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Abstract
This report discusses the practices which have been used or recommended for increasing the
degree of diversity between redundant implementations of software or software-based systems.
Its purpose is to give useful indications for designers, project managers and safety/reliability
assessors in deciding about how great an advantage should be expected from the use of these
practices, in absolute and in comparative terms. Existing knowledge does not allow one to state
any strong general recommendations, but it is possible to improve on the intuitive justifications
usually given for these various practices. This report clarifies the ways the various practices are
conjectured to aid system reliability, the factors that should affect their efficacy, and thus, for a
practitioner, the aspects of a specific project situation that need to be considered to inform
decisions.
Thus this report is meant to improve on the many recommendations available in the literature by
a more rigorous analysis of the support available for individual recommendations and for
decision between them, on the basis of existing known evidence about diversity, of general
experience in software engineering and of the result of our reliability modelling work.
An executive summary gives the highlights of the report and a guide to the topics treated. The
other sections are an introduction giving the scope and background of the work; a general
analysis of the factors affecting the achievement of useful diversity and the criteria for choosing
among possible "diversity-seeking decisions" to this end, and a summary table of the
considerations applying to each category of "diversity-seeking decisions", with explanations of
detail in an appendix.
This report updates and supersedes the previous DISPO project report AT_DI-D-01-v1.7, "A
list of intuitive diversity enhancing measures/practices", 20 February 1998, which was produced
at the beginning of the DISPO project, to reflect our changed understanding at the end of the
project. Parts of the old report have been eliminated as the corresponding topics are now
covered by separate DISPO documents.
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Executive summary
Design diversity is an attractive and popular defence against common-mode failures due to
design faults in redundant systems. It is considered especially important when all channels in a
critical system, e.g. a protection system, have to be realised as programmable systems. However,
the abundant advice available about how to pursue diversity so as to best reduce common-mode
failures is confusing and usually lacking convincing bases.
In this section, we indicate the topics studied in the various parts of this document, and
summarise the conclusions reached.

Background and scope (Section 1)
Section 1 sets the background for this study: its role within the DISPO project, its scope, the
common understanding of the problems in the technical community, the essential models and
terminology necessary for the following discussion. This study was motivated by the issues
raised by the possibility of completely software-based protection systems. Its focus was thus on
systems with two diverse channels (versions), Boolean outputs and 1-out-of-2 redundancy, but
many of its considerations apply beyond this area. Section 1.1 defines the scope of this study
and outlines how other kinds of architectures using diversity may differ from these systems. In
Section 1.2, we recall the common approaches followed in pursuing design diversity and define
the term "diversity-seeking decision" (DSD): a decision available to system designers to attempt
to promote failure diversity between two program versions. Common DSDs are, for instance,
the decision that two protection channels will be developed by separate teams, and giving these
teams specifications formulated in different notatons; making them use different programming
languages; and using different microprocessors in the two channels. We defined the special
term "DSD" to avoid the common confusion between descriptions of decisions made and
descriptions of their desired or actual effects - the actual diversity achieved between versions or
their failure behaviours. Decisions are obviously under our control, but we do not usually know
their likely effects. Their actual effects can to some extent be measured after the fact, but are
difficult to predict at decision time. A DSD is a choice of differences between two development
processes. In section 1.3 we list the essential different meanings of "diversity" that have to be
kept separated to avoid errors in analysing them, and in section 1.4 we recall the mathematical
models (the "EL" and "LM" models) which are at the origin of our current understanding of
"failure diversity" between the versions, the actual goal of interest.

General principles of analysis, and limits to the analysis (Sections 2.1 -2.5)
So, the topic of this report is how to choose DSDs for best effect on system reliability. This
cannot be based on statistical evidence of their effectiveness, which is lacking because:
• there are many possible variations and combinations of DSDs;

• experiments (producing many different program versions under controlled conditions, and
comparing their failure behaviours) could show, at great expense, how effective a DSD was
in a particular case, but not whether that effectiveness would be retained when developing a
different system;

• we should expect the relative effectiveness of DSDs to change between different project
contexts: product type, company culture, dependability requirements, project constraints.

Instead of seeking general measures to attach to each DSD in the abstract, we need to
understand the factors that make a DSD useful, and the effects of project conditions on the
relative weights of these factors. To this end we can use some of the known experimental
results, together with our general understanding of software development and software
reliability. We can identify several mechanisms that explain the positive effects of DSDs on
failure diversity, and are common to many DSDs, although active in different measures. Section
2 describes these mechanisms, the difficulties in ascertaining their role and power, and the
general practical approaches available for choosing among DSDs.
First (sections 2.1, 2.2, 2.3) we describe various ways in which DSDs may promote failure
diversity. These include:
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• the "obvious" chain of cause and effects: a DSD directly ensures that developers are likely,
if they make mistakes, to make different mistakes, which will cause any faults in the
developed versions to be conceptually different, which will cause failures not to occur on the
same demands for both versions; but also

• several other mechanisms: data diversity (intentional or accidental), such that even similar
faults are only triggered in one of the channels; accidental differences in the effects of
similar development mistakes; the fact that the constraints we create for development teams
may indirectly create further diversity between the individual tasks in which they engage.

Any DSD should be based on some understanding of human error mechanisms. Section 2.4 is
dedicated to this. Although psychology has delivered interesting insights into human error
processes, important uncertainties remain when we consider the complex web of activities that
forms software development, many of these activities being specifically aimed at detecting and
removing the effects of previous errors. Two fundamental characteristics of human errors are
that they occur in random fashion, but on the other hand they are affected by the characteristics
of the tasks to be performed. The latter aspect would encourage us to select DSDs so as to
diversify the tasks presented to the two development teams. The former aspect, together with the
complexity of how development errors produce system failures, would indicate that the most
important DSD is the most basic one, i.e., simple separation between development efforts.
Ideally, the correct way of choosing a DSD is to verify that the two development processes it
creates are in a sense complementary: the demands on which the programs created by one
process are more likely to fail must be those on which programs created by the other are less
likely to fail. In addition, we normally wish each process on its own to be as good as practically
possible. In practice, many difficulties stand in the way of such ideal choices:
• we seldom know in detail the strengths and weaknesses of the different methods that

comprise our development processes, and what we do know is usually in terms of the
likelihood of people making [certain kinds of] mistakes when using those methods, not of
the likelihood that the defects caused by these mistakes cause failures on the same sets of
demands, or the probability of such common failures in operation;

• system development includes many different, interacting activities. We often have ideas
about the influence of a DSD on one activity, but not about its side-effects on other
activities and the relative importance of all these influences. So, we have both many possible
combinations of available choices for the various activities in a development process, and
little support for comparing these combinations;

• there are trade-offs between increasing the reliabilities of the versions and their diversity.
There are even cases, in theory, in which we should produce two versions with two
processes that are much less than ideal rather than with better processes, because the
increased diversity produces in the end higher system reliability. We are unlikely in practice
to be able to recognise such a situation, but a dedicated subsection (2.7) deals with related
questions of practical importance - when is it that applying a DSD to increase diversity may
at the same time decrease version reliability? - and the available decision criteria;

• practical constraints (budget, staff, contractual obligations and so on) will normally reduce
the number of possible choices, but often not the complexity of the factors to be compared.

We explain these difficulties in section 2.5, which is mostly a set of negative conclusions and
warnings about the limits to the extent to which the efficacy of DSDs can be judged.

Criteria for choosing diversity-seeking decisions (Sections 2.6-2.8)
In section 2.6 we start outlining decision criteria that appear reasonable given the limited
knowledge available. In general, the aim is to ensure the possibility of useful diversity, even
though one cannot forecast whether this potential gain in actually achieved diversity will justify
the cost. The basic step is, again, separation between development efforts. Any further DSD is
probably desirable, but there is uncertainty because there are many steps between the decision
(e.g., to use two different formalisms for specification) and the desired effect: a decreased
probability of versions failure. For many of these steps, there is no indication that the supposed
beneficial effect of the decision will propagate through them. So, there is often the theoretical
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possibility that a decision intended to increase diversity will in practice decrease it, but it is
reasonable to assume this not to be the case, so long as we have no evidence of it actually
occurring.
Since the main concern is that excessive similarities between the problems posed to the two
development teams (i.e., similarities in the "difficulties" they present - cf  section 1.4) cause too
high a risk of common failures, any DSD for which we can reasonably expect some degree of
effectiveness appears desirable. The limits on adopting DSDs are cost constraints,
organisational problems, or the fear of direct negative effects on system reliability. We will
naturally adopt all the DSDs that have low cost and no evident negative side effects and appear
potentially useful. For those among which we must instead choose, we have two main, possibly
competing criteria: diversifying with higher priority those aspects of the development processes
from which we expect the more substantial risk of common failures, despite the other
precautions that we can adopt; and diversifying the processes "as completely as possible", to
compensate for our limited ability to identify the main residual threats in high-quality processes.
From our analysis of DSDs, three essential groupings emerge based on the threats they
primarily address: defences against high-level mistakes in defining system structure or
algorithms, defences against coding (or generally, detail implementation) mistakes in
implementing these high-level decisions, and defences against defects in the "support platform"
(compilers-linkers-loaders, hardware and run-time executive or operating system).
The benefits of DSDs generally propagate (unidirectionally) across these three levels: e.g.,
imposing different high-level architectures for two versions, for the purpose of avoiding
common mistakes in defining the basic algorithms, is likely also to cause some diversity in
errors of coding, and to create different enough source programs to reduce the risk of common
failures due to compiler errors or microprocessor bugs. However, the high-level DSDs may be
more expensive and more difficult to apply correctly than the lower-level ones. There is an
analogy here with the general issues in fault-tolerant design, of how to choose and combine
between end-to-end fault tolerance (e.g. application-level checks and recovery actions) and low-
level fault tolerance (e.g. hardware duplication or data redundancy), with their different
coverages of different fault types and their different costs.
There is a general opinion that the really threatening problems in development arise from the
high-level aspects of design: requirements specification, high-level specifications of algorithms;
for threats in the lower level (conceptually later) phases of development we already have
effective defences that should be applied anyway (irrespective of diversity) and are probably
sufficient. On this basis, it would seem that the more useful DSDs are those applied earlier in
the development process and higher in the design refinement hierarchy. E.g., functional diversity
would be the most effective DSD; by contrast, a DSD like developing two different versions
with C and assembly language would be much less valuable. We agree with the general thrust of
the argument that the latter DSD should not be trusted much as a defence against high-level
specification error, but we underscore reasons why DSDs in the later stages of development
should not be discarded without proper analysis:
• system developers have minimal or no control over essential parts of the support platform,

and high-level DSDs may be ineffective against their failures. E.g., in civil airliners avionics,
microprocessor diversity is absolutely necessary as developers have to use off-the-shelf,
complex, notoriously bug-ridden microprocessors;

• despite apparent high-level diversity, commonalities may re-emerge in the implementation of
diverse channels (see examples in the discussion of functional diversity in the main text):
one should explicitly check for such commonalities rather than trusting that they do not
exist;

• methods for protection against errors in the lower levels of development, like the coding
phase, do exist but are not necessarily applied, even in safety-critical developments. This
defeats the premise that diversity is only needed against higher-level design mistakes. This
is a special concern with COTS systems or systems "imported" from industry sectors with
different certification and regulation cultures.

