graphs for the
underlying structure upon which our population will move: Barabási–Albert networks
(which resemble the star graph if the degree is low), Erdős–Rényi networks (which resem-
ble the complete graph if the edge probability is high), random regular networks (which
always have zero degree centralization but varying clustering coefficient), and Watts–
Strogatz networks (which resemble the circle graph for low degree and small rewiring
probability). Similarly it was suggested in [10] that the clustering coefficient and degree
centralization could be important properties for the evolution of cooperation. In this pa-
per, we also consider both the average degree and the average shortest path length. More
complex graphs of this type had previously been considered in [30, 31] for the indepen-
dent model, and it had been observed that there could be significant differences between
fixation probabilities for different types of graphs, although the different dynamics con-
sidered had little effect. In [28], we show that it is the network topology and movement
cost rather than the replacement mechanism that determine the outcome of the evolution
of cooperation in a Markov movement model from [10]. Robustness with respect to the
updating mechanism is one of the main advantages of our modeling framework compared
to the classical evolutionary graph models. See the discussion in [28] for a more detailed
analysis of similarities and differences between these two approaches. In the current pa-
per we see that the different network types have their own character when they have a
low degree, but as the degree of the graphs increase, they typically resemble the results
for the complete graph from [10]. After an introduction of the model in section 2 these
results are demonstrated in detail in sections 3 and 4 and discussed in section 5.
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2 Model
We start with a brief description of a particular instance of the general framework of
Broom and Rychtář [6] for modeling multiplayer interactions in finite structured net-
works. For further technical details we refer the reader to [10] on which the current paper
builds. Then we explain how the model from [10] has been adapted to accommodate any
network and how we implemented the process on a variety of random networks.

2.1 The Markov model of the evolution of cooperation on multi-
player networks with costly movement

We consider a finite population of 𝑁 individuals that interact over a network with 𝑁

nodes. Each node in the network is designated as a home place for a unique individual.
Individuals move around the network and interact with those they meet in the same lo-
cation at any time step via a version of the public goods game. At any moment, a group
of arbitrary size and composition may potentially form at any node of the network, and
hence we use a multiplayer game with an arbitrary number of players to derive individ-
ual payoffs. The individuals in our model possess two independent traits: the interactive
strategy in the multiplayer game (cooperator or defector) and the exploration strategy.
The exploration strategy is determined by the individual’s staying propensity, which is
the probability the individual is going to stay at the current place if it is alone.

We initialize the environment by placing all individuals at their home locations and
resetting their fitness to zero. Then we start an exploration phase where each individual
decides to stay at the current location or to move to one of the neighboring locations. All
individuals make these decisions simultaneously and independently of each other. The
probability that an individual 𝐼𝑛 is going to stay at its current location is determined by
its staying propensity 𝛼𝑛 ∈ (0, 1) and the composition of the group 𝑛 of the individual 𝐼𝑛.
This group is defined as the set of all individuals in the population present at the same
location as individual 𝐼𝑛 at the current time. Each individual evaluates the attractiveness
of its current group by adding up the attractiveness of all other members of the group.
The attractiveness 𝛽𝑖 of an individual 𝐼𝑖 to others is defined as

𝛽𝑖 =

{

𝛽𝐶 if 𝐼𝑖 is a cooperator,
𝛽𝐷 if 𝐼𝑖 is a defector,

(1)

and we assume that 𝛽𝐶 = 1 and 𝛽𝐷 = −1. In other words, a group with more cooperators
than defectors will have a positive attractiveness, and a group with more defectors than
cooperators will have a negative attractiveness. We emphasize that the individual does
not count its own attractiveness, and hence the attractiveness of the group to an individual
which is alone is zero.

Let 𝛽𝑛 denote the attractiveness of the group 𝑛 of the individual 𝐼𝑛 to that individual.
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Then the probability that this individual is going to stay at its current location is given by

ℎ𝑛 (𝑛) =

𝛼𝑛

𝛼𝑛 + (1 − 𝛼𝑛) 𝑆
𝛽𝑛

(2)

where 0 < 𝑆 < 1 is the sensitivity to the group composition parameter. Values of 𝑆
close to 0 correspond to high sensitivity, that is, an individual is likely to move away
from an unattractive group or to stay in an attractive group regardless of its inherent
staying propensity 𝛼𝑛. Values of 𝑆 close to 1 correspond to low sensitivity to the group
composition, and the individual’s decisions to stay or to move will be mostly determined
by its staying propensity. We assume 𝑆 = 0.03, and hence the individuals are highly
sensitive to the composition of their current group. Note that when 𝛽𝑛 = 0, in particular,
if an individual is alone, then (2) simplifies to ℎ𝑛 (𝑛) = 𝛼𝑛, as expected. Figure 1 in [10]
shows the plots of the staying probability as a function of group attractiveness for several
fixed values of the staying propensity of the individual. For example, when the group
attractiveness becomes 3 (or −3), then the individual will stay in (or leave) the current
group with probability close to 1 regardless of its staying propensity.

If an individual decides not to stay at the current location, then it’s going to move to
one of the adjacent locations (nodes in the network). The location to which an individual
is going tomove is determined randomlywith uniform probability. The only decision each
individual faces is whether to stay at the current location. The individuals do not evaluate
the adjacent locations to see if any of them might provide more beneficial interactions.
See [11, 9, 36] for a different approach where individual sample all locations to which
they may move. All individuals make these decisions independently of each other; see [2]
for some models of coordinated movement in the population. Additionally, movement in
our model is costly; each individual pays a fixed cost 𝜆 every time they move from their
current location.

Once all individuals in the population have had an opportunity to stay or move, they
play one round of the multiplayer game (public goods game, in our case). The multiplayer
game takes place within each group of individuals that are located at the same node. All
individuals receive a base payoff of 1, which ensures that the fitness of individuals remains
positive. Each cooperator pays a cost 𝑐 = 0.04 and produces a reward 𝑣 = 0.4 that is shared
by all other members of the group (except itself) equally. In our model, the public good
produced by cooperators is assumed excludable, so that the provider of the public good
does not share in the benefit. Defectors do not incur the cost of production of a public good
and do not produce a public good, but they do share in the goods produced by cooperators.
The payoff to the individual 𝐼𝑛 whose current group is 𝑛 is thus given by

𝑅𝑛 (𝑛) =

⎧
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎩

1 +
|𝑛 |𝐶−1
|𝑛 |−1 𝑣 − 𝑐 if 𝐼𝑛 is a cooperator and |𝑛| > 1,

1 − 𝑐 if 𝐼𝑛 is a cooperator and |𝑛| = 1,

1 +
|𝑛 |𝐶
|𝑛 |−1𝑣 if 𝐼𝑛 is a defector and |𝑛| > 1,

1 if 𝐼𝑛 is a defector and |𝑛| = 1,

(3)
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where |𝑛|𝐶 is the number of cooperators in the group 𝑛. In particular, a lone cooperator
has a smaller payoff than a lone defector.

