
Quantitative Analysis of
Leakage of Confidential Information

David Clark (Kings College)
Sebastian Hunt (City University)

Pasquale Malacaria (Queen Mary)

Dagstuhl October 5–10 2003

Motivation

• Non-interference too restrictive in some cases

– downgrading
– alternative?

• [Volpano and Smith, 2000] “Verifying Secrets and Relative Secrecy”

– testing secret against a constant leaks the secret but slowly
– exponential time in length of the secret, assuming uniform distribution

• Extends authors’ previous work [ENTCS 59 No. 3 (2002)]

Dagstuhl October 5–10 2003 1

http://www.elsevier.nl/gej-ng/31/29/23/89/54/24/59.3.005.pdf

Example

if (H == L)
X = 0;

else
X = 1;

• “password checking”: leaks value of H (sometimes!)

• anticipating definitions:

– leaks at most 1 bit
– leaks much less than 1 bit if H close to uniformly distributed

Dagstuhl October 5–10 2003 2

Example

Y = Integer.MIN_VALUE;
while (Y != H) ++Y;

• leaks value of H every time

• but very slowly (if H close to uniform) [Volpano and Smith]

– not yet captured by our analysis
– only deal with absolute leakage so far

Dagstuhl October 5–10 2003 3

Quantified leakage

• Idea: use Information Theory (Shannon): how much interference?

• Not new: [Cohen, 1977], [Denning, 1982], [Millen, 1987], [Gray, 1991], . . .

– non-interference implies 0 bits leaked

• Our contribution:

– analyse for quantity of information leaked

Dagstuhl October 5–10 2003 4

Information

• Surprise of an event si occurring with probability pi:

log
1
pi

• Information (aka entropy) = expected value of surprise:

H def=
n∑

i=1

pi log
1
pi

– maximised by uniform distribution: H = log n

Dagstuhl October 5–10 2003 5

Random variables

• Random variable = function from sample space to observation space

X : {s1, . . . , sn} → O

P (X = x) def=
∑

si∈X−1(x)

pi

• Joint random variable:

(X, Y) def= <X, Y >

Dagstuhl October 5–10 2003 6

Conditioning/Restriction

• Random variable X conditioned on Y = y:

P (X = x|Y = y) def=
∑

si∈<X,Y >−1(x,y)

pi/P (Y = y)

• Note (X|Y = y) is X � Y −1(y) (the restriction of X to Y −1(y)) with
distribution normalised in domain

Dagstuhl October 5–10 2003 7

Entropy and conditional entropy

• Expected value of surprise when X is observed:

H(X) def=
∑

x

P (X = x) log
1

P (X = x)

• Expected value of entropy of X when Y is known:

H(X|Y) def=
∑

y

P (Y = y)H(X|Y = y)

Dagstuhl October 5–10 2003 8

Joint information and mutual information

• Joint entropy:

H(X, Y) def= H(<X, Y >)

• Mutual entropy:

I(X;Y) def= H(X) +H(Y)−H(X, Y)

• Conditional mutual entropy:

I(X;Y |Z) def= H(X|Z) +H(Y |Z)−H(X, Y |Z)

Dagstuhl October 5–10 2003 9

Information is funny stuff!

• H(X, Y) ∼ [X] ∪ [Y] I(X;Y) ∼ [X] ∩ [Y]

• H(X|Y) ∼ [X]− [Y] I(X;Y |Z) ∼ ([X] ∩ [Y])− [Z]

• BUT: I(X;Y) = 0 6⇒ I(X;Y |Z) = 0

X Z

XOR Z

?