The process for choosing DSDs thus proceeds through these steps:
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• analysis of threats (possible sources of human failures that will cause system failures);

• selection of DSDs by probable effectiveness on threats in the earlier stages of development;

• analysis of threats in later stages, and possible failure causes in the support platform, that
may require further DSDs.

We also discuss how to deal with two further difficulties in decisions:
• one may need to trade diversity against reliability of the individual versions. Here, decisions

are aided by analysing which weaknesses caused by DSDs can be obviated without
reducing the positive effects of the DSD (section 2.7);

• forms of diversity are useful within the development of each version as well as between
versions, and their combined efficacy will depend on how in detail they are used (section
2.8).

Discussion of individual diversity-seeking decisions (Section 3 and Appendix)
The preceding analysis is organised in a "top-down" fashion, starting from the general
mechanisms of actions for all DSDs, and the general criteria for guiding their choice. Section 3
provides a "bottom-up" view, organised by categories of DSDs, and giving:
• a summary table of the mechanisms of actions, types of problems against which the DSD is

a defence, and considerations about their cost and efficacy;
• an appendix with more detailed discussion and references to the parts of the "top-down"

analysis (section 2) that support our conclusions.

Conclusions

Difficulties
A manager who wishes to employ diversity in a development project is confronted with a
bewildering range of possible "diversity-seeking decisions" and their combinations. Despite the
amount of industrial development effort and scholarly work spent to date on diversity, there is
little guidance for these choices.
Massive obstacles stand in the way of better choices of methods for forcing diversity. Some of
them will be reduced by additional research, especially combining existing understanding of
human error with focused experiments, but we should not expect either simple cookbook
recipes applicable to all situations, or simple algorithms that derive the ideal combination of
DSDs from objectively measurable characteristics of a project. In this, the difficulties with
diversity are not very different from those with any other choice of engineering methods.
However, one can argue that diversity is especially difficult to comprehend intuitively, and so we
will have special difficulties in applying our informal understanding to decisions about diversity.
Indeed, many pages of this report are about ways in which intuitive understanding may be
wrong.

Positive results
Despite all these difficulties, many coarse-grained "rules-of-thumb" about diversity can be
stated, using general knowledge about software development as well as anecdotal evidence from
applications of diversity. The role of modelling research in DISPO has been, for us, to clarify
the circumstances under which the common-sense arguments that are common in the literature
and in discussions among practitioners are applicable, which arguments are therefore
inappropriate, and which evidence could support or definitely refute them. In a sense, this has
created more questions than answers. This report offers to practitioners:
• a compilation of the "common-sense" considerations which drive decisions about the

application of diversity, in the light of many years of research, including the insight derived
from the DISPO project; and

• a more abstract analysis of the factors that determine the effectiveness of decisions in
enhancing effective diversity and/or system reliability, to help readers in selecting among
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decision rules proposed by others and developing their own decisions in their specific
circumstances.

This report focuses on questions that have no purely mathematical answer and for which it is
difficult to define clearly which answers are scientifically justified. So, this report, more than
other DISPO deliverables, must be seen as representing the authors' informed opinions as
experts in the reliability modelling of diversity. In addition to insight from mathematical
modelling, we have tried to take account not only of the known empirical results, but also of the
diverse expert opinions in the field. We have unavoidably described the wide uncertainty
surrounding many decisions, but also outlined which decision criteria are based on more solid
bases, and on which bases the more uncertain conclusions are based, so that readers can judge
their applicability in their own situations.
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1. Introduction

1.1 Scope of application of diversity and scope of this study
This study discusses measures for achieving useful diversity between redundant channels in a
redundant system.
Diversity for achieving reliable systems is a very general approach with many possible
variations. In particular, various architectures are possible for software-based systems that use
diverse redundancy (see e.g. [Avizienis 1985, Strigini & Avizienis 1985, Strigini 1990, Lyu
1995]). The DISPO project has been mainly concerned with architectures that we may call
"diverse-modular redundant" (Fig. 1.1), in which two or more diverse channels perform
essentially the same function, seen at some level of abstraction. For instance, duplication with
"conventional" "design diversity" implies two software programs that compute the same
mathematical function (mapping from input values received to output values). Initially, the
specified scope of the DISPO project was limited to simple design diversity in duplicated,
diverse-modular redundant systems: two software versions perform the same plant protection
function; the two versions are fed the same inputs and required to produce a command to shut
down the plant under identical circumstances. "Parallel" actuation is assumed, guaranteeing that
if either of the two versions correctly issues a shut-down order, the plant will be shut down. This
is thus a 1-out-of-2 system, from the viewpoint of reliability of the shut-down function. The
only aspect of interest was the reliability of the shut-down function, measured by the probability
of failure per demand of the two-version system.
During the project, this scope was extended somewhat, to answer requests from the sponsors or
to take advantage of possibilities opened by the research under way. So, some attention was also
paid to how to extend the models for demand-oriented systems to continuous-control systems,
and from "design diversity" to "functional diversity": two (hardware plus software) subsystems
that perform the same system-level function, like sensing subsets of the state variables of a plant
and ordering a safe shut-down when required, although using different subsets of state variables
and different principles of operation. The limitation to "1-out-of-2" configurations was retained,
given the central interest for the shut-down initiation function of protection systems.

Version 1
To 
wired-OR 
actuators

Version 2

}Sensor readings  (of 
same or different 
physical variables)

Fig. 1.1. Diverse-modular redundancy: example of 1-out-of-2 configuration (design
diversity or functional diversity).

Diverse-modular redundant systems exist in many other forms apart from the 1-out-of-2,
parallel actuation protection system. The main conceptual difference is in "adjudication", the
process that determines the output of the diverse-redundant system on the basis of the outputs
of all the versions. 1-out-of-N architectures are possible for protection systems, if either:
• the system has Boolean outputs and is built with wired-OR, parallel actuation, or

• each version has "fail-silent" properties: the version is designed to detect its own failures
and then refrain from issuing active outputs towards the controlled system. The outputs are
then processed via force-voting actuators or by picking one of the output values offered by
the versions that did issue some output and can thus be assumed to be correct.

Apart from 1-out-of-N architectures, various forms of voting can be used; or the versions'
outputs can be compared to detect version failures. For instance, in the Airbus flight control
system, 2 versions form a self-checking pair, which can exclude itself in case of discrepancy,
and two self-checking pairs form a fault-tolerant system.
For all these configurations, the goal in producing the versions must be a low probability of
their failing together, in such a way that the adjudication function will choose an undesirable
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output as the system's output. How to pursue this goal is the topic of this study. We do not
study the adjudication function, which is also important in determining system reliability.
Adjudication is reasonably well understood, and for applications like nuclear protection is very
simple. For a given set of versions and a given chosen objective function (e.g., the probability of
a correct system output), there will be a specific design of adjudication that (if implemented
correctly) maximises that objective function (see [Di Giandomenico & Strigini 1990] for a
survey of adjudication and a specification of optimal adjudication). Different forms of
adjudication practically imply different redundant configurations. Most of the considerations
that we make in this report apply to the whole spectrum of these configurations. 1

There is another class of diverse configurations, "primary-checker" architectures (Fig. 1.2), in
which the modules added for redundancy do not emulate the functions of the other modules, but
have the purpose of detecting or containing their failures. These architectures include programs
with run-time checks inserted in their code, combinations of modules which implement the
intended function of the system with others that run reasonableness or safety checks on their
outputs, auditing of a program's data structures (and possibly repair of damaged data structures
using built-in redundancy), and so on.

Primary software
Output

Computation
 Input

Checker

Approve/reject

Fig. 1.2. Primary-checker architecture - basic concept

With these methods, it is still important to minimise the likelihood of common failure between
the "checked" and the "checker" parts, but some of the considerations about achieving failure
diversity that apply to diverse-modular redundant architectures may not apply to them. Diverse-
modular redundant architectures are symmetrical, primary-checker architectures are not. One
difference is that the "diversity" on which a designer depends is usually implicit in the
application requirements; for instance, if the "checked" component computes a function that is
easy to invert, a correctness check is readily available; if not, the designer may have to make do
with less complete "reasonableness" checks. The checker and checked modules perform (often
radically) different functions, which makes it appear easier to avoid mistakes leading to joint
failures. Last, the designer may have more direct control on the failure probabilities of the
checker: the probability of a checker failing to detect an error depends on its specification (how
stringent a check is chosen), not only on the correctness of its implementation. For instance, in a
primary-checker architecture the designer may choose to build an over-stringent checker, which
reduces the risk of undetected failure at the cost of more spurious alarms, or an over-lenient one,
with opposite results; he may trade off the effectiveness of a checker against its development or
run-time cost. This degree of freedom about the stringency of checks for detecting errors in
responding to demands is somewhat similar to that available, in designing channels of a
protection systems, in choosing checks for detecting the demands themselves.
Many other architectural decisions differentiate architectures using diversity. Some of them may
constrain the diversity achievable. For instance, a requirement for frequent cross-checking of
intermediate results computed by two versions may impose a common structure to the
algorithms they implement. However, these architectural issues and constraints do not affect the
central questions about the efficacy of the various possible ways of pursuing diversity.