This is one possible extension of the prisoner’s dilemma to the multiplayer case. There
are a number of others (a range of different models is discussed in [5], for example). A
long-established and (more) commonly used alternative to ours (see [14, 16]) involves non-
excludable goods. Depending upon the nature of the benefit provided, either excludable or
non-excludable goods would be appropriate. If I do some work to repair a village amenity,
I can make use of it too. If my help is repairing my neighbour’s house, they benefit and I
do not.

Similarly, lone individuals are often assumed to have fixed payoffs, irrespective of type
(see [15, 29, 33]). Whether costs are paid by lone cooperators depends upon the nature
of the cooperative mechanism. Gardner and West [12] identified four types of ways in
which cooperative behaviour/traits could evolve through inclusive fitness, two of which
involved altruistic helping behaviour; facultative helping and obligate helping. In the
former a cooperative individual has an inclination to help, but only the act of helping is
costly (e.g., I give medical aid or food to another). Our model is consistent with the latter,
where there is a fitness disadvantage for the potential to be able to help, whether that
help is received or not (I have invested time in learning a medical procedure, or leave out
random food items that may or may not be found).

There are two reasons why we think that ours is a good model to consider. Firstly, out
of the different extensions of the prisoner’s dilemma that we are aware of, ours is the most
challenging for the evolution of cooperation. If cooperation is possible under our scheme,
it will also be under the others. Our results identifying where cooperation evolves are
robust to alternative public goods games; if it evolves in our system, it will evolve under
those schemes too. Secondly, within our game, the difference in payoffs to an individual
for cooperating against defecting is always 𝑐 regardless of the group size (see [34], where
the payoff function for a linear public goods game is equivalent to that from equation (3)).
Thus, there is a consistent temptation to defect in all scenarios in our model, which is a
pleasing property in the spirit of the original prisoner’s dilemma.

The fitness of the individual 𝐼𝑛 obtained at this one step is then

𝑓𝑛 =

{

𝑅𝑛 (𝑛) − 𝜆 if the individual moved
𝑅𝑛 (𝑛) if the individual stayed.

(4)

After one round of the multiplayer game has been played with the current distribu-
tion of the population on the network, each individual again decides whether to stay at the
current location or to move to one of the random neighboring locations. This is followed
by another round of the multiplayer game with possibly different group compositions.
This move-play sequence repeats for a fixed number of discrete steps 𝑇 , called the explo-
ration time. At the end of this exploration phase, all individuals instantaneously return to
their initial home places, and their fitness is the total fitness accumulated over 𝑇 rounds
of the public goods game. Throughout this paper we shall set 𝑇 = 10, in common with
the baseline value in the previous work. Individuals returning to their home places to
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reproduce corresponds to the biological scenario of territorial animals (e.g., African wild
dogs [38, 37]) who may explore the environment to find resources but always return to
their home locations to breed.

We evolve the population using the birth-death-birth (BDB) dynamics [20]. With these
dynamics, an individual for reproduction (birth) is chosen first with probability propor-
tional to the accumulated fitness, and an individual for replacement (death) is then chosen
with probability proportional to the replacement weights. The replacement weights can be
thought of as frequencies of local interactions, and they are defined as follows. Since re-
production occurs locally at the individuals’ home places, we consider all possible groups
that may form when each individual is given a chance to move once from its home place.
Recall thatwhen an individual is alone, then its probability of staying at the current (home)
place is equal to its staying propensity. If an individual ends up alone, then it spends a unit
of time with itself, and hence it can only replace itself. Otherwise the individual allocates
a unit of time equally between all other individuals in its group (not including itself). We
then take a weighted sum of these time allocations multiplied by the probabilities of the
given groups forming. Effectively, an individual chosen for reproduction may replace ei-
ther itself or one of its neighbors at distance at most 2. For a more formal definition of the
replacement weights used in this model, see [26, 10]. We consider the replacement events
to be local for greater consistency with the classical evolutionary graph theory models.
This allows us to preserve the effect of local network structure on the evolutionary pro-
cess. We were able to compute the replacement weight analytically in [10] due to the
inherent symmetry in the complete, circle, and star graphs. We will explain in the next
section how the replacement weights can be handled for arbitrary networks.

In classical evolutionary graph theory, these replacement weights are static, and they
are associated with the edges of the graph. In our model, the replacement weights depend
on the staying propensities of the individuals comprising the population, and hence they
evolve with the population. Therefore, we have two different interconnected structures
in our model:

• The static network (interaction network) over which individuals move and interact
via a multiplayer game

• The dynamic network (evolutionary graph) whose structure is derived from that of
the interaction network, and whose edge weights evolve with the population

See [10] for a more detailed discussion of this decoupling of the interaction and replace-
ment structures in our model as well as in other models [24].

We assume that the natural selection process works on a faster time scale than muta-
tions, and hence at any time there are at most two types of individuals in the population.
The type of an individual is determined by its interactive strategy in the public goods
game (cooperator or defector) and its staying propensity. For example, we may have two
types that are both cooperators but having different staying propensities, or cooperators
and defectors whichmay have either identical or different staying propensities. Mutations
may affect the interactive strategy, or staying propensity, or both traits simultaneously.
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We therefore consider two scenarios with different time scales of mutations of these two
traits. They are explained in the corresponding sections later.

After a replacement even takes place, we reset the fitness of all individuals to zero,
and start a new exploration and fitness accumulation phase. The process continues until
only one type remains in the population.

A comprehensive summary of the model parameters and their values is shown in ta-
ble 1. The parameter values correspond to the baseline values used in [10]. We inves-
tigated the effects of varying population size 𝑁 , exploration time 𝑇 , and reward of co-
operation 𝑣 in [10] for the complete, circle, and star graphs. We observed similar effects
for all three graphs: cooperators tended to do better in larger populations (the outcomes
stabilized starting from 𝑁 = 30) with longer exploration times and higher reward of co-
operation values while the defectors tended to do worse in similar circumstances. Given
that the complete, circle, and star graphs represent extreme cases of network topologies,
it would be natural to assume that similar effects would be observed for networks with
varying topologies such as the random networks considered here. We investigated the
effects of varying 𝑆, 𝛽𝐶 , and 𝛽𝐷 for the complete, circle, and star graphs in a recently
completed project, and these results will be forthcoming soon.

Table 1: Model parameters.

