Circle Constructors

Sample: KwrCircleConstructors.CATPart

circleCtrRadius (center: Point, support: Surface, radius: Length, limits: Integer, 
start
: Angle, end: Angle): Circle

Creates a circular arc from its center and radius. If the argument 4 is 0, the arguments 5 and 6 are 
taken into account. 
Otherwise, a circle is created.
Example
  Open_body.1\Circle.1 =
 circleCtrRadius(Open_body.1\Point.1 , `zx plane` ,20mm,0,10deg,320deg)

 

circleCtrPt(center: Point, point: Point, support: Surface, radius: Length, limits: Integer,
start: Angle, end: Angle): Circle

Creates a circular arc from its center and another point located on the circle.  If the argument 4 is 0,
the arguments 5 and 6 are taken into account. Otherwise, a circle is created.
Example
Open_body.1\Circle.2   =
circleCtrPt(Open_body.1\Point.1 , Open_body.1\Point.2 , `xy plane` ,1,10deg, 370deg)

 

circle2PtsRadius(point1: Point, point2: Point, support: Surface, radius: Length, 
orientation
: Boolean, limits: Integer): Circle

Creates a circular arc. The points specified in the arguments 1 and  2 are located on the arc to be 
created and define the arc limits when the integer specified in the argument 6 is 0. When 0 is 
specified in the argument 6, modifying the argument 5 boolean value allows you to display 
the alternative arc.
Example
Open_body.1\Circle.3   =
circle2PtsRadius(Open_body.1\Point.1 ,Open_body.1\Point.2 ,`xy plane`,50mm, true, 0)

 

Circle3Pts (pt1: Point, pt2: Point, pt3: Point, Limits: Integer) : Circle

Creates one or more circular arcs passing through three points. When 0 is specified in the argument 4,
the first and third points define the arc limits. When 1 is specified in the argument 4 the whole circle is 
defined. When 2 is specifies in the argument 4 the direct circle is defined. When 3 is specified in the 
argument 4, the complementary circle is defined.
Example
Open_body.1\Circle.2 =
circle3Pts(Open_body.1\Point.1, Open_body.1\Point.2, Open_body.1\Point.3, 0)

 

circleBitgtRadius(crv1:Curve,  crv2:Curve, support: Surface, radius: Length, orientation1: Boolean, orientation2: Boolean, Limits: Integer) : Circle

Creates one or more circular arcs tangent to two curves. When 0 is specified in the argument 7, the 
tangency points define the arc limits. Modifying the orientation1 argument value allows you to reverse 
the arc orientation with respect to the crv1 curve (there may be no solution). Modifying the orientation2 
argument value allows you to reverse the arc orientation with respect to the crv2 curve.
Example
Open_body.1\Circle.4   =
circleBitgtRadius(Open_body.1\Circle.2 ,Open_body.1\Circle.5 ,`xy plane`, 30mm, false, 
false, 0)

 

circleBitgtPoint(crv1:Curve, crv2:Curve, pt:Point , support: Surface, orientation1: Boolean, orientation2: Boolean, Limits: Integer) : Circle

Creates one or more circular arcs tangent to two curves and passing through a point on the second 
curve. When 0 is specified in the argument 7, the tangency points define the arc limits. Modifying the
orientation1 argument value allows you to reverse the arc orientation with respect to the crv1 curve 
(there may be no solution). Modifying the orientation2 argument value allows you to reverse the arc 
orientation with respect to the crv2 curve.
Example
Open_body.1\Circle.4 =
circleBitgtPoint(Open_body.1\Circle.2 ,Open_body.1\Circle.5,Open_body.1\Point.1 ,`xy plane`, false, false, 0)

 

circleTritgt(crv1:Curve,  crv2:Curve, crv3:Curve, support: Surface, radius: Length, orientation1: Boolean, orientation2: Boolean, orientation3: Boolean, Limits: Integer) : Circle

Creates one or more circular arcs tangent to three curves. When 0 is specified in the argument 9,
the tangency points define the arc limits. Modifying the value of an orientation argument allows you 
to reverse the arc orientation with respect to the curve which has the same order in the argument 
specification (orientation1 to be associated with crv1).
Example
Open_body.1\Circle.6   =
circleTritgt(Open_body.1\Circle.2 ,Open_body.1\Circle.7 ,Open_body.1\Circle.5 , `xy plane` ,false,false,false,1)

 

 

Back Up Next