                                                
1 The adjudication function itself has to be protected via redundancy and possibly diversity, of course. This
creates further varieties of architectural solutions, but no special issue within the scope of this document.
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1.2 Ways of pursuing diversity and how they relate to failure diversity
Software diversity, as initially proposed by Avizienis [Chen & Avizienis 1977], involves the
development of functionally equivalent but independently developed versions of a software
system. The term "independently developed" here meant that the versions are developed by
individuals or teams that did not interact during the development process. It is hoped that, as a
result, the versions (and in particular their faults) will be sufficiently different that, if they fail in
operation, they will rarely do so simultaneously, and so an adjudicator, such as a voter, will be
able to provide a correct output even in the presence of individual version failure(s).
The important question is how best to achieve effective diversity, i.e., a low probability that the
versions will fail together. A project manager can indirectly control this by various decisions.
The teams developing the versions are typically not allowed to exchange information about the
development. Considering that people engaged in similar activities often make similar mistakes,
they may also be given explicit directives for diversifying the internal structures of their
products (e.g., using different algorithms). However, how do we know that these decisions will
actually improve the delivered multi-version product?
The existing literature contain lists of such decisions that a design manager can apply to pursue
diversity, which can be seen as "common-sense" advice (e.g., [Saglietti 1991, Lyu & He 1993]
give developer-oriented advice; standards and guidelines, like [MoD 1996, MoD 1997] give
customer-oriented requirements). For brevity, we shall call them "diversity-seeking decisions",
or "DSDs". Quite often, in informal discussions of design diversity, the distinction is lost
between "diversity-seeking decisions", i.e., what project managers can control, and the actual
diversity achieved among the produced program versions and their failure behaviours, which we
can measure a posteriori.
A complete list of plausible DSDs would span the whole development process, from team
selection, to using different development environments, different tools and languages at every
level of specification, design and coding, implementing each function with different algorithms,
applying different V&V methods, etc. Some DSDs concern imposing differences between
development processes, which can be specified regardless of the product to be developed.
Others (like imposing the use of different algorithms) can only be specified with reference to an
individual product.
However, the arguments in support of these various DSDs are mostly described at an intuitive
level, and it is difficult both to trust them and to compare the relative merits of various DSDs.
Most DSDs have a cost: duplication of activities, added co-ordination effort, need for staff with
specific skills. The question becomes: how many DSDs are enough for us to achieve the
desired level of assurance against design faults, or what is a cost-effective set of DSDs? There is
currently no scientific answer to these questions, in the sense of either strong empirical evidence
or a clear, predictive model of how DSDs produce their supposed benefits. A project manager
or system-level designer will tend to rely on intuition, guided by personal experience.
Experience is a poor guide for drawing general laws on how to avoid problems that are very rare
in the first place. Intuition has been shown repeatedly to fail on these matters: the issues with
diversity are subtle, and difficult even to define properly. For instance, some developers
maintained that design-diverse channels would obviously fail independently, until this was
proven wrong by theory and experiments alike. This report attempts to improve on unaided
intuition by exploring in more detail the supposed mechanisms of action of DSDs in light of
evidence from either general software practice or specific research on diversity.
Given our uncertainties about the relative merits of various DSDs, it would seem desirable to err
by excess, by applying as many of them as we can afford. However, we cannot be sure that the
advantages from various DSDs add up. We could think, for instance, that a DSD (say,
specifying diverse algorithms for the various versions) produces benefits because it gives a
development team a different version of the problem seen by another team, so that they are not
likely to make the same mistakes. However, perhaps there is a point beyond which further
"difference" produces no further advantage: the problems seen are already as different as they
can be. Then, applying a second DSD (say, using very different design methods for the various
versions), possibly just as effective as the first one when used alone, would not give any
additional advantage when used in combination with it, and might even make things worse by
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forcing the use of inferior techniques (or techniques less familiar to developers), chosen for the
sake of diversity.

1.3 The various aspects of diversity and of "independence"
The only diversity that matters in practice is the diversity between the failure behaviour of the
different versions. Informally, we want the failures (if any) of the different versions to occur in
different circumstances.
Most discussions about diversity use the terms "diversity" and "independence" in a rather
informal way. We need to clarify their meaning, if we wish to learn more about them by
scientific methods. First of all, the term "diversity" may designate several concepts (Fig. 1).
DSDs produce "process diversity". They presumably cause the versions to be visibly different
in their structure and internal operation ("product diversity"). They also cause -one hopes- the
versions to be less likely to contain identical defects than if the DSD were not employed in the
first place ("fault diversity"). And finally, if successful, they reduce the probability that the
versions will fail in the same way on the same demands ("failure diversity"). Failure diversity is
the actual goal of DSDs. All the rest are means to this end, and without more analysis we cannot
even be sure that they are necessary means.

Process
'diversity'

Product 'diversity'

'Diversity' of product 
failure behaviour

Diversity-seeking decision (DSD)
creates

Process BProcess A

Version BVersion A

constrains development,  
producing

common environment
 selects demands

pattern of correct 
responses and failures

determines which 
demands will fail

constrains development,  
producing

determines which 
demands will fail

pattern of correct 
responses and failures

Fig. 1.3. The causal links from diversity-seeking decisions to failure diversity
The terminology used in describing such scenarios is affected by many ambiguities which cause
confusion in analyses. A completely unambiguous terminology is unattainable and would be
cumbersome to use, but it is important to point out the possible sources of confusion where they
arise. Here, for instance:
• we say that DSDs cause "process" diversity. One may argue that many DSDs are really

about product diversity, e.g. a DSD specifying two different algorithms for two versions, or
mandating that two application versions shall run on different platforms. These are
legitimate points; the important distinction to make is simply between diversity-related
decisions (i.e., inputs to the development processes), which affect the way developers work
(possibly by mandating aspects of the product they must develop) and the results of these
decision in terms of actual differences between the delivered products or development, or
between their failure behaviours;

• "independence" of failures between two versions means simply that the probability of the
two failing together on a demand is the product of their individual probabilities. Other
common uses of the word "independence" often cause confusion. Many practitioners and
some standards (e.g., [MoD 1996, MoD 1997] ) say that the concern in developing diverse
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systems is to make sure that the versions are developed as "independently" as possible.
This seems to call simply for the strictest separation between version developments, to
protect them from any common influence (apart from the high-level requirements that they
need to share). Actually, supporters of "independent" development of versions often
support "forced diversity" - DSDs. Mathematical models [Littlewood & Miller 1989,
Littlewood et al. 2001] confirm that "forced diversity" is better (in a specific, precise sense)
than simple separation. Even with fully (statistically) independent developments, we should
expect positive correlation between version failures. But "forced diversity" is,
mathematically speaking, a way of introducing a certain form of negative correlation, i.e. of
avoiding independence, between development, in order to pursue low correlation
(independence or better - negative correlation) between failures. So, the phrase
"independent development" often leads to confusion in these arguments and should be used
with care.

1.4 Conceptual models of diversity
We briefly recall here the basic models that inform the discussion in this paper. An extensive
explanation is in [Littlewood et al. 2001].

A common concept is that of possible demands forming a demand space. Each point (demand)
in this many-dimensional space can be thought of as completely characterising a particular
physical demand. For instance, for a reactor protection system a demand would be a vector of
temperatures, pressures, flow rates, etc., sampled at regular intervals by sensor scans (the period
of time required to define a 'demand' will influence the dimension of the vector). In this space,
for a given program version containing a specific set of faults, some points are failure points:
they are those on which the version will fail. We may group these points into failure regions,
e.g. identifying a certain failure region as the set of all failure points that would be eliminated by
fixing a specific defect in the code. The set of all the failure points (union of all failure regions)
form the failure set of the given version. In a 1-out-of-2 system, the failure set of the system is
the intersection of the failure sets of the two versions (Fig. 1.5).

1

2

4
3

Fig. 1.4. Possible shapes of failure regions, represented here as grey areas in a two-
dimensional section of a program's demand space. Analysis of actual defects in programs
[Bishop et al. 1986, Ammann & Knight 1988, Bishop & Pullen 1988, Hatton & Roberts
1994] has shown that they may produce failure regions with simple shapes like 1 and 2 in
this picture, but also complex "stars" or "snowflakes" or even non-connected regions like
region 4 here.
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version 1’s failure regions

version 2’s failure regions

system failure regions

Fig. 1.5. In a 2-version, 1-out-of-2 system, the demand spaces for both versions and for
the whole system are identical (and represented here by the three horizontal planes), but
the failure set of the system is the intersection of those of the versions, as visualised here
by projection: only the dark-grey intersections -on the bottom plane - are system failure
regions.

The first conceptual model of software diversity was proposed by Eckhardt and Lee (EL)
[Eckhardt & Lee 1985]. The key idea in the EL model is the notion of variation of "difficulty"
over the space of possible demands. Consider, for simplicity, the case of a 1-out-of-2 system,
involving two diverse versions. If an input is selected, and version A fails to execute the input
correctly, what is the chance that version B fails, i.e. that the system will fail? The important
point is that this conditional probability of B failing is then greater than the marginal
probability of B failing, which would be the case under a naive assumption of failure
independence. The reasoning is that the failure of A suggests that the input was probably a
"difficult" one, and thus the chance of B failing is greater than it otherwise would be. The
underlying informal idea is that designing software involves producing solutions to different
problems, represented by different sets of inputs, and that some of the problems represent
greater intellectual challenges (and thus scope for human error) than others. Consider, as an
example, the case of a fly-by-wire aircraft: the inputs being received during a landing in severe
wind-shear would be intrinsically harder to respond to correctly (i.e. would be intrinsically
harder for designers of the various versions to program correct responses to) than those coming
from straight and level flight in perfect conditions.

Littlewood and Miller (LM) [Littlewood & Miller 1989] generalised the EL model to represent
the situation where diversity of design is forced upon the different versions, e.g. by stipulating
that the different development teams use different algorithms, different programming languages,
different testing methods, etc. - i.e., by applying DSDs. The useful effect of such forced
diversity is that the "difficulty" of each demand will usually be different for the two
developments, and vary differently among demands. If the variation is such that - informally
speaking - the demands with higher "difficulty" values for one development tend to have lower
values for the other, the expected reliability of a 1-out-of-2 system will be greater -everything
else being equal- than if these variations are similar in the two developments. DSDs have the
purpose of making this favourable situation more likely.
Clearly, some discretion needs to be exercised in practice over the extent to which diversity and
thus particular design solutions are imposed on the developers. E.g., by mandating specific
algorithms the specifications are enriched with more details than strictly necessary, thus
extending the possibility of common influences of the (single) top-level specification activity
over the development teams. These common influences may favour similar modes of thought
which are prone to similar mistakes. Intuitively, the idea is to try to force sufficient "deliberate"
diversity to decrease the tendency for coincident failures, without introducing novel
opportunities for failure similarity via extra commonality in the high-level design.
Although DSDs can be forced upon different version developments to produce useful
differences between versions, there are situations where similar differences between processes



Bev Littlewood, Lorenzo Strigini:                       A discussion of practices for enhancing diversity in software designs

p. 12

occur naturally. Examples of such natural diversity include diversity in the programmers'
domain knowledge, their fault finding strategies and other cognitively-related characteristics.
These factors are often difficult to control, thereby making it difficult to use them as a basis to
engage in a software diversity programme. The hope is that diversity in these factors should be
significant enough to assist in reducing common mode faults. Further measures -DSDs - can be
taken or practices can be instituted to enhance the degree of diversity between the versions. We
next proceed to analysing them.
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2. General analysis: how project decisions affect failure diversity
We begin by examining in general how diversity-seeking methods may actually achieve failure
diversity. We will thus be able to discuss the individual DSDs in the list that will follow as
special cases of general categories. This is important both to simplify the task of discussing
them all, especially since the list is really open-ended, and to make it easier to compare the
plausible effects of different DSDs, in the absence of empirical measurements.
Uses of diversity as protection against common mode faults in modular-redundant systems can
be classified into three categories: data diversity, design diversity and functional diversity.

2.1 Data diversity and its mechanisms of action
Data diversity differs from the other two in that it does not require the channels of a redundant
system to be themselves diverse. It is true that identical redundant channels would all fail when
presented with an input sequence that caused one of them to fail. With data diversity, the
designer attempts to present them with different sequences, with differences between them small
enough not to prevent any of the channels from performing its intended function, nor their
outputs from being in agreement (within some tolerance specified by the designer).
Data diversity may be achieved, e.g.:
• implicitly, via loosely coupled execution of the software copies and sampling of their sensor

inputs (from different sensors or at slightly different times, relying on natural random
differences between readings), or

• explicitly, by seeding small (possibly random) differences between the inputs to the
components.

