Sample: KwrCircleConstructors.CATPart
circleCtrRadius (center: Point, support: Surface, radius:
Length, limits: Integer,
start: Angle, end: Angle): Circle
Creates a circular arc from its center and radius. If the argument 4 is 0, the arguments 5
and 6 are
taken into account.
Otherwise, a circle is created.
Example
Open_body.1\Circle.1 =
circleCtrRadius(Open_body.1\Point.1 , `zx plane` ,20mm,0,10deg,320deg)
|
|
circleCtrPt(center: Point, point: Point, support:
Surface, radius: Length, limits: Integer,
start: Angle, end:
Angle): Circle
|
Creates a circular arc from its center and another point located on the circle. If
the argument 4 is 0,
the arguments
5 and 6 are taken into account. Otherwise, a circle is
created.
Example
Open_body.1\Circle.2 =
circleCtrPt(Open_body.1\Point.1
, Open_body.1\Point.2 , `xy plane` ,1,10deg, 370deg)
|
|
circle2PtsRadius(point1: Point, point2: Point, support:
Surface, radius: Length,
orientation: Boolean, limits: Integer): Circle
|
Creates a circular arc. The points specified in the arguments 1 and 2 are located on
the arc to be
created and
define the arc limits when the integer specified in the argument 6
is 0. When 0 is
specified in the argument 6, modifying the argument 5 boolean value allows you
to display
the alternative arc.
Example
Open_body.1\Circle.3 =
circle2PtsRadius(Open_body.1\Point.1
,Open_body.1\Point.2 ,`xy plane`,50mm, true, 0)
|
| Circle3Pts (pt1: Point, pt2: Point, pt3: Point, Limits:
Integer) : Circle |
Creates one or more circular arcs passing through three points. When 0
is specified in the argument 4,
the first and third points define the arc limits. When 1 is specified in
the argument 4 the whole circle is
defined. When 2 is specifies in the argument 4 the direct circle is
defined. When 3 is specified in the
argument 4, the complementary circle is defined.
Example
Open_body.1\Circle.2
=
circle3Pts(Open_body.1\Point.1, Open_body.1\Point.2, Open_body.1\Point.3,
0)
|
|
circleBitgtRadius(crv1:Curve, crv2:Curve, support:
Surface, radius: Length, orientation1: Boolean, orientation2: Boolean, Limits:
Integer) : Circle
|
Creates one or more circular arcs tangent to two curves. When 0 is specified in the
argument 7, the
tangency points define the arc limits. Modifying the orientation1 argument
value allows you to reverse
the arc orientation with respect to the crv1 curve (there
may be no solution). Modifying the orientation2
argument value allows you to reverse
the arc orientation with respect to the crv2 curve.
Example
Open_body.1\Circle.4 =
circleBitgtRadius(Open_body.1\Circle.2
,Open_body.1\Circle.5 ,`xy plane`, 30mm, false,
false, 0)
|
| circleBitgtPoint(crv1:Curve, crv2:Curve, pt:Point , support:
Surface, orientation1: Boolean, orientation2: Boolean, Limits:
Integer) : Circle |
Creates one or more circular arcs tangent to two curves and passing
through a point on the second
curve. When 0 is specified in the argument 7, the tangency points define
the arc limits. Modifying the
orientation1 argument value allows you to reverse the arc orientation with
respect to the crv1 curve
(there may be no solution). Modifying the orientation2 argument value
allows you to reverse the arc
orientation with respect to the crv2 curve.
Example
Open_body.1\Circle.4
=
circleBitgtPoint(Open_body.1\Circle.2
,Open_body.1\Circle.5,Open_body.1\Point.1 ,`xy plane`, false, false, 0)
|
|
circleTritgt(crv1:Curve, crv2:Curve, crv3:Curve, support:
Surface, radius: Length, orientation1: Boolean, orientation2: Boolean, orientation3:
Boolean, Limits: Integer) : Circle
|
Creates one or more circular arcs tangent to three curves. When 0 is specified in the
argument 9,
the tangency points define the arc limits. Modifying the value of an orientation
argument allows you
to reverse the arc orientation with respect to the curve which has the
same order in the argument
specification (orientation1 to be associated with crv1).
Example
Open_body.1\Circle.6 =
circleTritgt(Open_body.1\Circle.2 ,Open_body.1\Circle.7 ,Open_body.1\Circle.5 , `xy
plane` ,false,false,false,1)
|
|