Notation Meaning Values

𝑁 Population size 50

𝑇 Exploration time 10

𝜆 Movement cost {0, 0.1, 0.2,… , 0.8, 0.9}

𝛾 Cooperator staying propensity {0.01, 0.1, 0.2,… , 0.9, 0.99}

𝛿 Defector staying propensity {0.01, 0.1, 0.2,… , 0.9, 0.99}

𝑐 Cost of cooperation 0.04

𝑣 Reward of cooperation 0.40

𝑆 Sensitivity to group members 0.03

𝛽𝐶 Cooperator attractiveness 1

𝛽𝐷 Defector attractiveness −1

2.2 Modeling the Markov process on random networks
We implemented aMonte Carlo simulation of theMarkov process described above on four
types of random networks with 50 nodes: (1) Barabási–Albert networks; (2) Erdős–Rényi
networks; (3) random regular networks; and (4) Watts–Strogatz networks. The size of the
networks matches the largest size of the networks considered in [10]. An exact stochastic
simulation of this process is computationally expensive, and this was the main limitation
in our ability to consider larger networks and wider variations of model parameters.
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The networks (1)–(3) are defined by a single parameter, while the network (4) is defined
by two parameters. All these parameters fall into two categories: degrees of vertices or
probabilities of certain events during the network construction process. We considered
10 values of each network parameter, and generated 10 sample networks for each fixed
parameter value using the Python networkx package. Below is a brief description of the
parameters for each network and values that were used to generate sample networks.

• A Barabási–Albert network is constructed using a preferential attachment algo-
rithm [1], and the parameter is the degree 𝑑 = 1, 2,… , 10 of each new node.

• An Erdős–Rényi network is constructed by taking each pair of nodes and joining
them with a link with a fixed probability 𝑝 = 0.1, 0.2,… , 1. Note that for 𝑝 = 1 we
obtain a complete graph.

• A random regular network is constructed to ensure that each node has the same
fixed degree 𝑑 = 3, 4,… , 12.

• A Watts–Strogatz network [35] is constructed by starting with a ring lattice where
each node has a fixed even degree 𝑑 = 4, 6, 8,… , 22 and then rewiring each link with
a fixed probability 𝑝 = 0, 0.1, 0.2,… , 0.9.

Figure 1 demonstrates one sample network of each type.
In [10] we hypothesized that the clustering coefficient and degree centralization were

two of the network topology characteristics that were responsible for the stability of the
population of cooperators. In this paper, we also look at the average degree and the av-
erage shortest path length; figure 2 shows the values of these four network topology
characteristics for all random networks we consider. These values are computed from
the actual sample networks we generated rather than the average expected values for the
networks of a given type.

The main difference between the implementation of the exact stochastic simulation
of the process in the current project and that in [10] is that in [10] we used analytically
computed replacement weights for each possible population distribution. While there are
2
𝑁 possible states for the distribution of a population consisting of two types of individuals
over a network with 𝑁 nodes, the complete, circle, and star networks that were handled
in [10] have strong symmetry, which made it possible to reduce the number of possible
states down to 𝑁 , 32 (local states around a focal individual), and 2𝑁 for the complete,
circle, and star networks respectively. This cannot be done for random networks, and
hence we had to simulate the replacement weights.

The replacement weights were simulated as follows. At the reproduction phase, each
individual was given an opportunity to either stay at its home location with probability
equal to its staying propensity or to move at a random neighboring location with uniform
probability. In other words, the individual 𝐼𝑛 stayed home with probability 𝛼𝑛 and moved
to each of the neighboring locations with probability (1 − 𝛼𝑛) /𝑑 where 𝑑 is the degree of
the home location node for individual 𝐼𝑛. If an individual chosen for reproduction found
itself alone, then its offspring replaced the individual itself and there was no change in the
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(a) (b)

(c) (d)

Figure 1: Sample random networks with 50 nodes among those we consider. (a) Barabási–Albert
network with 𝑑 = 1; (b) Erdős–Rényi network with 𝑝 = 0.1; (c) random regular network with
𝑑 = 3; (d) Watts–Strogatz network with 𝑑 = 6 and 𝑝 = 0.1.

10



1 2 3 4 5 6 7 8 9 10
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Va
lu

e

(a) Clustering coefficient

1 2 3 4 5 6 7 8 9 10
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
(b) Degree centralization

1 2 3 4 5 6 7 8 9 10
Network parameter

1
5

10
15
20
25
30
35
40
45
50

Va
lu

e

(c) Average degree

1 2 3 4 5 6 7 8 9 10
Network parameter

1
1.5

2
2.5

3
3.5

4
4.5

5
(d) Average shortest path length

Figure 2: Values of the clustering coefficient, degree centralization, average degree, and av-
erage shortest path length for our random networks. Color code: blue—Barabási–Albert net-
work, orange—Erdős–Rényi network, green—random regular network, red—Watts–Strogatz net-
work with fixed 𝑑 = 6 and varying 𝑝, violet—Watts–Strogatz network with fixed 𝑝 = 0.1 and
varying 𝑑.
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population composition and distribution. If an individual chosen for reproduction found
itself in a group with at least one other individual, then it replaced one other individual
from the group with uniform probability.

3 Results: rare interactive mutations case
In this scenario, we assume that the mutation rate of interactive strategies is much slower
than the mutation rate of staying propensities. We start with a resident population of co-
operators or defectors using the same exploration strategy (i.e., having the same staying
propensity). We then introduce a mutant that differs from the resident population in stay-
ing propensity but not interactive strategy. The resident population thus evolves to the
optimal (Nash equilibrium) staying propensity given the network structure andmovement
cost. The optimal staying propensities of resident cooperators increase with the move-
ment cost. For Barabási–Albert networks they range from 0.01 to 0.6, for Erdős–Rényi
networks from 0.1 to 0.6, for random regular networks and for Watts–Strogatz networks
from 0.2 to 0.7; the network parameter has little effect on these values. There is a trade-
off between the need for cooperators to form clusters to benefit from each other and the
incurred movement cost. The optimal staying propensities are low for small movement
costs because it’s more beneficial for cooperators to quickly aggregate in clusters, and it
doesn’t cost too much to move several times to find other cooperators. Once a cluster of
cooperators forms, the high sensitivity to the group composition (𝑆 = 0.03) ensures that
the cooperators stay there despite low inherent propensity to do so when alone. The op-
timal staying propensities become larger for higher movement costs because it’s getting
move expensive to actively seek other cooperators. Yet some movement is necessary to
form clusters, and this is why too high staying propensities are never optimal. Defectors
have no incentive to move in the absence of cooperators, and hence the resident defectors
always have 0.99 as the optimal staying propensity.