 Input

+ε

Software 
replica 1 To 

wired-OR 
actuators, or 
comparatorSoftware 

replica 2

}
Sensor 1
 reading Software 

replica 1 To 
wired-OR 
actuators, or 
comparatorSoftware 

replica 2

}Sensor 2
 reading

With explicit input perturbation Implicit from sensor redundancy/skew

Fig. 2.1. Data diversity in duplex configurations

If the design faults are such that, of two similar input sequences, one will cause failure and the
other will not, this can be exploited in fault-tolerant architectures:
• with two replicas of the software, comparison of their outputs allows detection of failures,

and two such replicas constitute a self-checking pair
• with three or more replicas, it may even be possible to mask failures by voting, provided the

failure regions are small compared to the distance between the diverse input sequences fed
to the identical replicas of the software, because this would make it unlikely for more than
one software copy to receive a demand that is in a failure region.

Data diversity as a project decision will be discussed further in Section A.1. We observe here
that the feeding of slightly different inputs to two similar functions in two redundant channels
(that is, "data diversity" as a run-time occurrence, whether intended by the designers or not)
often occurs as a side effect of other design decisions. Examples are sensor redundancy, loose
synchronisation between redundant identical channels (chosen perhaps to increase resilience to
EMI-induced upsets), and other factors of complex behaviour in modern computer architectures,
like interrupts, caching and dynamic instruction scheduling. These factors are often studied in
the literature as a problem for the design of fault-tolerant systems: by disrupting "replica
determinism" they may cause spurious disagreements between redundant copies of software,
and complicate the design of state recovery mechanisms (cf [Poledna 1994]). A system design
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using design or functional diversity will also be affected by "unintentional" data diversity: for
instance, if two diverse redundant channels produce an intermediate result through a numerical
computation, even though code parts that nominally implement the same algorithm, they will
often produce different results through the effects of numerical approximation. These
differences will effectively appear as data diversity to the functions that consume these
intermediate results: even if the implementations of these latter functions in the two channels
suffered from the same conceptual mistakes, this "data diversity" would reduce the risk of
common failure. The risk of spurious disagreements of course remains. This is a risk which the
designers of diverse systems must consider in any case, though - it is useful to recall - it is less
of a problem for a basic protection system (1-out-of-2 system with a single Boolean output per
channel) than for continuous-control, majority-voted system.

2.2 Mechanisms of action of design or functional diversity
To examine how failure diversity may be achieved or enhanced, let us consider the steps from a
development error to a common failure in a 2-version system in detail.
• developers (designers, inspectors, testers, ..) of a channel (version) in the diverse system

make some mistake[s] so that a fault is left in the program. After the fact, we could describe
the fault by asking the developers how the program created differs from the one that should
have been created;

• on specific demands (the "error region" corresponding to that fault), the fault is triggered,
i.e., the program behaves differently from what the developers would consider correct. The
program reaches an erroneous state, in which some of its internal variables (including the
program counter or other registers) has a different value from what was intended;

• either the error is masked (e.g., erroneous variables are overwritten before being used, the
program terminates before they are used, they are used in an operation such that the
erroneous value does not affect its result ....) or it propagates (i.e., causes further errors);

• if it propagates, it may eventually cause a failure of the channel, i.e., an erroneous output
from the channel;

• if a similar chain of events in the second channel, possibly involving completely different
mistakes, error regions and details of propagation, leads to the second channel failing
concurrently with the first, the two-channel system may fail (or will fail, in the case of
failure on demand in a protection system with pure wired-OR actuation).

This sequence is drawn in Fig. 2.2 in the form of a fault tree for a two-channel, 1-out-of-2
system.
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System structure Fault tree for the event "common failure on a specific demand"
Fig. 2.2. Mechanisms of system failure in a 1-out-of-2, diverse system.
(For systems where coincident failures of the two channels can be detected and tolerated,
discussed in Section 2.3, a complete fault tree would be more complex)

If redundancy is applied by deploying identical copies of a program, all the steps in the list
above will be identical between the two channels, except that data diversity might cause a
difference starting from the fault triggering step. If instead we have process diversity, and thus
some degree of product diversity between versions, differences may start at any stage of the
causal chain:
1. mistakes may be different and cause code defects that are different; we could use the terms

human failure diversity2 and fault diversity; the two are distinct phenomena, and we would
recognise them by subjective judgement, by examining the program versions and their
development documentation;

2. we can hope that fault diversity will cause error regions in diverse versions that have limited
or no overlap. This effect, however, may also happen without diversity of human failures or
(probably) of faults either. For instance, two teams may both misinterpret a termination
condition for a loop, but one of them may also use an extra condition that is sufficient to
cause correct termination on most inputs. Conversely, even clearly diverse human failures
may produce coincident error regions to exist for the diverse versions. Last, as discussed in
the previous section, "internal data diversity" may occur: even if some parts of the code are
so designed that they would err on identical data, the diversity between the parts that
compute those data means that, for the same demand on the system, these code sections
receive different data and the probability of their failing together is reduced;

3. error diversity causes failure diversity: two versions can fail together only if both have
entered erroneous states. However, we may have failure diversity even if a certain demand
triggers errors in two versions: these may propagate differently (including the possibility
that one propagates while the other does not) because the two versions have different
internal structures. Imagine, for instance, an overflow in writing to a data structure happens

                                                
2 We are referring to human errors that are not corrected ("tolerated" by redundancy in the process), hence our use
of the term "human failure" rather than "human error".
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in two versions A and B, causing in both versions the overwriting of other variables. These
variables may be ones that are immediately used in version A, but variables that will be
overwritten before the next use in version B: when the overflow occurs, A will be likely to
fail and B will not. Although the faults produce "error regions" that are the same subset of
the demand space for both A and B, for A this is a failure region, for B it is not. It may also
happen that both versions fail, but in different ways, e.g. with different results so that the
failure can be detected.

These various forms of differences between events for two versions are summarised in the
following figure. The arrows indicate causality. The open-tailed arrows indicate that
"downstream" differences may occur even without the corresponding "upstream" difference.

[Run-time] error diversity

Diverse faults (code defects)

Diversity in human failure in development 

Diverse error regions

Data diversity

“Internal”
data diversity 

Diversity 
in error 
propagation

Different program 
structures

Diverse development processes

Failure diversity

Fig. 2.3. A first sketch of the possible causes of failure diversity. Here  (as elsewhere in
this paper) "Development processes" includes both building and error-removal processes.

In practice, each channel may be made up of various subsystems, typically in "series" from the
viewpoint of reliability. This is shown in the next figure. The channel failure sequence is only
expanded for one subsystem in one channel. If the same sequence takes place in the other
channel, system failure will ensue. Several complicating factors already appear in this scheme:
for instance, the system may fail because of failures in the two channels that, although they
happen on the same demand, affect different subsystems in the two channels (i.e., subsystems
that perform different functions). And, of course, the two channels may also differ in the way
they are subdivided into subsystems, so that there may be no obvious correspondence between
subsystems in the two channels.
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Fig. 2.4. Mechanisms of system failure in a 1-out-of-2, diverse system: role of series
subsystems in each channel

There is yet another way in which diversity may improve system reliability. A subsystem failure
may be caused not only by design faults within it, but also by another subsystem failing. For
instance, an application program may fail because the operating system on which it relies fails.
Diversity between the implementations of a certain function (subsystem) in the two channels
may be a protection against this kind of system (channel) failure, due to a fault external to the
diversely-implemented subsystems.
For instance, a corrupted input value may cause failure of one version of a program, but not of
another version which uses a different algorithm. An operating system (replicated identically in
both channels) may erroneously shorten the time frame allotted to an application process for a
certain operation, yet one version of the application may perform the operation within this
reduced time frame while another does not. For want of a better name, we may call this
robustness diversity. Robustness diversity differs from intentionally designed resilience, e.g.,
the ability of a channel (or a subsystem thereof) to detect pre-specified sets of illegal inputs, so
that these may be better tolerated within each channel separately. With respect to intentionally
designed resilience, we use diversity as a protection against mistakes in implementing it: so, if a
channel fails to tolerate one of these illegal inputs or internal errors, the other channel will. By
"robustness diversity" we mean, instead, unintentionally different reactions, in the two channels,
to situations that are outside the design envelope (including both correct demands and those
incorrect demands that the system is required to detect) for each channel or parts thereof.
With this addition, the whole set of cause-effect possibilities is as shown below:
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Fig. 2.5. Error propagation through diverse program structure as a cause of failure diversity.
Reasoning about diversity usually focuses on the main diagonal sequence shown in the figure:
diverse developments cause different mistakes to be most likely for each different development
team, and these different mistakes, if they are indeed made, are likely to create disjoint, or at least
non-coincident, failure regions. This is the mechanism that is usually implicitly invoked in
common-sense arguments in support of DSDs.

2.3 Failure diversity: separate failure points vs diverse failures on the same demand
There are two meanings of "failure diversity" or "diverse failure behaviour":
• diversity in failure occurrence: two versions tend not to fail on the same demands;

• diverse behaviour during failures: although two versions fail together on a certain demand,
they do so with different (though both erroneous) behaviours, typically different output
values.

The possibility of this second kind of failure diversity clearly adds to the benefit of diverse
developments, although it would become irrelevant if the first kind were fully achieved, i.e. the
versions had no common failure points. However, this knowledge has little practical use in
design-diverse systems.
For a simple protection system having a single Boolean output ("trip" vs "do not trip"), diverse
behaviour during failures is impossible and thus brings no advantage. However, even for
systems with simple Boolean outputs it is often specified that the versions must produce certain
common intermediate results, to be compared so as to improve failure-detection ability (at the
possible cost of reduced potential for diversity in their implementations).
So, diverse behaviour during failures may offer an additional safety margin on top of that
provided by difference between failure points, as it allows even common failures to be detected.
When it occurs it allows, for instance:
• a 2- or 3-version system to be switched to a safe state (if such a transition is possible) by

some simple comparator that is likely to work properly even in presence of common
failures of the versions; or

• a 4-version system to tolerate 2 version failures; etc.

Predicting the extent of this aspect of failure diversity - the reliability gain it offers - is
unfortunately even more difficult than predicting the first aspect: it seems to depend on details
of the versions' implementation and their faults. Only a few aspects are clear:
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• there is no possible gain if the comparison or voting takes as inputs a single Boolean
variable from each version;

• the probability of a common failure being detected would seem to increase with increasing
numbers of possible output values. In reality, what matters is the probability of erroneous
outputs coinciding. In theory, given 10 possible output values, the probability distributions
that are possible span the spectrum between these two extremes:
- it may be that the typical faults cause both versions always to fail with the same

erroneous value, so that there is no advantage at all over the case of Boolean outputs, or
- perhaps typical faults cause errors such that the versions fail choosing each possible

erroneous value with probability 1/9 and independently, so that the probability of
undetectable common failure decreases by a factor of 9. This optimistic assumption is
actually made at times, but is unjustified. In fact, if we do assume independence among
the erroneous values (which seems optimistic), assuming them equiprobable is then
again the most optimistic assumption possible.