Y = X

Dagstuhl October 5–10 2003 10

Program variables as random variables

• Assume a program in a primitive imperative language (While) with program
variables V

– stores σ ∈ Σ def= V → {−2k−1, . . . , 2k−1 − 1}

• Assume a probability distribution on Σ = {σ1, . . . , σn} (the inputs)

– random variable X in : the value of X in the input store
– random variable Xout: the value of X when(!) the program terminates

Dagstuhl October 5–10 2003 11

Quantifying leakage/interference

• For simplicity, assume all variables initialised to 0 except H and L

• The quantity of information leaked from H to X:

(1) L(X) def= I(H in;Xout|Lin)
(2) L(X) def= H(Xout|Lin)

– (1) agrees with [Gray,1991]
– (1) and (2) equivalent for a deterministic language

Dagstuhl October 5–10 2003 12

Calculating bounds on L(X)

• Want to calculate bounds on L(X) given bounds on the initial information
contained in H:

– H(H in|Lin) (the ‘real’ size of the secret)

• a priori bounds on size of secret: 0 ≤ H(H in|Lin) ≤ k

– Can get better results if we know better bounds

Dagstuhl October 5–10 2003 13

Analyse for worst-case choice of Lin

• For random variable X, let Xλ
def= (X|Lin = λ)

• Our analysis calculates bounds on H(Xout
λ) given bounds on H(H in

λ)

– We calculate/require bounds which hold for all λ
– Note H(H in

λ) = H(H in|Lin) if H in and Lin are independent

• Proposition:

(∀λ.a ≤ H(Xout
λ) ≤ b) ⇒ a ≤ H(Xout|Lin) ≤ b

Dagstuhl October 5–10 2003 14

Data Processing theorem

• If X → Y → Z then I(Z;X) ≤ I(Y ;X)

– Corollary: if (∃f.Z = f(X)) then H(Z) ≤ H(X)

• Use this as the basis of a ‘compositional’ analysis:

1. associate random variables Xn with all program points n (not just in, out)
2. find n1, . . . , nj such that ∃f.Xn = f(Y n1, . . . , Y nj)
3. calculate bounds ai ≤ H(Y ni) ≤ bi

• DP theorem gives: H(Xn) ≤ b1 + · · ·+ bj

– But for lower bounds we need to know f . . .

Dagstuhl October 5–10 2003 15

Example

1: X = A;
2: if (B) then
3: Y = C;

else
4: X = D;
5: Z = X + 1;
6: ...

• ∃f.Z6 = f(A1, B2, D4)

Dagstuhl October 5–10 2003 16

Loops

• Associating random variables to arbitrary program points is not quite
straightforward:

– For each n, need a value for Xn for each choice of input
– But control may pass through n many times, or not at all

• For a given input, define Xn as the value taken by X at n the final time
control passes through n

– A partial function

• For n inside a loop we need to find dependencies outside the loop

– In general this will mean we know f exists but we won’t know what it is

Dagstuhl October 5–10 2003 17

Beyond the Data Processing theorem

Examples when f is known (assume twos-complement arithmetic):

*: a ≤ H(Y) ⇒ a ≤ H(Y ∗ n), if n is odd

+: a ≤ H(Y) ∧H(Z) ≤ b ⇒ a− b ≤ H(Y + Z)

==: a ≤ H(Y) ∧H(Z) ≤ b ⇒ H(Y ==Z) ≤ B(q), where:

B(q) def= q log 1
q + (1− q) log 1

1−q

q ≤ 0.5
a− b = Uk(q)

def= q log 1
q + (1− q) log 2k−1

1−q Note role of k

Dagstuhl October 5–10 2003 18

Verifying secrets

���������
	�������������
���������
	�������������
�������
	�������������

��������� "!

#%$
&'
&($

��)*�)��)��)��)+�))

+

)�, �

)�, �

)�, �

)�,%�

)

Dagstuhl October 5–10 2003 19

Example

in: B = (H==L);
1: if (B) then
2: X = 0;

else
3: X = 1;
4: Y = 0;
5: while (X != 0) do

{
6: Y = Y*3;
7: X = X-1;

}
8: ...

• Dependencies:

∃f.Y 8 = f(Y 6)
∃g.Y 6 = g(B1)
B1 = (H in==Lin)

• If 32 = k ≤ H(H in):

H(Y 8) ≤ 7.8× 10−9

Dagstuhl October 5–10 2003 20

Further work

• Combine with other static analyses

• Combine with theorem proving

• Richer languages

– Work in progress on PCF (using Generalised Flowcharts [Malacaria and
Hankin, 1998])

• Timing (1): analyse for rates of leakage

• Timing (2): analyse for timing leaks

Dagstuhl October 5–10 2003 21