By the time an interactive strategymutant appears in the population, the residents will
have evolved to the optimal staying propensity. The interactive strategy mutant may also
have a different staying propensity, and hence we simulate the invasion of the resident
population by mutants having all possible staying propensities. We run a Monte Carlo
simulation of the natural selection process to estimate the mutant fixation probability
𝜌. We compare the estimated mutant fixation probability with the neutral drift fixation
probability 𝜌 = 1/𝑁 = 0.02. We will denote the fixation probability of the fittest mutant
cooperator by 𝜌

𝐶 and the fittest mutant defector by 𝜌
𝐷. Using the terminology from [32],

there are four possible outcomes of the selection process:

• Selection favors cooperators when 𝜌
𝐶
> 1/𝑁 and 𝜌

𝐷
< 1/𝑁

• Selection favors defectors when 𝜌
𝐶
< 1/𝑁 and 𝜌

𝐷
> 1/𝑁

• Selection favors change when 𝜌
𝐶
> 1/𝑁 and 𝜌

𝐷
> 1/𝑁

• Selection opposes change when 𝜌
𝐶
< 1/𝑁 and 𝜌

𝐷
< 1/𝑁
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To estimate the mutant fixation probabilities we average the results of 𝑛 = 100, 000

independent trials for each combination of parameters. These trials are split into ten
groups of 10,000—one group for each sample random network of the given type. Using the
binomial distribution, the standard deviation of the simulated fixation probability is given
by

√

𝜌 (1 − 𝜌) /𝑛, where 𝜌 is the actual fixation probability. The stochastic error is critical
when the fixation probability is close to the neutral one. Assuming 𝜌 = 1/𝑁 = 0.02, the
standard deviation is equal to 0.00044. We adopt the following convention:

• We assume that selection favors the mutant if the mutant fixation probability ex-
ceeds the neutral one by at least two standard deviations

With this convention, the simulated mutant fixation probability is considered to exceed
the neutral one if it is greater than 0.02088.

We now proceed to analyzing the outcomes in this scenario for different networks.
We draw parameter regions that correspond to four possible outcomes and plot fixation
probabilities of the fittest cooperator and defector mutants. As the parameters change in
discrete steps, whenever an outcome changes we draw the dividing line halfway between
the parameter values. The color codes for the regions are as follows:

• Blue: selection favors cooperators
• Orange: selection favors defectors
• Yellow: selection favors change
• Gray: selection opposes change

In the plots of mutant fixation probabilities, the thick gray line indicates the area of
stochastic uncertainty around the neutral fixation probability. It is centered at the neutral
fixation probability, and its thickness is equal to four standard deviations. We also apply
the same scale for the mutant fixation probabilities plots across different networks for
convenience of comparison.

One common theme that we observe for all networks is that once the average degree
becomes sufficiently high, the qualitative outcomes are identical to those for the complete
graph of size 𝑁 = 50 from [10]. We recall that the complete graph is characterized by the
highest clustering coefficient (1), lowest degree centralization (0), highest average degree
(𝑁 − 1), and lowest average shortest path length (1).

For networks with small average degrees, the outcomes resemble those for either cir-
cle or star graphs from [10]. For reader’s convenience we provide the ranges of move-
ment costs which correspond to one of the possible outcomes for each of these three
basic graphs in Table 2. Applying our conventions for drawing parameter regions for
the complete graph as an example, we have a blue region extending from the left bor-
der (movement cost 0) up to movement cost 0.25 (halfway between the parameter values
where the qualitative change takes place) and a gray region extending from movement
cost 0.25 up to the right border (movement cost 0.9).
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Table 2: Ranges of movement costs corresponding to each possible selection outcome in the rare
interactive mutations scenario for complete, circle, and star graphs of size 50 from [10].

Network Favors Coop. Favors Def. Favors change Opposes change

Complete 0–0.2 − − 0.3–0.9
Circle 0–0.3 0.4–0.9 − −

Star − 0.4–0.9 0–0.3 −
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Figure 3: The outcomes in the rare interactive mutations scenario for Barabási–Albert networks.
(a) Parameter regions showing the possible outcomes. The results match those of the complete
graph starting from 𝑑 = 6. (b) Fittest cooperator (blue) and defector (orange) mutant fixation
probabilities as functions of the movement cost. Each plot corresponds to a fixed value of the
network parameter: 𝑑 = 1 for dotted lines, 𝑑 = 3 for dashed lines, 𝑑 = 6 for solid lines. (c) Fittest
cooperator (blue) and defector (orange) mutant fixation probabilities as functions of the network
parameter. Each plot corresponds to a fixed value of the movement cost: 𝜆 = 0 for dotted lines,
𝜆 = 0.3 for dashed lines, 𝜆 = 0.9 for solid lines.

3.1 Barabási–Albert networks
Figure 3 shows the outcomes for Barabási–Albert networks. For 𝑑 = 1, the network
resembles the hub-and-spoke topology of the star graph because it has few nodes of high
degree and most nodes have small degree; see figure 1(a). Consequently, the outcomes in
this case are similar to the ones for the star graph [10]. The only difference is that for the
Barabási–Albert network selection favors cooperators for 𝜆 = 0.2, while selection favors
change for the star graph. As the degree of newly attached nodes increases, the behavior
gradually drifts towards that of the complete graph with the region corresponding to
selection opposing change expanding, the regions corresponding to selection favoring
defectors and change disappearing, and the region corresponding to selection favoring
defectors shrinking until stabilizing at the size identical to that in the complete graph.
The qualitative outcomes match those of the complete graph [10] starting from 𝑑 = 6,
which corresponds to the values of clustering coefficient 0.33, degree centralization 0.39,
average degree 10.56, and average shortest path length 1.86 (actual values from our 10
sample networks rather than expected values).
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Next, we will compare the actual mutant fixation probabilities in figure 3(b) to those
on the complete and star graphs. For 𝑑 = 1, the fittest mutant cooperator fixation prob-
abilities on the Barabási–Albert network are slightly lower than those on the star graph
for movement costs 0 and 0.1, but they are approximately the same for all larger move-
ment costs (see figure 6(c) in [10]). Yet the fittest mutant defector fixation probabilities
differ significantly. On the Barabási–Albert network, these fixation probabilities decrease
from 𝜆 = 0 to 𝜆 = 0.2, with the fixation probability at 𝜆 = 0.2 dropping below the neutral
threshold, and then increase sharply with the increasing values of the movement cost. But
on the star graph, the mutant defector fixation probabilities increase slowly and gradually
from 0.04 for 𝜆 = 0 to 0.05 for 𝜆 = 0.9.