If we believe that common failures are mostly due to similar mistakes and similar faults, we
should believe the first extreme scenario above to be the closer to probable situations: we
cannot rely at all on the advantages given by the possibility of diverse behaviour during
failures. Sometimes, the fact that the erroneous outputs may take many different values is
used to justify a reduction by a certain agreed factor (e.g., 10 times) in the claimed
probability of common failure due to physical faults, but we have not found any empirical
or theoretical justification for such practices with regard to design faults.

Even when some DSD seems to improve the probability of diverse behaviour during failures,
separately from that of diversity in failure occurrence, the former remains a more difficult issue
and it seems unavoidable to take the pessimistic stance that one should not depend on this
possibility in assessing the resulting reliability.

2.4 Human errors in development: random variation vs cognitive diversity
We have seen that failure diversity may depend heavily on developers of different versions
making different mistakes. There are at least two mechanisms that may produce this "human
failure diversity", due to the two characteristics of human errors:
• mistakes are a random disturbance in the development activity;

• yet, constraints on the activity affect the likelihoods of the various possible mistakes.

Because errors are unintended and unpredictable, repeating any human task in seemingly
identical conditions will produce some differences in the errors committed. Hence the
usefulness of "independent" (separate) development of versions. However, some errors are
more likely than others: we may well observe that in performing a certain task there is a mistake
that most people make. Against this possibility, simple "independence" does not help much:
given a mistake (human failure in development) so common that the corresponding fault would
affect, say, 90% of the versions developed, reducing this incidence to 81% via two-version
programming does not seem very useful. No-one knows whether such high-probability faults
characterise many projects. We do know that good projects tend to produce programs without
frequent failures, i.e., that if there are such "90% faults" they have low probabilities of
manifesting themselves as failures. But if we believed such faults to be common in high-quality
developments, we should also expect limited advantages from "independent" developments: we
should definitely try to "force" diversity.
Whatever the probabilities of each fault for a certain development process, another process may
have different probabilities. Hence the attraction of using more intrusive diversity-seeking
decisions than mere separation of developments. Their advantages are clear if we stick to the
simplified view of the mechanism of action of diversity (the main diagonal in our figures): if we
use two processes such that any mistakes that are likely with one are unlikely with the other one
(human-error diversity), the probability of any one mistake affecting both developments will be
low. If different mistakes cause disjoint failure regions, then this likely difference between the
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mistakes will cause the two-version system to be much better than any one version and likely to
have no failure point (with high probability).
Is it true that our diversity-seeking decisions can cause such sharp differences between the
faults likely to be present of two processes applied to the same application problem? The
answer is not clear. It is obvious that some development processes make some mistakes
impossible. For instance, if one of two development teams is instructed never to use pointers, no
pointer-related mistakes are possible. On the other hand, not using pointers means using a less
powerful programming language, and will make some other aspects of software design more
complex and thus error-prone. This looks like a useful form of diversity, but of course it will
only be so in practice if the pointer errors likely for one team affect different demands from
those affected by the errors caused in the other team by the difficulty of programming without
pointers. Two extreme viewpoints are possible:
• with high-quality development processes, all important faults are due to basic difficulties in

the application problem. Hence the dominance of requirement specification problems over
coding problems, for instance. These difficulties cannot be changed by changes to the
development process, which in practice affect the appearance of the problem, not its
substance;

• the difficult parts of a complex development task are really the result of the combination of
the problem to be solved with the strengths and weaknesses of the development process and
team. Hence, changes to the development process, team and constraints really change the
relative difficulties of parts of the task.

The truth, for any given project, must lie somewhere in between. The viewpoint that only high-
level errors inherent in the application problem really matter is refuted by counter-examples
from experience. E.g., the massive AT&T network outage in 1990 was triggered by "a break
clause within an if clause nested within a switch clause" - a violation of a coding style standard.
Its avalanche propagation mode was a system design fault, symptom of a lack of V&V
procedures or run-time defences against it, but it would not have happened without the coding
fault [Neumann 1995, p. 14]. Likewise, multiple telephone outages in 1991 were due to causes
that included "a '6' instead of a 'D'" in the code, hardly a high-level conceptual error [Neumann
1995, p. 16]. Articles like [Lindner 1998] document that even simple procedures for code
verification against such errors are not yet common practice. And the argument that high-quality
processes eliminate those errors for which forcing diversity is possible is irrelevant for those
projects for which such high-quality development processes are not practically available (due to
the available staff qualifications, budgets, etc.), or for which "high quality" is not well
understood.3

The viewpoint that the application difficulties can be changed greatly by altering the
development process is supported by several pieces of evidence:
• psychological research has shown that even substantially identical tasks present greatly

varying levels of difficulty, and hence different probabilities of errors, according to the way

                                                
3 We should be aware that there are two meanings of "high-level" that are relevant here, and there may be
confusion about which meaning we use. Psychologists classify the ways we perform mental tasks from a
"lowest" level (by innate or learned reflex) to a "highest" (by actual conscious, structured thinking). Low-level
errors ("slips"), like pressing the wrong key on a keyboard, are the most frequent and also those that we most
commonly correct by ourselves [Reason 1990]. Organisations also have fairly common procedures for dealing
with them. "Higher-level" errors usually result in decisions to do the wrong thing, while lower-level "slips" are
failures to carry out a correct decision. In software development, on the other hand, the term "high-level" usually
refers to activities or artefacts that deal with a less detailed view of a system and precede "lower-level" activities.
So, "higher-level" software development activities like requirements specification can be affected by low-level
errors (like typos), and "low-level" developments activities like coding can be affected by "high-level" errors -
wrong decisions about solving coding problems. There is a similarity between the software engineering and the
psychological classification of tasks, in that the "high-level" requirements specify an intention that the "low-
level" coding must carry out; and for the coding phase we have more simple, automatable rules for checking for
errors. But the similarities probably end here.
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the tasks are described. Apart from laboratory examples4, we are all familiar with the hopes
raised by new programming languages that radically simplified development for some class
of application - LISP, PROLOG, "4-th generation" languages, automatic control-oriented
languages - by providing a way of programming that matched the way [some] developers
instinctively "saw" the application problem. Notice that the simplifying effect of these
languages is often culture-specific: the language may be natural for mathematicians, or for
control engineers, but highly unnatural and error-prone for others. Likewise, a
mathematically-oriented programmer may, for instance, feel at ease with both LISP or
BASIC, and -all things considered - prefer LISP for a given task in view of its allowing a
more concise, readable and verifiable representation; for another, LISP will still bring
conciseness but at the cost of obscurity and thus be - on balance - more error-prone;

• at least for the more complex systems, only a minority of the developers actually face the
application problem in its entirety. The task given to most developers is to create software
modules according to some specification handed down by system-level designers, to test
specific features, etc. For people developing utility procedures, for instance, the difficulty of
their task is not related to which demands will cause the procedures to be invoked, but to
how the various functions required in the system have been allocated to the procedures,
affecting their individual complexity, numbers of arguments and so on.

If representation affects task difficulty, it will have the usual two effects: on the reliability of
individual versions and on their diversity. If representation A makes a task less error-prone than
representation B, why not choose A for developing all versions? Choosing A for all is indeed
the best option if it makes all types of errors less likely; but software development is a complex
activity, and a process characteristic that makes one task (or one aspect of task) easier may well
make another one less easy.
When discussing the supposed advantages of diversity-seeking decisions we will thus often
mention "cognitive diversity", meaning that a DSD may cause the tasks presented to the
developers of the diverse versions to differ enough, either in their essence or in the way they are
specified, to cause different error patterns.
There seem to be two important ways of creating "cognitive diversity": one applies within a
single development task: e.g., adopting two different procedures for eliciting requirements, or
programming a procedure with two vastly different languages, or starting from equivalent but
very different representations. The other one is in the definition of the tasks: for instance, in
subdividing a system into modules. The structure of a version of a software system generates a
series of mappings from the demand space for the system to those of the version's subsystems.
For the developers of each subsystem, the likelihoods of the various faults are determined by the
specifications of the subsystem (and the tools and skills available). So, different subdivisions of
the two versions into subsystems create the possibility of useful diversity in the mistakes made
and the faults created. Likewise, the task of deriving the subsystems' specifications from the
system specifications and the initial subdivision of the system into subsystems is a possible
source of errors, and different structures for two versions give the possibility of useful diversity
in these mistakes and the faults they could introduce.
This possible contribution to useful diversity is shown by the added arrow in the figure below.

                                                
4 A famous laboratory example showed that playing the "tower of Hanoi" game became much easier if the
standard different-diameter rings were substituted by different-diameter cups of liquid: observing the rule that one
must not stack a smaller item on top of a larger one thus became obvious and no longer a demanding part on the
subjects' mental workload. Another example is that playing  "tic-tac-toe" is much easier than playing a
mathematically isomorphic game in which people must select elements from a set of nine integer numbers,
trying to produce a triple which adds up to 15 .
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Fig. 2.6. Causes of failure diversity, including effect of program structure on human error

2.5 Difficulties in relating diversity-seeking decisions to failure diversity
This section delves into the causes of confusion that affect most discussions of forced diversity
in the literature. We think this discussion useful as a defence against the common fallacies in
technical discussions about diversity. In terms of practical advice for practitioners, this section
can be summarised as saying that common-sense, intuitive judgement about forcing diversity
should be taken with a large dose of scepticism: the suggested DSDs are usually likely to do no
harm and possibly some good, but the arguments given about their utility for a specific project
usually fail to prove that they actually do good. Readers who are not interested in the discussion
of why this is so can safely skip the rest of this section. In the subsequent sections, we
summarise useful criteria of judgement in the presence of this uncertainty and confusion.

2.5.1 The "mistake-fault-failure" cause-effect chain
The notion that diversity "propagates" down the fault-error-failure chain intuitively explains the
advantages we hope to obtain from applying DSDs, but these cannot be taken for granted. The
similarity of the terms "failure diversity" and "fault diversity" is misleading. Failure diversity
refers to "a tendency not to fail on the same demands" (or "failing with different symptoms
albeit on the same demand" - cf 2.3), and specifically high failure diversity means a low
probability that both versions will fail equally on the same demand. Fault diversity is a subtler
concept: it refers to a tendency of versions to exhibit qualitatively different faults. When we
compare the faults found in two programs, we can decide whether we think they are different
from some viewpoint, e.g. that they belong to different types, e.g., because they seem to be
caused by qualitatively different mistakes (a programmer's typo vs misinterpreting the
specifications) or they cause different failure behaviours (e.g., a memory violation trap vs taking
a wrong branch in an if-then-else statement). We could even specify a measurement scale for
the degree of diversity between two faults, or between the sets of all the faults in two programs.
However, we are now interested in how a DSD affects the potential for diversity among the
unknown faults that may remain in a pair of versions when deployed.
Our problems in linking fault diversity to failure diversity arise from:
1. the difficulty of linking faults (defects in the code) to the specific demands on which they

would cause failures;
2. the fact that the importance of a fault depends on the probability of those demands on

which it causes failures. This is a real difficulty, but a comparably minor one. It is a real
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difficulty, because even a DSD that were proven best at reducing common failures in a type
of systems for a given regime of use might become useless if this regime changes. We
don't know in practice the details of the demand profiles created by different system usage
regimes, nor of the "difficulty functions" created by a DSD, so we could not anticipate
which changes in usage would make a DSD useless. However, for highly reliable and
simple systems, in practice an effective DSD will probably greatly increase the likelihood of
two versions having no common failure point, i.e. zero failure rate irrespective of the use
regime. So, if we could trust a DSD to reduce the probability of common failure points
between versions, we would also generally trust it to reduce the probability of common
failures. But this precondition is difficult to meet due to difficulty 1 above.

