Quantitative Analysis of Leakage of Confidential Information

David Clark (Kings College) Sebastian Hunt (City University) Pasquale Malacaria (Queen Mary)

Dagstuhl October 5-10 2003

Motivation

- Non-interference too restrictive in some cases
 - downgrading
 - alternative?
- [Volpano and Smith, 2000] "Verifying Secrets and Relative Secrecy"
 - testing secret against a constant leaks the secret but slowly
 - exponential time in length of the secret, assuming uniform distribution
- Extends authors' previous work [ENTCS 59 No. 3 (2002)]

Example

if (H == L)
 X = 0;
else
 X = 1;

- "password checking": leaks value of H (sometimes!)
- anticipating definitions:
 - leaks at most 1 bit
 - leaks much less than 1 bit if H close to uniformly distributed

Example

Y = Integer.MIN_VALUE; while (Y != H) ++Y;

- leaks value of H every time
- but very slowly (if H close to uniform) [Volpano and Smith]
 - not yet captured by our analysis
 - only deal with absolute leakage so far

Quantified leakage

- Idea: use Information Theory (Shannon): how much interference?
- Not new: [Cohen, 1977], [Denning, 1982], [Millen, 1987], [Gray, 1991], . . .
 - non-interference implies 0 bits leaked
- Our contribution:
 - analyse for quantity of information leaked

Information

• Surprise of an event s_i occurring with probability p_i :

$$\log \frac{1}{p_i}$$

• Information (aka entropy) = expected value of surprise:

$$\mathcal{H} \stackrel{\text{def}}{=} \sum_{i=1}^{n} p_i \log \frac{1}{p_i}$$

– maximised by uniform distribution: $\mathcal{H} = \log n$

Random variables

• Random variable = function from sample space to observation space

$$X: \{s_1, \ldots, s_n\} \to O$$

$$P(X = x) \stackrel{\text{def}}{=} \sum_{s_i \in X^{-1}(x)} p_i$$

• Joint random variable:

$$(X,Y) \stackrel{\mathrm{def}}{=} {<} X, Y {>}$$

Conditioning/Restriction

• Random variable X conditioned on Y = y:

$$P(X = x | Y = y) \stackrel{\text{def}}{=} \sum_{s_i \in \langle X, Y \rangle^{-1}(x,y)} p_i / P(Y = y)$$

• Note (X|Y = y) is $X \upharpoonright Y^{-1}(y)$ (the restriction of X to $Y^{-1}(y)$) with distribution normalised in domain

Entropy and conditional entropy

• Expected value of surprise when X is observed:

$$\mathcal{H}(X) \stackrel{\text{def}}{=} \sum_{x} P(X = x) \log \frac{1}{P(X = x)}$$

• Expected value of entropy of X when Y is known:

$$\mathcal{H}(X|Y) \stackrel{\text{def}}{=} \sum_{y} P(Y=y) \mathcal{H}(X|Y=y)$$

Joint information and mutual information

• Joint entropy:

$$\mathcal{H}(X,Y) \stackrel{\text{def}}{=} \mathcal{H}(\langle X,Y \rangle)$$

• Mutual entropy:

$$\mathcal{I}(X;Y) \stackrel{\text{def}}{=} \mathcal{H}(X) + \mathcal{H}(Y) - \mathcal{H}(X,Y)$$

• Conditional mutual entropy:

$$\mathcal{I}(X;Y|Z) \stackrel{\text{def}}{=} \mathcal{H}(X|Z) + \mathcal{H}(Y|Z) - \mathcal{H}(X,Y|Z)$$

Information is funny stuff!

- $\mathcal{H}(X,Y) \sim [X] \cup [Y]$ $\mathcal{I}(X;Y) \sim [X] \cap [Y]$
- $\mathcal{H}(X|Y) \sim [X] [Y]$ $\mathcal{I}(X;Y|Z) \sim ([X] \cap [Y]) [Z]$
- **BUT**: $\mathcal{I}(X;Y) = 0 \not\Rightarrow \mathcal{I}(X;Y|Z) = 0$

Program variables as random variables

• Assume a program in a primitive imperative language (While) with program variables ${\cal V}$

- stores
$$\sigma \in \Sigma \stackrel{\text{def}}{=} V \to \{-2^{k-1}, \dots, 2^{k-1}-1\}$$

- Assume a probability distribution on $\Sigma = \{\sigma_1, \ldots, \sigma_n\}$ (the inputs)
 - random variable X^{in} : the value of X in the input store
 - random variable X^{out} : the value of X when(!) the program terminates

Quantifying leakage/interference

- For simplicity, assume all variables initialised to 0 except ${\cal H}$ and ${\cal L}$
- The quantity of information leaked from H to X:

