MA3615 Groups and Symmetry: Coursework

This is an assessed coursework. Solutions should be handed in to the General office (C108) by **4pm on 24 March 2011**. Late submission will be penalized.

- 1. Decide whether the following statements are true or false. Justify your answers.
 - (a) There exists a subgroup H of A_5 with |H| = 9.
 - (b) Every element $g \in S_4$ satisfies $g^{48} = e$.
 - (c) The group $\mathbb{Z}_2 \times \mathbb{Z}_2$ is generated by one element.
 - (d) The group $\mathbb{Z}_2 \times \mathbb{Z}_3$ is generated by one element.
 - (e) The group D_6 has a proper non-trivial normal subgroup.
 - (f) The group D_6 has a subgroup which is not normal.

[30]

- 2. (a) Find a subgroup H of order 2 in \mathbb{Z}_{10} .
 - (b) Explain why H is normal in \mathbb{Z}_{10} .
 - (c) Calculate the cosets of H in \mathbb{Z}_{10} and write down the Cayley table for \mathbb{Z}_{10}/H .
 - (d) Find a surjective homomorphism $\phi : \mathbb{Z}_{10} \to \mathbb{Z}_5$ with $\operatorname{Ker} \phi = H$. Deduce that $\mathbb{Z}_{10}/H \cong \mathbb{Z}_5$.

[20]

- 3. Let G be the rotational symmetry group of a cube. We have seen at lecture that |G| = 24. Consider the action of G on the set X where
 - (a) X = the set of all faces of the cube.
 - (b) X = the set of all edges of the cube.

In each case, find the orbit and the stabilizer of an element in X and verify the Orbit-Stabilizer theorem.

[20]

- 4. How many different cubes can be constructed by
 - (a) painting each edge of a cube red or blue?
 - (b) painting each face of a cube red, yellow or blue?

[30]