To clarify difficulty 1 above, we note that a fault can be identified in two ways (neither method
guarantees unique identification - i.e., that all analysts will agree on the list of the faults in a
given product- but we can neglect this difficulty for the time being):
• as a code defect, defined by the difference between the faulty code and the code as it

"should" be. This is the more natural way, but presents a difficulty. Two defects in diverse
versions, which use different variable identifiers, and possibly different languages, will
hardly ever look identical, even when they would cause common failures for similar
reasons. So, versions may always have "different" faults, and useful metrics of "how
different" they are become difficult to define;

• as the set of demands on which the defect causes the version to fail, i.e., points in the
demand space that a given correction turns from "failure points" to "success points" (a
"failure region" in the "demand space"). This is a less common view, but with it one can
decide objectively whether two failure regions in two versions are disjoint, overlapping (and
by how much) or identical, and from this information define measures of diversity.

Unfortunately, there is no general, intuitive law linking failure regions to the defects that create
them. Defects that appear similar either in type or location may never cause failures on the same
demands (they create non-overlapping failure regions), while defects that are different in
appearance and caused by different mistakes may produce failures on the same demands
(examples are e.g. in [Brilliant et al. 1990]). Moreover, software may have such a complex
structure that even with a fairly precise understanding of a fault (as a defect in the code), it may
be difficult to decide which demands will trigger the fault to cause a failure. An example is a
fault in a deeply-nested procedure: we may be very clear about which arguments to the
procedure will cause it to fail, yet unable to tell which demands on the system will cause the
procedure to be called with those arguments, and even whether a failure of the procedure is
guaranteed to cause version failure (cf e.g. [Bishop & Pullen 1989] for a discussion of "fault
masking").
It was to solve all these difficulties that the EL and LM models introduced the radically new
concept of a "difficulty function" defined in terms of probability that developers will cause
failure, for each possible demand. This modelling stratagem acknowledges that all causes of
difficulty in building programs combine together in complex, unknowable ways, but the end
result can be described in terms of probability of failure per input point, and important insight
can be gained from this measure alone. Unfortunately, this radical simplification makes the
models unusable for our present purpose.
Since two versions may be such that recognising faults as identical between the two may be
impossible, and yet a pair of faults (one per version) that affected overlapping sets of possible
demands would of course cause system failures, we can only use experience of how DSDs
affect "fault diversity" by referring to "types of faults", or "positions of faults" rather than to
individual faults. We discuss briefly the meanings of these two concepts.

2.5.2 Fault "types" as a basis for reasoning about DSDs
Many schemes for fault classification are in use (e.g. the "orthogonal defect classification"
(ODB) developed in IBM [Chillarege 1996]) in software engineering, so that statistics are
available about the frequencies of the various types. Whether these data can be used to help in
choosing DSDs is yet to be seen: we need to classify faults into such categories that on the one
hand faults of different categories tend to cause failures less frequently than faults of the same
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category, and on the other hand the DSDs of interest promote "fault diversity" in terms of these
categories (i.e., the products of the two processes created by a DSD differ in the relative
frequencies of the various categories of faults we define). A classification of faults in order to
match them to the DSDs that may plausibly be effective against them is in [Saglietti 1991], to
which we will return later. This paper has useful considerations about avoiding similar faults,
but there is no evidence that this kind of fault dissimilarity increases failure diversity.
Any general link between frequencies of different fault types and probability of various failures
is difficult to establish. This does not mean that it could not be found to apply a posteriori.
Suppose I could develop many high-quality versions of a simple program, and measure them
extensively, finding all faults and on which demands each fault causes failures. I might well find
that of the few faults that are present, those of a certain type affect mostly a certain part of the
code, which is only used by a certain subset of demands; and those of another type affect
mostly another part, and cause failures on another set of demands. Still, one would need very
strong evidence to believe that this linkage is a general characteristic of software development (at
least for a certain type of software, e.g. "nuclear plant protection" or "spacecraft control") rather
than an artefact of this particular experimental setting.

2.5.3 Fault location as a basis for reasoning about DSDs
Different considerations apply to diversity in the location of faults. We can give a precise
meaning to this term if we can create a mapping, at some (possibly very coarse) level of detail,
between the parts of code that perform similar functions in the two versions. We could then in
principle measure the frequency with which a certain pair of processes (a DSD) creates defects
in the same parts of the two versions. A lower frequency of this event would generally be
considered an indication of a more effective DSD. Intuitively, the reason for considering this
form of "fault diversity" a desirable feature is that defects that affect "corresponding" parts of
the code in two versions are more likely to cause failures on the same demands than defects
affecting "non-corresponding" parts. Again, this relationship cannot be taken for granted, but is
plausible and it may be possible to establish it empirically.

2.5.4 Mapping of mistake/fault/error/failure types to DSDs
For the reasons discussed, it is common to choose DSDs on the basis of which kind of threat
they appear useful against. One can use a classification like that given in [Saglietti 1991]. Faults
are classified according to several criteria: the phase of the life cycle in which they originate; the
form of human error from which they originate; aspects of their manifestation as failures; etc.
Then, forms of diversity (the distinction between DSDs and actual differences in products is not
emphasised as we do here) that should plausibly be effective against these fault categories are
identified. For instance, if I am most worried about errors in translating the product specification
into a high-level design, a recommended remedy is introducing diversity between the design
representations used for the two versions, e.g. primarily "data-oriented" vs primarily "state-
oriented". Prioritisation between alternative choices is not covered. A more elaborate manual
based on these principles is available in German [Saglietti et al. 1992]. There are difficulties
with such general rule-setting. Any classifications of faults will look arbitrary, incomplete or
impractical (e.g. with too many overlaps between categories) to some readers. The mapping
between fault types and DSDs is in some cases obvious but useless (e.g. there is no doubt that
data diversity protects best against faults which produce "small enough" failure regions; but
many designers have no idea of whether these are the dominant threat for them), in others useful
but dubious (e.g., the insight that a DSD should be useful against a certain form of human error
may be profound, but the case for its effectiveness may be based on intuition alone).
Nonetheless, some degree of this approach is unavoidable: we will reason similarly in this
document. Its problems should be lessened by using it as guidance in studying a specific
project scenario, with its own problem complexity, dependability requirements and organisation
constraints rather than trying to formulate general laws.

2.6 Practical criteria for matching DSDs to required fault diversity
The first criterion for choosing DSDs is usually how effectively they seem to reduce direct
common influences on the development processes of the versions. Although no form of
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diversity in development errors or in program faults that we could statistically demonstrate
guarantees, by itself, improved failure diversity, it seems plausible that two versions affected by
what is conceptually "the same" development mistakes are too likely to fail together. Any
defence against this risk is welcome. This argument is strongest for the basic DSDs: the
decision to produce diverse versions in the first place, and to separate their developments as far
as possible so that mistakes cannot simply "propagate" from one development to another.
Beyond this, any DSD looks desirable if it reduces the chance of such identical mistakes,
because the possibility of it actually reducing failure diversity through another mechanism, albeit
real, appears to depend on implausible coincidences; we have no special reason for expecting it
to manifest itself in our specific circumstances. The adoption of DSDs, therefore, must be
limited by cost, practical incompatibilities between them, and any demonstrated negative side-
effects. The first two factors make it necessary to prioritise between DSDs that appear desirable.
1. a common approach is to prioritise by threat: analysing the (demonstrated or feared) weak

areas of current development processes, for which remedies other than diversity appear
insufficient; and selecting DSDs that seem most directly effective against these specific
threats. For this approach, DSDs are matched to fault types, as in [Saglietti 1991], quoted
above. This often means choosing a DSD for a specific development stage: we identify a
stage of development as especially dangerous and "concentrate our diversity" on it, with the
aim of having two processes which have "diverse weaknesses" in the same stage;

2. the above procedure assumes that a DSD affecting a certain activity is good because it
allows for different distributions of difficulties between the two teams. It would seem better
to choose a DSD of which we know that it causes such "different distributions". We may
have such knowledge (though usually not as a certainty) in certain cases. However, before
spending much on such a DSD we should check how plausible it is that the category of
mistakes for which the DSDs create "human failure diversity" actually map into different
failure classes;

3. there is sometimes a case for choosing a DSD which diversifies weaknesses between
development stages. For instance, we may consider programming a mathematical function
in a conventional language like C or as an "electronic spreadsheet". For certain algorithms,
the spreadsheet format may greatly simplify the task of high-level design: complex control
structures in the C program are substituted by data-dependency relations that are easy to
visualise. However, the successive phase of static verification may be much easier in C: for
instance, where a C program has a short loop construct for which we can easily prove that it
satisfies certain properties at each iteration, the spreadsheet may have a huge array of similar
cells, which require repetitive, error-prone inspection, one by one, to prove the very same
property. How useful this form of diversification of weaknesses is (apart from any other
advantages/disadvantages of this DSD) depends on whether mistakes in the two phases
affected (high-level design and static verification) are similar or not in the failure points they
would leave in the product: if the sets of likely failure points are similar, this DSD may just
change the stage at which each process is most vulnerable, but not the degree to which
diversity between them reduces common failures;

4. the problem remains (as said in 2, above), in adopting an expensive DSD, of deciding
whether the evidence we have of its diversifying mistakes or faults actually supports
confidence that it will diversify failures. This difficulty is serious, although it will vary
between projects. The most difficult cases are internally complex systems, in which much of
the code serves most demands and the correspondence between demands and specific
difficulties they produce in any part of the design is irremediably obscure. At the other end
of the spectrum, we may have situations in which different parts of the demand space
obviously correspond to different parts of the implemented system, and these appear
naturally to be most vulnerable to different specific kinds of human errors and faults. For
instance, we may have demand types in which the main challenge is that of timing problems
and overload and others in which the main challenge is that of complex numerical
algorithms. Then, it will be most natural to seek DSDs that create diversity among these
specific fault types. However, if a system allows us so clearly to identify the threats against
different parts of the system, we will often have ways of mitigating them before we apply
diversity, perhaps by applying different specific methods to the various subsystems (e.g.,
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different programming languages, or verification methods). Applying these mitigation
measures will presumably improve system reliability but also destroy any clear cues for
matching DSDs to specific fault types;

5. cost considerations would suggest to restrict the duplication of activities required by
diversity to aspects of development where it is really effective. This may take two forms:
- specific life cycle stages: the later the developments of versions start to be diversified,

the lesser the additional costs. Unfortunately, diversification from the earlier stages
probably pays off far more in terms of reliability. Once it is decided that a certain stage
of development will be replicated, additional or more effective DSDs applied to that
stage need not increase costs greatly;

- specific subsystems: those parts of a software system which have more critical roles
(or, in some cases, parts that are though especially error-prone) are natural targets for
efforts at enhancing reliability, including, of course, applying diversity. This may allow
savings by focusing the use of (expensive) diversity measures on specific subsets of
large, complex diverse systems, protecting critical phases of operation, or critical
software components. This possibility is limited because many safety-critical computer
systems do not have effective reciprocal protection among software components
sharing a computer: all software sharing a computer with a safety-critical component
becomes equally critical. Exception exist, like the platforms used for Integrated
Modular Avionics in airliners, e.g. the Boeing 777.