(1)
$$\mathcal{L}(X) \stackrel{\text{def}}{=} \mathcal{I}(H^{\text{in}}; X^{\text{out}} | L^{\text{in}})$$

(2) $\mathcal{L}(X) \stackrel{\text{def}}{=} \mathcal{H}(X^{\text{out}} | L^{\text{in}})$

Calculating bounds on $\mathcal{L}(X)$

- Want to calculate bounds on $\mathcal{L}(X)$ given bounds on the initial information contained in H:
 - $\mathcal{H}(H^{\text{in}}|L^{\text{in}})$ (the 'real' size of the secret)
- a priori bounds on size of secret: $0 \leq \mathcal{H}(H^{\mathrm{in}}|L^{\mathrm{in}}) \leq k$
 - Can get better results if we know better bounds

Analyse for worst-case choice of L^{in}

- For random variable X, let $X_{\lambda} \stackrel{\text{def}}{=} (X | L^{\text{in}} = \lambda)$
- Our analysis calculates bounds on $\mathcal{H}(X^{\mathrm{out}}_{\lambda})$ given bounds on $\mathcal{H}(H^{\mathrm{in}}_{\lambda})$
 - We calculate/require bounds which hold for all λ
 - Note $\mathcal{H}(H^{\rm in}_\lambda)=\mathcal{H}(H^{\rm in}|L^{\rm in})$ if $H^{\rm in}$ and $L^{\rm in}$ are independent
- Proposition:

$$(\forall \lambda. a \leq \mathcal{H}(X_{\lambda}^{\text{out}}) \leq b) \Rightarrow a \leq \mathcal{H}(X^{\text{out}}|L^{\text{in}}) \leq b$$

Data Processing theorem

• If $X \to Y \to Z$ then $\mathcal{I}(Z;X) \leq \mathcal{I}(Y;X)$

- Corollary: if $(\exists f.Z = f(X))$ then $\mathcal{H}(Z) \leq \mathcal{H}(X)$

- Use this as the basis of a 'compositional' analysis:
 - 1. associate random variables X^n with all program points n (not just in, out)
 - 2. find n_1, \ldots, n_j such that $\exists f. X^n = f(Y^{n_1}, \ldots, Y^{n_j})$
 - 3. calculate bounds $a_i \leq \mathcal{H}(Y^{n_i}) \leq b_i$
- DP theorem gives: $\mathcal{H}(X^n) \leq b_1 + \cdots + b_j$
 - But for lower bounds we need to know $f\ldots$

Example

•
$$\exists f.Z^6 = f(A^1, B^2, D^4)$$

Loops

- Associating random variables to arbitrary program points is not quite straightforward:
 - For each n, need a value for X^n for each choice of input
 - But control may pass through \boldsymbol{n} many times, or not at all
- \bullet For a given input, define X^n as the value taken by X at n the final time control passes through n
 - A partial function
- For n inside a loop we need to find dependencies outside the loop
 - In general this will mean we know f exists but we won't know what it is

Beyond the Data Processing theorem

Examples when f is known (assume twos-complement arithmetic):

*: $a \leq \mathcal{H}(Y) \Rightarrow a \leq \mathcal{H}(Y * n)$, if n is odd

+: $a \leq \mathcal{H}(Y) \wedge \mathcal{H}(Z) \leq b \Rightarrow a - b \leq \mathcal{H}(Y + Z)$

==: $a \leq \mathcal{H}(Y) \land \mathcal{H}(Z) \leq b \Rightarrow \mathcal{H}(Y = = Z) \leq \mathcal{B}(q)$, where:

$$\begin{aligned} \mathcal{B}(q) &\stackrel{\text{def}}{=} q \log \frac{1}{q} + (1-q) \log \frac{1}{1-q} \\ q &\leq 0.5 \\ a-b &= \mathcal{U}_k(q) \stackrel{\text{def}}{=} q \log \frac{1}{q} + (1-q) \log \frac{2^k - 1}{1-q} \end{aligned} \text{ Note role of } k \end{aligned}$$

Example

• Dependencies:

$$\begin{aligned} \exists f. Y^8 &= f(Y^6) \\ \exists g. Y^6 &= g(B^1) \\ B^1 &= (H^{\text{in}} = = L^{\text{in}}) \end{aligned}$$

• If
$$32 = k \leq \mathcal{H}(H^{\text{in}})$$
:

$$\mathcal{H}(Y^8) \le 7.8 \times 10^{-9}$$

Further work

- Combine with other static analyses
- Combine with theorem proving
- Richer languages
 - Work in progress on PCF (using Generalised Flowcharts [Malacaria and Hankin, 1998])
- Timing (1): analyse for rates of leakage
- Timing (2): analyse for timing leaks