For 𝑑 = 6, the fittest mutant cooperator fixation probabilities on the Barabási–Albert
network are slightly higher than those on the complete graph for movement costs up to
0.4, but they are approximately the same for all larger movement costs (see figure 2(c) in
[10]). Similarly for the fittest mutant defector fixation probabilities.

Looking at the mutant fixation probability plots in figure 3(c), we observe that the mu-
tant cooperator fixation probabilities decrease slightly with the increasing degree of the
nodes in the network for small and intermediate movement costs (dotted and dashed lines)
and remain independent of the network parameter for large movement costs (solid line).
The mutant defector fixation probabilities show a sharp initial decrease for intermediate
and large movement costs, and decrease gradually for small movement costs.

3.2 Erdős–Rényi networks
Figure 4 shows the outcomes for Erdős–Rényi networks. The parameter regions ex-
hibit little change with the edge probability parameter, and the qualitative outcomes are
identical to those for the complete graph starting from 𝑝 = 0.2, which corresponds to
the values of clustering coefficient 0.2, degree centralization 0.16, average degree 9.79,
and average shortest path length 1.91. We performed additional computations for 𝑝 =

0.11, 0.12,… , 0.19 and discovered that the outcomes match those of the complete graph
starting only from 𝑝 = 0.2.

Comparing the fittest mutant fixation probabilities in figure 4(b) with those for the
complete graph (figure 2(c) in [10]), we observe that themutant cooperator fixation proba-
bility decreases slightly with the increasing edge probability 𝑝 for all but larger movement
costs. The mutant defector fixation probabilities also decrease slightly with the increasing
edge probability for small and large movement costs. The fittest mutant fixation probabil-
ities exhibit little change with the network parameter in figure 4(c). Most of the change,
if any, occurs between 𝑝 = 0.1 and 𝑝 = 0.2.

3.3 Random regular networks
Figure 5 shows the outcomes for random regular networks. For 𝑑 = 3, the outcomes
are closest to the ones for the circle graph (a regular network with small average degree)
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Figure 4: The outcomes in the rare interactive mutations scenario for Erdős–Rényi networks.
(a) Parameter regions showing the possible outcomes. The results match those of the complete
graph starting from 𝑝 = 0.2. (b) Fittest cooperator (blue) and defector (orange) mutant fixation
probabilities as functions of the movement cost. Each plot corresponds to a fixed value of the
network parameter: 𝑝 = 0.1 for dotted lines, 𝑝 = 0.2 for dashed lines, 𝑝 = 0.8 for solid lines. (c)
Fittest cooperator (blue) and defector (orange) mutant fixation probabilities as functions of the
network parameter. Each plot corresponds to a fixed value of the movement cost: 𝜆 = 0 for dotted
lines, 𝜆 = 0.3 for dashed lines, 𝜆 = 0.9 for solid lines.

from [10] with selection favoring cooperators for smaller movement costs and selection
favoring defectors for larger movement costs. The only difference is that for the random
regular network selection opposes change for intermediate values of the movement cost.
As the degree of the nodes increases, the behavior gradually drifts towards that of the
complete graph with the region corresponding to selection opposing change expanding,
the region corresponding to selection favoring defectors disappearing, and the region cor-
responding to selection favoring defectors shrinking until stabilizing at the size identical
to that in the complete graph. The qualitative outcomes match those of the complete
graph starting from 𝑑 = 6, which corresponds to the values of clustering coefficient 0.09,
degree centralization 0, average degree 6, and average shortest path length 2.32.

Comparing the fittest mutant fixation probabilities on random regular networks for
𝑑 = 3 in figure 5(b) with those on the circle graph (figure 4(c) in [10]), we observe that
mutant cooperator fixation probabilities are a bit lower on random regular networks for
movement costs up to 0.6, and mutant defector fixation probabilities are much lower on
random regular networks for movement costs exceeding 0.3. Comparing the mutant fixa-
tion probabilities on random regular networks for 𝑑 = 6with those on the complete graph
(figure 2(c) in [10]), we see that mutant cooperators have a slightly higher fixation prob-
ability on random regular networks for movement costs up to 0.5 while mutant defectors
have similar fixation probabilities for all movement costs. We also notice from figure 5(c)
that the mutant fixation probabilities either decrease with the increasing degree of the
nodes in the network or remain stable.
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Figure 5: The outcomes in the rare interactive mutations scenario for random regular networks.
(a) Parameter regions showing the possible outcomes. The results match those of the complete
graph starting from 𝑑 = 6. (b) Fittest cooperator (blue) and defector (orange) mutant fixation
probabilities as functions of the movement cost. Each plot corresponds to a fixed value of the
network parameter: 𝑑 = 3 for dotted lines, 𝑑 = 4 for dashed lines, 𝑑 = 6 for solid lines. (c) Fittest
cooperator (blue) and defector (orange) mutant fixation probabilities as functions of the network
parameter. Each plot corresponds to a fixed value of the movement cost: 𝜆 = 0 for dotted lines,
𝜆 = 0.3 for dashed lines, 𝜆 = 0.9 for solid lines.

3.4 Watts–Strogatz networks
Figure 6 shows the outcomes for Watts–Strogatz networks with fixed initial degree 𝑑 = 6

of the nodes in the starting ring lattice and varying rewiring probability 𝑝. When no links
in the ring lattice are rewired (𝑝 = 0), the qualitative outcomes are identical to those on the
circle graph [10]: selection favors cooperators for movements costs 0–0.4 and selection
favors defectors for movement costs 0.5–0.9. As the rewiring probability is increasing, the
region where selection favors defectors disappears and the region where selection favors
cooperators shrinks slightly. Starting from 𝑝 = 0.2 the regions stabilize, but the outcomes
never quite match those of the complete graph because the average degree of the nodes
stays constant. Notice in figure 2(d) how the average shortest path length (red plot) stops
decreasing and stabilizes starting from intermediate values of 𝑝. This could explain why
the outcomes never become identical to those for the complete graph in these networks.