We continue to discuss the choice of DSDs in terms of the important classes of threats and the
effects of DSDs applied at a stage of development on subsequent stages. In sections 2.7 and
2.8, we will discuss two other decision issues: the possible conflict between increasing diversity
and achieving version reliability, and the allocation of a form of process diversity within, as well
as between, the development processes of diverse versions.

2.6.1 General classes of threats; threats from the support platform
Mistakes and faults can be classified by extremely fine-grained (and confusing) taxonomies, but
two broad distinctions seem sufficient to clarify many issues in deciding about DSDs:
• design faults in the designed version, vs design faults in the "support platform" which is not

under the control of the developers of the current system. The "support platform" includes:
- compilers, linkers and other tools whose faults affect the production of the complete,

executable diverse system;
- hardware architectures and components, run-time executive or operating systems and

other run-time utilities whose faults affect the execution of the versions in the diverse
system (libraries used as black-box off-the-shelf items can be seen as belonging to
either set of "support platform" components);

• among design faults in the versions being developed, faults originated by mistakes at a
higher (earlier) level in the design refinement hierarchy vs those at a lower level. E.g.,
conceptual mistakes in specifying system structure or algorithms, vs mistakes in coding
individual procedures specified by these higher-level decisions, and down to e.g.
typographical errors in writing an otherwise correct procedure.

We believe that diversity at the platform level is a necessity (in general - calls for exceptions
should be supported by very rigorous arguments) whenever there is concern about "support
platform" bugs, as, e.g., with COTS microprocessors. It is appropriate to refute here a possible
argument to the contrary, which runs as follows: if we adopt diversity at "higher levels", e.g. in
algorithms or in programming languages, this diversity will guarantee that any specific demand
made by the controlled system on the diverse versions will cause different demands to the
support platforms, and the mapping between the two sets (demands on the two versions systems
and demands on the platform of either version) will be so essentially "random" that even
identical platforms will be unlikely to fail together. As can be seen, this is a "data diversity"
argument: platforms with identical design faults receive different demands and thus are unlikely
to fail together. To prove that it is invalid, simply consider a "difficult" circumstance for the
designers of platforms to deal with. For instance, difficult situations arise when procedure-call



Bev Littlewood, Lorenzo Strigini:                       A discussion of practices for enhancing diversity in software designs

p. 27

stacks get full due to too many nested calls. This circumstance is likely to arise when external
events requiring action are unusually frequent (overload, especially in event-driven designs). So,
we should expect higher probability of the non-diverse platform failing on those demands that
exhibit higher rates of external events. The two versions are affected by similar "difficult points"
in their demand space, which, as we know from models, imply positive correlation between their
failures (here, between platform-caused failures in the two channels).
On the same basis, it becomes obvious that even diversity in support platforms should not be
expected to guarantee independence between their failures, but only to reduce positive
correlation between them: the support platforms implement similar functions and we should
expect the difficulty of the demands made on them by the versions to be positively correlated
unless we have strong arguments to the contrary.

2.6.2 Choosing between "high-level" and "low-level" DSDs; propagation of the benefits of
DSDs through stages of development

Many experts think that DSDs applied to the earlier, "higher-level" stages of development (e.g.,
requirements specification rather than coding) are the most effective and most desirable ones (cf
also 2.4), despite the higher costs incurred by replicating the development activities starting from
an earlier stage. We see two sound arguments supporting this belief, but we think there are
exceptions in their applicability:
1. the later stages in development pose fewer threats that cannot be mitigated by current

techniques (cf 2.4). This is probably true, although, as we discussed earlier:
- the degree to which those techniques are actually applied should be verified in each

individual development;
- the system developers are usually defence-less against design faults by support

platform designers, e.g. in the compilers, hardware, operating systems. Specific DSDs
may be required against these (cf 2.6.1);

2. The beneficial effects of DSDs propagate to some extent to successive development stages.
For instance, having substantial differences between the specified high-level designs of two
versions will cause differences between the coding tasks for the two versions as well. That
is, they cause similar effects at the coding stage to the effects which DSDs directly applied
at the coding stage (e.g., imposing different programming styles) would cause.
This coding diversity is desirable to reduce the risk of both versions suffering from coding
errors affecting exactly the same demands. It is plausible that the difference between high-
level designs is as good a defence against these common failure points introduced during
coding as one can hope for, and any additional DSD affecting the coding phase directly
may bring no further advantage. On the other hand,
- in some cases, DSDs applied at the higher-level produce essentially equivalent

specifications of what the versions should do in detail for any given demand (these
DSDs are still a defence against common defects in these specifications, but not
against similarities in the possible errors in implementing them). Then, there is a risk
that some parts of the implementation tasks are more error-prone than others, and
further DSDs meant to avoid these difficult parts coinciding in the implementations of
both versions are desirable.

- again, faults in the support platform[s] may introduce common failure points.
A central issue in deciding DSDs is thus which sources of common failures exist at the "lower-
level", later stages of development and in execution that the DSDs already applied at "higher-
level", earlier stages do not prevent effectively enough. A useful way of looking at this is to look
at errors in "lower-level", later stages from the view point of how much they are specific to
certain demands. Given a certain set of DSDs at the earlier stages, and thus some kind of
diversity "propagating" to the later stage we consider:
• at one end of the spectrum, some errors are presumably not linked to any special difficulty

in "what the version has to do": e.g., typos or other slips. For common failures due to these
errors, the "propagated" diversity", even if it only affects the appearance of the tasks at the
current stage, may be enough to achieve as much protection as can reasonably be achieved.
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The risk that human failure affect certain demands with higher probability than others seem
to be avoided by the fact that slips probably happen with the same frequency irrespective of
the demand they affect;

• at the other end, some errors would clearly arise with greater probability for some required
behaviours of the version, and thus for some specific demands: e.g., some timing issues
may be left for the low-level design to deal with, and be the same for both versions even
given different higher-level designs.

There are many intermediate cases and problems of detail, of course. One must ensure the truth
of the assumption that slips are not correlated to demands. For instance, it would become false if
the parts of the design task that cover some demands are, for both versions, especially rich in
memory-taxing detail, or if they are produced under more difficult works schedules. Then, one
would want:
• to change the DSDs at the previous stages to reduce these sources of common difficulties

between the versions;
• or to adopt DSDs at the current stage that reduce these common difficulties: e.g., different

design methods, each better suited for some kinds of demands for the first problem, and
different schedules of work for the two versions for the second problem;

• or to reinforce the common defences at the current stage (cf section 2.7), e.g. additional
inspections against typos, and less strict deadlines, respectively.

2.7 Trade-offs between diversity and reliability of the individual versions
We need to consider that in pursuing diversity we may reduce the reliability of one or both of
the versions. As a plausible example, imagine an application domain for which we have a
standard software development process, and we have to develop a software product for which
there is an obvious "right" way of designing it. In the effort to increase diversity between two
versions of the product, we may decide that developers of version 1 will use the standard
process and the "right" design, but developers of version 2 shall use a "very different" process
and design, which we specify by mandating ways in which they must differ from those used for
version 1. By creating these artificial constraints we create difficulties for the developers of
version 2: version 2 will probably be less reliable than version 1. In so doing, are we improving
or reducing the reliability of the 2-version system? Or, in other words, is "more diversity"
always a good thing?
Cases in which forcing "more" diversity reduces system reliability because one or both
individual version[s] become[s] too unreliable can easily be imagined; but so can opposite
cases. In our example above, we have assumed that artificial constraints make the development
more error-prone. So, version 2 will be likely to fail on more demands than if it were created
with the standard process. If enough of these demands happen to coincide with those on which
version 1 fails, the system will be less reliable than if it were developed without forced diversity.
But if these demands tend to be very different from those on which versions created with the
standard process tend to fail, then our form of forced diversity may tend to produce much more
reliable 2-version systems than either single versions or 2-version systems produced by the
standard process, although version 2 will as a rule be much less reliable than version 1.
What is clear from theory is that in some circumstances "more diversity" gives higher system
reliability. A result of the previous (LM) modelling work (see [Littlewood & Miller 1989] for
more details) is that forcing diversity - by adopting a DSD - is certainly beneficial (on average)
if the DSD creates two process variants that offer the same guarantees of reliability - more
precisely, such that we have no reason for preferring one process over the other. Consider for
instance a project that can choose between two possible development processes, A and B,
differing e.g. in the programming language used. Suppose that experience has shown that the
choice of language does not seriously affect program reliability. Having to develop a two-
version system, the right choice is then to develop one version with process A and the other with
B. However, if experience in previous, comparable projects had shown A to produce generally
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more reliable programs than B, we would need much additional information to decide whether
the two-version system should be an AA or an AB system5.
So, given two processes A and B and having to build a two-version system:
• if we have no reasons for preferring one over the other, we should build an AB system;

• if A is better than B, we have the dilemma that the best combination for producing a two-
version system may be AA or it may be AB; or even BC, given a third process C which is
also worse than A but is "very diverse" from B.

In practice, the latter situation may be less confusing than it seems. We seek diversity by trying
to pair processes or methods that have complementary strengths and weaknesses: it seems
important to discriminate between necessary and unnecessary weaknesses. The former are those
that can be eliminated without "watering down" the process' strengths, and eliminating them is
generally useful even though in a sense it "reduces the diversity" between versions. The
following example illustrates this point.
The C language differs from Pascal in its lacking strict type checking (and in other
characteristics which we will neglect for simplicity). Is this a form of diversity that we should
seek? If we add to a C development environment additional checkers that enforce strong typing,
we are clearly reducing diversity. We are also probably improving the average reliability of the
C programs. Are we increasing system reliability too? Presumably so, if strong typing is
generally beneficial (i.e., it makes mistakes, and thus software failures, less likely). Then, C's
weak typing is an unnecessary weakness, and we ought to avoid it if the cost is reasonable
(though we may not know how much reliability we gain). However, imagine (as a second
scenario) that strong typing is still generally beneficial, but it greatly increases the difficulty of
programming some special routines (e.g. processing complex data structures). These routines
are used for a few demands, on which therefore the Pascal programmers are at a disadvantage. If
this is so, "protecting" the C programmers (improving the C versions) by stronger type-
checking may actually reduce system reliability, if it does not improve the system reliability for
the majority of demands with which the Pascal programmers deal well, but it weakens the only
strength that C contributes. In this second scenario, weak typing has become a necessary
weakness if we wish to preserve the strength associated with it6.
So,
• in a safety-critical project, and within certain cost constraints, it will be natural to avoid all

"unnecessary" weaknesses. We will then often be in a situation of "indifference", in which
we have no reason for expecting one process to deliver better reliability than the other, and
therefore forcing diversity is always better than not forcing it;

• there are still weaknesses that are known to be "necessary", i.e. associated to desired
strength and such as to increase diversity between processes. For these, we need to estimate
to some extent the measure of these strengths and weaknesses: for certain combinations,
even rough bounds would clearly indicate the appropriate decision;

• the most difficult case, which cannot be excluded, remains that of processes for which we
know of a difference in achieved reliability, and know nothing about their strengths and
weaknesses except that they may well be very diverse and thus worth "betting on".

