Quantitative Analysis of
 Leakage of Confidential Information

David Clark (Kings College)
Sebastian Hunt (City University)
Pasquale Malacaria (Queen Mary)

Motivation

- Non-interference too restrictive in some cases
- downgrading
- alternative?
- [Volpano and Smith, 2000] "Verifying Secrets and Relative Secrecy"
- testing secret against a constant leaks the secret but slowly
- exponential time in length of the secret, assuming uniform distribution
- Extends authors' previous work [ENTCS 59 No. 3 (2002)]

Example

$$
\begin{aligned}
& \text { if (} \mathrm{H}=\mathrm{L} \text {) } \\
& \mathrm{X}=0 \text {; } \\
& \text { else } \\
& \mathrm{X}=1 \text {; }
\end{aligned}
$$

- "password checking": leaks value of H (sometimes!)
- anticipating definitions:
- leaks at most 1 bit
- leaks much less than 1 bit if H close to uniformly distributed

Example

$$
\begin{aligned}
& \text { Y = Integer.MIN_VALUE; } \\
& \text { while (Y ! = H) ++Y; }
\end{aligned}
$$

- leaks value of H every time
- but very slowly (if H close to uniform) [Volpano and Smith]
- not yet captured by our analysis
- only deal with absolute leakage so far

Quantified leakage

- Idea: use Information Theory (Shannon): how much interference?
- Not new: [Cohen, 1977], [Denning, 1982], [Millen, 1987], [Gray, 1991], . . .
- non-interference implies 0 bits leaked
- Our contribution:
- analyse for quantity of information leaked

Information

- Surprise of an event s_{i} occurring with probability p_{i} :

$$
\log \frac{1}{p_{i}}
$$

- Information (aka entropy) = expected value of surprise:

$$
\mathcal{H} \stackrel{\text { def }}{=} \sum_{i=1}^{n} p_{i} \log \frac{1}{p_{i}}
$$

- maximised by uniform distribution: $\mathcal{H}=\log n$

Random variables

- Random variable $=$ function from sample space to observation space

$$
\begin{aligned}
& X:\left\{s_{1}, \ldots, s_{n}\right\} \rightarrow O \\
& P(X=x) \stackrel{\text { def }}{=} \sum_{s_{i} \in X^{-1}(x)} p_{i}
\end{aligned}
$$

- Joint random variable:

$$
(X, Y) \stackrel{\text { def }}{=}<X, Y>
$$

Conditioning/Restriction

- Random variable X conditioned on $Y=y$:

$$
P(X=x \mid Y=y) \stackrel{\text { def }}{=} \sum_{s_{i} \in<X, Y>^{-1}(x, y)} p_{i} / P(Y=y)
$$

- Note $(X \mid Y=y)$ is $X \upharpoonright Y^{-1}(y)$ (the restriction of X to $\left.Y^{-1}(y)\right)$ with distribution normalised in domain

Entropy and conditional entropy

- Expected value of surprise when X is observed:

$$
\mathcal{H}(X) \stackrel{\text { def }}{=} \sum_{x} P(X=x) \log \frac{1}{P(X=x)}
$$

- Expected value of entropy of X when Y is known:

$$
\mathcal{H}(X \mid Y) \stackrel{\text { def }}{=} \sum_{y} P(Y=y) \mathcal{H}(X \mid Y=y)
$$

Joint information and mutual information

- Joint entropy:

$$
\mathcal{H}(X, Y) \stackrel{\text { def }}{=} \mathcal{H}(<X, Y>)
$$

- Mutual entropy:

$$
\mathcal{I}(X ; Y) \stackrel{\text { def }}{=} \mathcal{H}(X)+\mathcal{H}(Y)-\mathcal{H}(X, Y)
$$

- Conditional mutual entropy:

$$
\mathcal{I}(X ; Y \mid Z) \stackrel{\text { def }}{=} \mathcal{H}(X \mid Z)+\mathcal{H}(Y \mid Z)-\mathcal{H}(X, Y \mid Z)
$$

Information is funny stuff!

- $\mathcal{H}(X, Y) \sim[X] \cup[Y] \quad \mathcal{I}(X ; Y) \sim[X] \cap[Y]$
- $\mathcal{H}(X \mid Y) \sim[X]-[Y] \quad \mathcal{I}(X ; Y \mid Z) \sim([X] \cap[Y])-[Z]$
- BUT: $\mathcal{I}(X ; Y)=0 \nRightarrow \mathcal{I}(X ; Y \mid Z)=0$

Program variables as random variables

- Assume a program in a primitive imperative language (While) with program variables V
- stores $\sigma \in \Sigma \stackrel{\text { def }}{=} V \rightarrow\left\{-2^{k-1}, \ldots, 2^{k-1}-1\right\}$
- Assume a probability distribution on $\Sigma=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ (the inputs)
- random variable $X^{\text {in }}$: the value of X in the input store
- random variable $X^{\text {out }}$: the value of X when(!) the program terminates