Comparing the mutant fixation probabilities for 𝑝 = 0 on Watts–Strogatz networks
and the circle graph (figure 4(c) in [10]), we observe that the mutant cooperator fixation
probabilities are slightly lower on the Watts–Strogatz network for movement costs up to
0.3, and the mutant defector fixation probabilities are lower on the Watts–Strogatz net-
work for movements costs starting from 0.4. Comparing the mutant fixation probabilities
on Watts–Strogatz networks for 𝑝 = 0.3 with those on the complete graph (figure 2(c) in
[10]), we see that the mutant cooperator fixation probabilities are higher on the Watts–
Strogatz network for movement costs up to 0.5, and the mutant defector fixation proba-
bilities are slightly higher on the Watts–Strogatz network for small and large movement
costs. We also notice from figure 6(c) that the mutant fixation probabilities either decrease
with the increasing rewiring probability or remain stable.
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(c) Fixed movement costs

Figure 6: The outcomes in the rare interactive mutations scenario for Watts–Strogatz networks
with fixed average degree 𝑑 = 6. (a) Parameter regions showing the possible outcomes. The results
stabilize starting from 𝑝 = 0.2 but never match those of the complete graph. (b) Fittest cooperator
(blue) and defector (orange) mutant fixation probabilities as functions of themovement cost. Each
plot corresponds to a fixed value of the network parameter: 𝑝 = 0 for dotted lines, 𝑝 = 0.1 for
dashed lines, 𝑝 = 0.3 for solid lines. (c) Fittest cooperator (blue) and defector (orange) mutant
fixation probabilities as functions of the network parameter. Each plot corresponds to a fixed
value of the movement cost: 𝜆 = 0 for dotted lines, 𝜆 = 0.3 for dashed lines, 𝜆 = 0.9 for solid lines.

Figure 7 shows the outcomes for Watts–Strogatz networks with fixed rewiring prob-
ability 𝑝 = 0.1 and varying initial degree of nodes 𝑑 in the starting ring lattice. For 𝑑 = 4,
the outcomes are very close to those on the circle graph. As 𝑑 is increasing, the regions
where selection favors either cooperators or defectors start to shrink while the region
where selection opposes change expands. The regions stabilize at 𝑑 = 12 and the out-
comes match those for the complete graph. This corresponds to the values of clustering
coefficient 0.53, degree centralization 0.05, average degree 12, and average shortest path
length 2.

Comparing the mutant fixation probabilities for 𝑑 = 4 on Watts–Strogatz networks
and circle graph (figure 4(c) in [10]), we observe that the mutant cooperator fixation prob-
abilities are slightly lower on the Watts–Strogatz network for movement costs up to 0.4,
and the mutant defector fixation probabilities are lower on the Watts–Strogatz network
for movements costs starting from 0.4. This is very similar to what is happening in the
𝑑 = 6 case in figure 7(b). Comparing the mutant fixation probabilities on Watts–Strogatz
networks for 𝑑 = 12 with those on the complete graph (figure 2(c) in [10]), we see that
the mutant cooperator fixation probabilities are slightly higher on the Watts–Strogatz
network for movement costs up to 0.4, and the mutant defector fixation probabilities are
slightly higher on the Watts–Strogatz network for large movement costs. We also notice
from figure 7(c) that the mutant fixation probabilities either decrease with the increasing
average degree or remain stable.
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Figure 7: The outcomes in the rare interactive mutations scenario for Watts–Strogatz networks
with fixed rewiring probability 𝑝 = 0.1. (a) Parameter regions showing the possible outcomes.
The results match those of the complete graph starting from 𝑑 = 12. (b) Fittest cooperator (blue)
and defector (orange) mutant fixation probabilities as functions of the movement cost. Each plot
corresponds to a fixed value of the network parameter: 𝑑 = 4 for dotted lines, 𝑑 = 8 for dashed
lines, 𝑑 = 12 for solid lines. (c) Fittest cooperator (blue) and defector (orange) mutant fixation
probabilities as functions of the network parameter. Each plot corresponds to a fixed value of the
movement cost: 𝜆 = 0 for dotted lines, 𝜆 = 0.3 for dashed lines, 𝜆 = 0.9 for solid lines.

3.5 Summary
Regardless of the network structure, as long as the average degree of the nodes is suffi-
ciently high, the qualitative outcomesmatch those of the complete graph. This is expected,
but what was not clear a priori is that the actual average degree where this phenomenon
is observed is much smaller than that of the complete graph. Moreover, different network
topologies require different average degree thresholds starting from which the outcomes
become identical. Table 3 summarizes the values of the network topology characteristics
that correspond to the lowest value of the average degree threshold for each network type.

Table 3: Network topology thresholds for identical outcomes with the complete graph of size 50.

Network Clust. coeff. Deg. centr. Avg. deg. Avg. sh. path length

Complete 1.00 0.00 49.00 1.00

Barabási–Albert 0.33 0.39 10.56 1.86

Erdős–Rényi 0.20 0.16 9.79 1.91

Random regular 0.09 0.00 6.00 2.32

Watts–Strogatz 0.53 0.05 12.00 2.00

One common feature that these networks share is small average shortest path length.
Of course, this alone is not sufficient for having identical qualitative outcomes as the star
graph demonstrates [10].

All networks except the Barabási–Albert ones have low degree centralization, which
means these networks do not have nodes of large degree surrounded by many nodes of

19



small degree. These hubs are the most likely places for groups of individuals to form.
Having few such places means defectors may find it easier to locate and exploit clusters
of cooperators, and hence a resident cooperator population is vulnerable to invasion by
defectors. The high degree centralization for Barabási–Albert networks is compensated
for by a sufficiently high clustering coefficient and average degree. This means coopera-
tors leaving the groups that are being heavily exploited by defectors have a higher chance
of forming new clusters at other locations quickly thereafter, while defectors may not be
able to find these clusters for some time.

Random regular networks have low values of the clustering coefficient and degree
centralization, similarly to the circle graph. Yet they have a higher average degree and
much lower average shortest path length than the circle graph. This allows cooperators
to “spread out” when escaping unattractive groups as well as form new groups. This is
much harder to achieve on the circle graph.

4 Results: non-rare interactive mutations case
In this scenario, we assume that the mutation rate of an individual’s interactive strate-
gies is similar to the mutation rate of their staying propensity. Adopting the modeling
approach from [10] for this scenario, we consider a mixed population where half of the
individuals are cooperators and half are defectors. We then find the Nash equilibrium
staying propensity of each type in this mixed population and record the probabilities that
the mixed population evolves to all cooperators or all defectors; these probabilities add
up to 1. We call these probabilities “fixation probabilities”, but not “mutant fixation prob-
abilities”. Denoting by 𝜌𝐶 and 𝜌𝐷 the fixation probabilities of cooperators and defectors,
respectively, we may end up with one of the three possible outcomes (with color codes
for parameter regions):

1. Selection favors cooperators if 𝜌𝐶 > 1/2 > 𝜌𝐷 (blue color)
2. Selection favors defectors if 𝜌𝐷 > 1/2 > 𝜌𝐶 (orange color)
3. Selection is neutral if 𝜌𝐶 ≈ 𝜌𝐷 (gray color)

To estimate the fixation probabilities, we ran 10, 000 independent trials for each combina-
tion of parameters; ten groups of 1, 000 trials for each sample random network. Using the
same approach as in the rare interactive mutations case, the standard deviation around
the expected fixation probability 1/2 is equal to 0.005. Counting two standard deviations
in each direction, we assume that selection is neutral when the fixation probability of
cooperators 𝜌𝐶 falls between 0.49 and 0.51. The plots of fixation probabilities contain a
thick gray line indicating this area of stochastic uncertainty around the neutral fixation
probability.

