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Motivation

e Non-interference too restrictive in some cases

— downgrading
— alternative?

e [Volpano and Smith, 2000] “Verifying Secrets and Relative Secrecy”

— testing secret against a constant leaks the secret but slowly
— exponential time in length of the secret, assuming uniform distribution

e Extends authors' previous work [ENTCS 59 No. 3 (2002)]
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http://www.elsevier.nl/gej-ng/31/29/23/89/54/24/59.3.005.pdf

Example

if (H == L)
X = 0;
else
X =1;

e “password checking”: leaks value of H (sometimes!)

e anticipating definitions:

— leaks at most 1 bit
— leaks much less than 1 bit if H close to uniformly distributed
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Example

Y = Integer MIN_VALUE;
while (Y != H) ++V;

e |eaks value of H every time

e but very slowly (if H close to uniform) [Volpano and Smith]

— not yet captured by our analysis
— only deal with absolute leakage so far
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Quantified leakage

e ldea: use Information Theory (Shannon): how much interference?

e Not new: [Cohen, 1977], [Denning, 1982], [Millen, 1987], [Gray, 1991], . . .

— non-interference implies 0 bits leaked

e Our contribution:

— analyse for quantity of information leaked
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Information

e Surprise of an event s; occurring with probability p;:

1
log —
D:

e Information (aka entropy) = expected value of surprise:

H= zn:pz'logl_

i=1 v

— maximised by uniform distribution: 'H = logn
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Random variables

e Random variable = function from sample space to observation space

X :{s1,.--,8,} — O

P(sz)déf Z Pi

SiEX_l(iB)

e Joint random variable:

def

(X,Y) = <X, V>

Dagstuhl October 5-10 2003



Conditioning /Restriction

e Random variable X conditioned on Y = y:

P(X =zlY =y) = > pi/P(Y =y)
8i€<X7Y>_1(xay)

e Note (X|Y = y) is X | Y1 (y) (the restriction of X to Y !(y)) with
distribution normalised in domain
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Entropy and conditional entropy

e Expected value of surprise when X is observed:

def 1
P(X =2x)1
Z s 5=
e Expected value of entropy of X when Y is known:

H(X]Y) defZP HX]Y =y)
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Joint information and mutual information

e Joint entropy:

def

HX,Y) & H(<X,Y>)

e Mutual entropy:

def

I(X;Y)=H(X)+HY) - H(X,Y)

e Conditional mutual entropy:

def

I(X;Y|Z) =H(X|Z)+ HY|Z)-H(X,Y|Z)
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Information is funny stuff!

e H(X,Y) ~ [X]U]Y] I(X;Y) ~ [X]Nn Y]
o H(X]Y) ~ [X]—[Y] I(X;Y[Z) ~ ([X]Nn[Y]) = [Z]

¢ BUT: I(X:;Y) =0 4 I(X;Y|Z) = 0

S

o
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Program variables as random variables

e Assume a program in a primitive imperative language (While) with program
variables V

—storesc e R LV — {2k 2k-1_ 1)

e Assume a probability distribution on ¥ = {o1,...,0,} (the inputs)

— random variable X™ : the value of X in the input store
— random variable X°"': the value of X when(!) the program terminates
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Quantifying leakage/interference

e For simplicity, assume all variables initialised to 0 except H and L

e The quantity of information leaked from H to X:

def

g

(1) L(X) = Z(H™; X"
(2) L(X) = H(X"|LM)

(o}

— (1) agrees with [Gray,1991]
— (1) and (2) equivalent for a deterministic language
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Calculating bounds on L£(X)

e Want to calculate bounds on L£(X) given bounds on the initial information
contained in H:

— H(H™|L™) (the ‘real’ size of the secret)

e a priori bounds on size of secret: 0 < H(H™|L™) < k

— Can get better results if we know better bounds
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Analyse for worst-case choice of L""

e For random variable X, let X, < (X|L™ = \)

e Our analysis calculates bounds on H(X ") given bounds on H(HL)

— We calculate/require bounds which hold for all A
— Note H(HY) = H(H™|L™) if H™ and L™ are independent

e Proposition:

(VA.a < H(XS") < b) = a < H(X™|L™) < b
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Data Processing theorem

o If X Y — Z then T(Z; X) < Z(Y; X)
— Corollary: if (3f.Z = f(X)) then H(Z) < H(X)

e Use this as the basis of a ‘compositional’ analysis:

1. associate random variables X" with all program points n (not just in, out)
2. find nq,...,n; such that 3f. X" = f(Y™,...,Y™)
3. calculate bounds a; < H(Y ™) < b;

e DP theorem gives: H(X") < by + -+ b,

— But for lower bounds we need to know f. . .

Dagstuhl October 5-10 2003 15



1: X = A;

2: if (B) then

3: Y = C;
else

4 X = D;

o
N
I
<
+
.

o 3f.25 = f(Al, B2, DY)

Example
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Loops

e Associating random variables to arbitrary program points is not quite
straightforward:

— For each n, need a value for X™ for each choice of input
— But control may pass through n many times, or not at all
e For a given input, define X" as the value taken by X at n the final time

control passes through n

— A partial function

e For n inside a loop we need to find dependencies outside the loop

— In general this will mean we know f exists but we won't know what it is
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Beyond the Data Processing theorem
Examples when f is known (assume twos-complement arithmetic):
1 a < H(Y)=a<H(Y xn), if nis odd
+tt a<HY)ANH(Z)<b=a—-b<H(Y + 2)

==t a <H(Y)ANH(Z) <b=H(Y==2) < B(q), where:

B(g) = qlogl + (1 —q)log 11
q < 0.5
a—b=Uq) X qlogl+(1-q)logZ=2  Note role of &
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Verifying secrets
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in:
1:
2:

D W

- while (X !'= 0) do

B = (H==L);
if (B) then
X = 0;
else
X =1;
Y = 0;
{
Y = Y*x3;
X = X-1;
}

Example

e Dependencies:

If.Y® = f(Y)

39.Y® = g(B")

Bl _ (Hin::Lin)
o If 32 =k < H(H™):

H(Y®) <7.8x107?
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Further work

e Combine with other static analyses
e Combine with theorem proving

e Richer languages

— Work in progress on PCF (using Generalised Flowcharts [Malacaria and

Hankin, 1998|)
e Timing (1): analyse for rates of leakage

e Timing (2): analyse for timing leaks
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