Quantifying leakage/interference

- For simplicity, assume all variables initialised to 0 except H and L
- The quantity of information leaked from H to X :
(1) $\mathcal{L}(X) \stackrel{\text { def }}{=} \mathcal{I}\left(H^{\text {in }} ; X^{\text {out }} \mid L^{\text {in }}\right)$
(2) $\mathcal{L}(X) \stackrel{\text { def }}{=} \mathcal{H}\left(X^{\text {out }} \mid L^{\text {in }}\right)$
- (1) agrees with [Gray,1991]
- (1) and (2) equivalent for a deterministic language

Calculating bounds on $\mathcal{L}(X)$

- Want to calculate bounds on $\mathcal{L}(X)$ given bounds on the initial information contained in H :
- $\mathcal{H}\left(H^{\mathrm{in}} \mid L^{\mathrm{in}}\right)$ (the 'real' size of the secret)
- a priori bounds on size of secret: $0 \leq \mathcal{H}\left(H^{\text {in }} \mid L^{\text {in }}\right) \leq k$
- Can get better results if we know better bounds

Analyse for worst-case choice of $L^{i n}$

- For random variable X, let $X_{\lambda} \stackrel{\text { def }}{=}\left(X \mid L^{\text {in }}=\lambda\right)$
- Our analysis calculates bounds on $\mathcal{H}\left(X_{\lambda}^{\text {out }}\right)$ given bounds on $\mathcal{H}\left(H_{\lambda}^{\text {in }}\right)$
- We calculate/require bounds which hold for all λ
- Note $\mathcal{H}\left(H_{\lambda}^{\mathrm{in}}\right)=\mathcal{H}\left(H^{\mathrm{in}} \mid L^{\mathrm{in}}\right)$ if $H^{\text {in }}$ and L^{in} are independent
- Proposition:

$$
\left(\forall \lambda . a \leq \mathcal{H}\left(X_{\lambda}^{\text {out }}\right) \leq b\right) \Rightarrow a \leq \mathcal{H}\left(X^{\text {out }} \mid L^{\text {in }}\right) \leq b
$$

Data Processing theorem

- If $X \rightarrow Y \rightarrow Z$ then $\mathcal{I}(Z ; X) \leq \mathcal{I}(Y ; X)$
- Corollary: if $(\exists f . Z=f(X))$ then $\mathcal{H}(Z) \leq \mathcal{H}(X)$
- Use this as the basis of a 'compositional' analysis:

1. associate random variables X^{n} with all program points n (not just in, out)
2. find n_{1}, \ldots, n_{j} such that $\exists f . X^{n}=f\left(Y^{n_{1}}, \ldots, Y^{n_{j}}\right)$
3. calculate bounds $a_{i} \leq \mathcal{H}\left(Y^{n_{i}}\right) \leq b_{i}$

- DP theorem gives: $\mathcal{H}\left(X^{n}\right) \leq b_{1}+\cdots+b_{j}$
- But for lower bounds we need to know f...

Example

$$
\begin{aligned}
& 1: X=A ; \\
& 2: \text { if (B) then } \\
& 3: \quad Y=C ; \\
& \quad \text { else } \\
& 4: \quad X=D ; \\
& 5: Z=X+1 ; \\
& 6: \quad \ldots
\end{aligned}
$$

- $\exists f . Z^{6}=f\left(A^{1}, B^{2}, D^{4}\right)$

Loops

- Associating random variables to arbitrary program points is not quite straightforward:
- For each n, need a value for X^{n} for each choice of input
- But control may pass through n many times, or not at all
- For a given input, define X^{n} as the value taken by X at n the final time control passes through n
- A partial function
- For n inside a loop we need to find dependencies outside the loop
- In general this will mean we know f exists but we won't know what it is

Beyond the Data Processing theorem

Examples when f is known (assume twos-complement arithmetic):
$*: a \leq \mathcal{H}(Y) \Rightarrow a \leq \mathcal{H}(Y * n)$, if n is odd
$+: a \leq \mathcal{H}(Y) \wedge \mathcal{H}(Z) \leq b \Rightarrow a-b \leq \mathcal{H}(Y+Z)$
==: $a \leq \mathcal{H}(Y) \wedge \mathcal{H}(Z) \leq b \Rightarrow \mathcal{H}(Y==Z) \leq \mathcal{B}(q)$, where:

$$
\begin{aligned}
& \mathcal{B}(q) \stackrel{\text { def }}{=} q \log \frac{1}{q}+(1-q) \log \frac{1}{1-q} \\
& q \leq 0.5 \\
& a-b=\mathcal{U}_{k}(q) \stackrel{\text { def }}{=} q \log \frac{1}{q}+(1-q) \log \frac{2^{k}-1}{1-q} \quad \text { Note role of } k
\end{aligned}
$$

Verifying secrets

Example

```
in: \(B=(H==L)\);
    1: if (B) then
    2: \(\quad \mathrm{X}=0\);
        else
    3: \(\quad X=1\);
    4: Y = 0;
    5: while (X != 0) do
        \{
        \(\mathrm{Y}=\mathrm{Y} * 3\);
    7: \(\quad \mathrm{X}=\mathrm{X}-1\);
        \}
    8: ...
```


Further work

- Combine with other static analyses
- Combine with theorem proving
- Richer languages
- Work in progress on PCF (using Generalised Flowcharts [Malacaria and Hankin, 1998])
- Timing (1): analyse for rates of leakage
- Timing (2): analyse for timing leaks