Table 4 summarizes the outcomes in the non-rare interactive mutations scenario for
complete, circle, and star graphs from [10]. Similarly to the rare interactive mutations sce-
nario, the outcomes for random networks match those of the complete graph as long as
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the network has a sufficiently high average degree. The only exception are the Barabási–
Albert networks, where selection is neutral for movement cost 0.9. However, this quali-
tative difference results from a small quantitative difference in the fixation probabilities.
For all networks, the actual fixation probabilities are very close to those on the complete
graph for sufficiently large average degrees. In general, increasing the average degree of
the network resulted in stable or higher cooperator fixation probabilities.

Table 4: Ranges of movement costs corresponding to each possible selection outcome in the non-
rare interactive mutations scenario for complete, circle, and star graphs of size 50 from [10].

Network Favors Cooperators Favors Defectors Neutral

Complete 0–0.8 0.9 −

Circle 0.1–0.4 0.5–0.9 0

Star − 0–0.3 and 0.8–0.9 0.4–0.7

4.1 Barabási–Albert networks
Figure 8 shows the outcomes for Barabási–Albert networks. For small average degrees,
selection favors defectors for small and large movement costs, and selection favors coop-
erators for intermediate movement costs. As the degree increases, the area where selec-
tion favors cooperators expands, while the area where selection favors defectors shrinks
and disappears; see figure 8(a). For 𝑑 = 10, the outcomes have one slight difference from
those for the complete graph: for movement cost 0.9, selection is neutral. We tested what
happens for even larger values of 𝑑, and discovered that this behavior remains stable (up
to 𝑑 = 20). Even though there is a qualitative difference with the complete graph, this dif-
ference stems from a small difference in the actual fixation probabilities because in both
cases they are close to the neutral one.

Figure 8(b) shows that cooperator fixation probabilities increase with the increasing
degree of the networks. Similarly to the complete graph, they are highest for intermediate
movement costs independently of the degree (figure 8(c)).

4.2 Erdős–Rényi networks
Figure 9 shows the outcomes for Erdős–Rényi networks. These outcomes are qualitatively
identical to those for the complete graph throughout the entire range of the network
parameter value (figure 9(a)). The actual fixation probabilities also show little change with
the network parameter (figure 9(b)). In this case, the fixation probabilities for 𝜆 = 0.9were
very close to the neutral one, and we ran additional simulations to decrease the size of the
stochastic error. With smaller standard deviation, we were able to conclude that selection
favors defectors in all cases.
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Figure 8: The outcomes in the non-rare interactive mutations scenario for Barabási–Albert net-
works. (a) Parameter regions showing the possible outcomes. The results almost match those of
the complete graph for 𝑑 = 10. (b) Equilibrium fixation probabilities of cooperators (blue) and
defectors (orange) as functions of the movement cost. Each plot corresponds to a fixed value of
the network parameter: 𝑑 = 1 for dotted lines, 𝑑 = 2 for dashed lines, 𝑑 = 10 for solid lines. (c)
Equilibrium fixation probabilities of cooperators (blue) and defectors (orange) as functions of the
network parameter. Each plot corresponds to a fixed value of the movement cost: 𝜆 = 0 for dotted
lines, 𝜆 = 0.3 for dashed lines, 𝜆 = 0.9 for solid lines.
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Figure 9: The outcomes in the non-rare interactive mutations scenario for Erdős–Rényi networks.
(a) Parameter regions showing the possible outcomes. The results match those of the complete
graph starting starting from 𝑝 = 0.1. (b) Equilibrium fixation probabilities of cooperators (blue)
and defectors (orange) as functions of the movement cost. Each plot corresponds to a fixed value
of the network parameter: 𝑝 = 0.1 for dotted lines, 𝑝 = 0.2 for dashed lines, 𝑝 = 0.8 for solid lines.
(c) Equilibrium fixation probabilities of cooperators (blue) and defectors (orange) as functions of
the network parameter. Each plot corresponds to a fixed value of the movement cost: 𝜆 = 0 for
dotted lines, 𝜆 = 0.3 for dashed lines, 𝜆 = 0.9 for solid lines.
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(c) Fixed movement costs

Figure 10: The outcomes in the non-rare interactive mutations scenario for random regular net-
works. (a) Parameter regions showing the possible outcomes. The results match those of the
complete graph starting from 𝑑 = 10. (b) Equilibrium fixation probabilities of cooperators (blue)
and defectors (orange) as functions of the movement cost. Each plot corresponds to a fixed value
of the network parameter: 𝑑 = 3 for dotted lines, 𝑑 = 5 for dashed lines, 𝑑 = 10 for solid lines.
(c) Equilibrium fixation probabilities of cooperators (blue) and defectors (orange) as functions of
the network parameter. Each plot corresponds to a fixed value of the movement cost: 𝜆 = 0 for
dotted lines, 𝜆 = 0.3 for dashed lines, 𝜆 = 0.9 for solid lines.

4.3 Random regular networks
Figure 10 shows the outcomes for random regular networks. For 𝑑 = 3, the outcomes are
closest to those on the circle graph, but on random regular networks the movement cost
threshold that separates selection favoring cooperators from favoring defectors is higher:
𝜆 = 0.65 for the random regular networks vs. 𝜆 = 0.45 for the circle graph. As the degree
of the networks increases, the region where selection favors cooperators expands, while
the region where selection favors defectors shrinks; regions of neutral selection appear in
between. The outcomes stabilize starting from 𝑑 = 10 and match those for the complete
graph.

The fixation probabilities of cooperators remain stable for small movement costs re-
gardless of the degree, but they increase with the average degree for larger movement
costs (figures 10(b) and 10(c)).

4.4 Watts–Strogatz networks
Figure 11 shows the outcomes forWatts–Strogatz networks with fixed initial degree 𝑑 = 6

of the nodes in the starting ring lattice and varying rewiring probability 𝑝. For small
values of 𝑝, selection favors cooperators for small and intermediate movement costs, and
selection is either neutral or favors defectors for larger movement costs. As the rewiring
probability increases, the region where selection favors cooperators expands slightly, and
the region where selection favors cooperators shrinks slightly. The outcomes stabilize at
𝑝 = 0.4, and they are similar to those for the complete graph. The only difference is that
for Watts–Strogatz networks, selection is neutral for 𝜆 = 0.8.
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(c) Fixed movement costs

Figure 11: The outcomes in the non-rare interactive mutations scenario for Watts–Strogatz net-
works with fixed average degree 𝑑 = 6. (a) Parameter regions showing the possible outcomes.
The results stabilize starting from 𝑝 = 0.4 but never match those of the complete graph. (b)
Equilibrium fixation probabilities of cooperators (blue) and defectors (orange) as functions of the
movement cost. Each plot corresponds to a fixed value of the network parameter: 𝑝 = 0 for dot-
ted lines, 𝑝 = 0.2 for dashed lines, 𝑝 = 0.4 for solid lines. (c) Equilibrium fixation probabilities
of cooperators (blue) and defectors (orange) as functions of the network parameter. Each plot
corresponds to a fixed value of the movement cost: 𝜆 = 0 for dotted lines, 𝜆 = 0.3 for dashed lines,
𝜆 = 0.9 for solid lines.

The fixation probabilities remain relatively stable with respect to rewiring probability
with fixation probabilities of cooperators increasing slightly with higher rewiring proba-
bilities for larger movement costs (see figures 11(b) and 11(c)).

Figure 12 shows the outcomes for Watts–Strogatz networks with fixed rewiring prob-
ability 𝑝 = 0.1 and varying initial degree of nodes 𝑑 in the starting ring lattice. For net-
works with small average degrees, the outcomes are similar to those for the circle graph
with selection favoring cooperators for smaller movement costs and defectors for larger
movement costs. As the degree increases, the region where selection favors cooperators
expands, and the region where selection favors defectors shrinks. The behavior stabilizes
at 𝑑 = 18 where it becomes identical to that on the complete graph.

Increasing the average degree results in higher fixation probabilities for cooperators
for larger movement costs (see figures 12(b) and 12(c)).

4.5 Summary
Similarly to the rare interactive mutations scenario, in the non-rare interactive muta-
tions scenario the outcomes resemble those for the complete graph as long as the average
degree of the network is sufficiently high. But there are several differences from the pre-
vious scenario. First, the fixation probabilities were affected less by varying the network
parameter in the non-rare interactive mutation case. Second, the qualitative outcomes
didn’t always completely match those of the complete graph (for example, on Barabási–
Albert networks). Yet any qualitative differences were due to the fixation probabilities
being close to the neutral one, and hence small differences in the actual fixation proba-
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Figure 12: The outcomes in the non-rare interactive mutations scenario for Watts–Strogatz net-
works with fixed rewiring probability 𝑝 = 0.1. (a) Parameter regions showing the possible out-
comes. The results match those of the complete graph starting from 𝑑 = 18. (b) Equilibrium
fixation probabilities of cooperators (blue) and defectors (orange) as functions of the movement
cost. Each plot corresponds to a fixed value of the network parameter: 𝑑 = 4 for dotted lines,
𝑑 = 8 for dashed lines, 𝑑 = 18 for solid lines. (c) Equilibrium fixation probabilities of cooperators
(blue) and defectors (orange) as functions of the network parameter. Each plot corresponds to a
fixed value of the movement cost: 𝜆 = 0 for dotted lines, 𝜆 = 0.3 for dashed lines, 𝜆 = 0.9 for solid
lines.

bilities resulted in formal qualitative differences. Finally, the average degrees where the
outcomes matched those of the complete graph were usually higher than those in the rare
interactive mutations case.

5 Discussion
In this paper, we extended our investigation of the effect of network topology on the evo-
lution of cooperation on evolving multiplayer networks [10]. We adapted the Markov
movement model from complete, circle, and star graph to arbitrary networks. This al-
lowed us to consider a wider range of network topologies. We concentrated on standard
well-known types of random networks: Barabási–Albert, Erdős–Rényi, random regular,
and Watts–Strogatz networks. We considered 10 different networks of each type, which
were constructed by varying one network parameter. All networks had a fixed number
of 50 nodes to match the largest size graphs considered in [10]. We used the networkx
package to create 10 sample networks for each value of the parameter; the simulations
were performed on these sample networks.

We investigated the outcomes of the evolutionary process on these random networks
in a population consisting of cooperators and defectors. Individuals explored the net-
works based on their exploration strategies (staying propensities) and the attractiveness
of their current group, and played a public goods game with those they met. The fitness
accumulated via these multiplayer games was used to evolve the population using the
BDB process.
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When the random networks had small average degrees, we saw a wide variation in
the outcomes in the rare interactive mutations scenario similarly to [10]. The results
for Barabási–Albert networks (of small average degree) were similar to those for the star
graph; the results for Erdős–Rényi networks were similar to those for the complete graph;
the results for the random regular networks were somewhat similar to those for the circle
graph; and the results for theWatts–Strogatz networks were similar to those for the circle
graph.

Yet when the average degree was sufficiently large, the results became identical to
those for the complete graph. This is a natural outcome, but the actual value of the average
degree when this occurred was much lower than that of the complete graph, and it ranged
from 6 to 12 depending on the network. The complete graph can be characterized as a
graph with the largest clustering coefficient and average degree and the smallest degree
centralization and average shortest path length. The random networks that had identical
outcomes to the complete graph tended to have small average path length and sufficiently
high clustering coefficient or low degree centralization.

We have not observed the same variance of outcomes as in extreme topologies of
the complete, circle, and star graphs in the non-rare interactive mutations case. Even in
random networks of small average degree the outcomes never resembled those for the
star graph. Additionally, even for networks of large average degree the outcomes didn’t
always completely match those of the complete graph. When they did match, it usually
required a higher average degree than in the rare interactive mutations case.

Our Markov movement model can be thought of as a version of a “lazy” random walk:
at each step individuals either stay at the current place or move to a neighboring place.
Random walk theory [19] predicts long-term distribution of individuals, with the proba-
bility of the random walk ending at any given place directly proportional to the degree of
the corresponding vertex. However, in our model the probability that a given individual
stays at the current location is changing dynamically with the group composition, and the
resulting assortative behavior cannot be fully captured by classical random walk theory.
One of the key characteristics in random walk theory is the spectral gap of a graph, and
hence it is one of the network characteristics that might affect the outcome of our process.
Yet given the differences of our movement model with the true random walk and the fact
that spectral gap increases with the average degree of the network, we did not find any
insight one might gather from considering spectral gaps in addition to average degrees.

While random networks provided us with a wider range of network topologies to in-
vestigate, we had little control over their topologies because they are constructed algorith-
mically. We plan to extend our investigation further by manually constructing networks
that would gradually deviate from the extreme topologies of the complete and star graphs.
For example, we may consider star-like networks that are constructed by joining several
smaller stars or cliqued networks that are constructed by joining several smaller complete
graphs. We are interested in discovering what minimal changes can be made to alter the
outcome of the evolution of cooperation on such structures.
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