                                                
5 A similar rule applies to all 1-out-of-N systems with N>2. There is also a rigorous measure of diversity
between processes, e.g. to decide whether method A is "more diverse" from method B than from another method
C, but this measure of diversity cannot be estimated in practice.
6 One may criticise details of this example and propose, e.g., that each routine be programmed in the language
that is best suited for it, or type-checking disabled for certain routines, etc. This example remains valid
nonetheless. What these arguments indicate is that there is a way of making C's weakness an "unnecessary" one
again: we can eliminate it selectively and leave it in those places where it is actually a strength. But "necessary"
weaknesses do exist because all these special arguments have merit in certain cases, but are impractical in others.
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2.8 Use of diversity within the development of each version
We now turn to the importance of some forms of diversity to improve reliability of a single
version. For instance, "diversity" between the weaknesses of the construction and of the
verification phases pays out: a V&V method which is better at spotting those bugs that are most
likely to be present (i.e., is strongest where the construction method is weakest) may be better
than one that appears better if bug-detection efficacy is averaged over all bugs.
In DISPO, we have studied this issue with respect to V&V activities. Previous research (e.g.
[Shimeall & Leveson 1991]) suggests that different methods have different strengths and
weaknesses. Combining different methods is then sensible. We have shown in [Littlewood et al.
2000] the conditions under which applying two different methods with similar costs is better
than applying the better method twice. These conditions include the case of strong diversity (in a
mathematically precise meaning) between the two methods, and the case in which they have
identical efficacy on average (the same principle of "indifference" we described when discussing
the trade-offs between version reliability and diversity). Interestingly, estimating parameters so
as to use these quantitative models directly in decision-making seems much more feasible for
decisions about "testing diversity" in a version than about design diversity between versions.
Many (but not all) forms of diversity in fault generation can be pursued in developing a single
version. For instance, when we give two development teams two specifications documents, SA
and SB, which are written in different formalisms though equivalent, we hope that any obscurity
they may contain will affect different areas of the specification. But then, could we not simply
give both teams both documents, so that the team can use one document for clarifications
whenever the other appears obscure? So, the faults caused by accidental obscurity may well be
avoided in both the developments.
These considerations prompt two kinds of questions, which we discuss briefly.

2.8.1 Two diverse versions, or one version with all the benefits of diversity?
Extending the argument just developed, if giving both sets of specifications to the same team is
effective in avoiding both sets of possible faults due to defects in the specifications, could we
just have one team develop a single, good version? Rather than letting different faults enter the
two versions, and then tolerating them during operation by combining the two versions, we
could just develop a version without either set of faults! We will have the advantages of diversity
without its complexity and run-time costs7.
That is, one might argue (an argument that we state in order to refute its general applicability), in
general, if we develop two versions so that we can apply to each step of their developments
different methods, chosen for their diverse strengths and weaknesses, it may be better just to
combine all strengths into one, single-version development.

                                                
7 A special, border-line case of one-version process diversity is that of developers building two versions, but
then only using both for extensive (back-to-back) testing of one of the two, which will become the operational
version. Here, if both versions are built to be suitable for operation, the only advantage of running a single one
is reduced complexity in the run-time environment; while an assured disadvantage is forgoing the protection of
diversity for all those demands that were not applied during testing and may cause failure in one version only.
However, the "test-only" version is often developed as a "rapid prototype" or "executable specification", which
may not be suitable for operation (too slow, inappropriate for target platform) but allow its development to be
high-quality, or low-cost, or very simple (presumably less error-prone) or just "very diverse" from that of the
"operational" version.
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Defences in development of version A Defences in development of version B

System 
failure 
point

Fig. 2.8. Defences applied in development as a series of shields. The holes represent the
weaknesses of the various methods. Only if there is a sequence of holes all aligned
together, in the development of both versions, can a demand be a failure point.

This argument is best illustrated in terms the metaphor of development activities as defence
shields with holes (or "Swiss cheese") in the figure above: if a supplementary specification
document is an additional defence shield, it makes no difference whether this shield is in a
position or another in the sequence of shields.
In terms of achieved system reliability, there are several objections to this argument:
• shields are not combinations of impenetrable parts and empty holes. Rather, their thickness

varies from place to place, so that the likelihood of projectiles passing through takes many
values between 0 and 1: whether a particular fault is inserted depends on a systematic
component (the usefulness of the technique against that particular fault, represented by the
thickness of the shield in that point) but also on a random component - whether a person
will make that particular mistake at a specific moment. This is why even "non-forced"
diversity is useful: even two identical shields offer more resistance to all projectiles than a
single shield. So, using each specification document twice, if it is helpful at all in one
version, is more helpful if done in two versions. However, it may be only marginally so, and
then producing a single version with "specification diversity" would be practically as good
as producing two (each using one of the two specification documents, or both using both),
and cost less;

• more importantly in some cases, moving a shield, or adding others to it, may change its
resistance. Here, having to depend on two specification documents may be for programmers
a source of mental overload and added mistakes, i.e., make the single version worse rather
than better. A decision must consider this possibility.

It is clear that the better decision depends on the details of the situation, and no general directive
can be given. In some cases, experience and common sense will indicate an appropriate
decision; in others, doubts will remain.
To illustrate the arguments that may come into play, we briefly discuss another example. When
we order the two developers Andrew and Bernice to work on the two separate versions A and B,
we hope that their different cultures and personalities make them prone to different types of
errors. The faults left by Andrew in his version will then be different from those left by Bernice
in hers. But then, cannot we simply employ both on the same team, producing just one, better
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version by reviewing each other's work? The error points they eliminate will still differ, but they
will be all eliminated in the same version: we will avoid faults "at the source" rather than just
tolerating them in the assembled system.
In this case, the possible flaws in the argument are related to assuming that Bernice will be as
effective as a reviewer of Andrew's work (or vice versa) as she is as an autonomous
programmer. It is commonly accepted that additional inspections improve product quality, but
that people are at times unable, when shown a ready-made solution to a problem, to detect some
mistakes even though they would be unlikely to make those mistakes themselves in building a
solution from scratch. Last, communication and management difficulties also matter: while
turning two one-person teams into a two-person team may pose no problem, turning two 100-
person teams into one 200-person team may be practically infeasible.

2.8.2 Best allocation of diversity across the development of a diverse system
The general decision issue is how best to allocate the "diversity factors" at our disposal in
system development: e.g., people, forms of specifications, and so on. Assuming that we already
decided to build two versions, we have still to decide whether, for instance, it is better to give
both diverse specification documents to each development team, or one to each.
Again, there is no simple general rule, but we can specify the two aspects that must be
considered:
• does this form of diversity, applied within a single development, increase version reliability?

We may think, as conjectured in the previous section, that two specification documents will
overload the programmers and reduce reliability. Then, we will obviously avoid giving them
both documents. But perhaps we will think that if for a version we give specification
document SA to the programmers but SB to the testers (making the testers "more diverse"
from the programmers without overloading either) we will improve its reliability (compared
to giving SA to the testers too); we may then invert the roles of the two documents for the
other version. Then, there is a case for this form of in-development diversity and the next
question applies;

• when moving "diversity factors" around, could we be trading off version reliability against
diversity and thus system reliability? Given for instance two verification methods, it may be
still undesirable to apply in each version only one of the two: why settle for a sub-optimal
process when we know a better one? We are back to the issue of reliability of versions vs
diversity between versions, and to the argument for eliminating all unnecessary weaknesses,
within cost constraints.

As a last example, the argument against "unnecessary weaknesses" implies that bringing
individuals with diverse skills, experiences and viewpoints into the requirements, specification
and validation teams is a good thing for both teams. Here too, however, there are practical limits,
like the difficulty of co-ordinating many people or of maintaining morale and motivation as
responsibilities are distributed and checks on people's actions multiply. Co-ordination
difficulties may make in-process diversity completely impractical. for instance, it may be useful
to procure two versions from two different companies, and we may be comforted by the
knowledge that their personnel have largely complementary abilities. Mixing the same two sets
of personnel into a one-version development process might appear to give just as good results in
a mathematical model, but could be quite imprudent if the two companies had different internal
cultures or different national languages.
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3. Detailed discussion of diversity-seeking decisions (DSDs)
In Section 2, we have discussed the issues affecting the efficacy of DSDs and the factors to be
considered in choosing them. This gives a framework for comparing the options available to a
project, and a basis for a top-down decision process starting from general principles. In this
section we give instead a "bottom-up" view, starting with individual DSDs. This is the way
diversity is often discussed in the literature, and the way a project manager may have to organise
decisions, starting from the set of DSDs  that are realistically feasible for a specific project.
We start this section with a table which succinctly characterises and compares the many
possible DSDs. In the Appendix we detail, for each entry in the table, the arguments, evidence
and important exceptions concerning those DSDs, and the references to the supporting analysis
in section 2. Each row in the table is labelled with the number of the corresponding section in
the Appendix.
Preliminary notes:
• in the column "Probable mechanism of action, problems tolerated", it is implicit that the

degree to which these types of faults or mistakes are tolerated is not usually known. This
column is relevant for matching DSDs to perceived threats, and checking that all threats
against which diversity is the preferred defence are actually "covered". Combining DSDs
will generally "cover" the union of the sets of threats against which they are individually
effective;

• in terms of efficacy against a specific threat, on the other hand, it is generally unclear how
much combining two or more DSDs, that are believed to help against that threat, improves
our defences in comparison to adopting just one of them. This improvement could be very
limited;

• in the column "Considerations on cost, efficacy, practical experience", considerations of cost
are limited to factors of additional cost caused by DSDs, omitting the obvious one that most
DSDs require duplication (or n-uplication) of all stages of development subsequent from
that to which the DSD is applied onward. In general, all DSDs carry a cost of replicated
activities, an additional cost of co-ordinating the replicated activities, and savings in some
activities. E.g., when testing multiple versions, it may be decided not to replicate the test data
generation activity, executions must obviously be replicated, and the number of test runs
needed to detect a fault may be reduced by detecting discrepancies among versions in back-
to-back testing, even on test runs where failure of one version would not otherwise be
detected. Having identified these cost factors, predictions of detailed costs should then
reflect the cost structures of the specific organisations involved. Generic cost models have
also been published to assist in these projection [Migneault 1982, Laprie et al. 1990, Voges
1994].
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Table 1: Synopsis of diversity-seeking decisions
DIVERSITY-SEEKING
DECISIONS

PROBABLE MECHANISM OF
ACTION, PROBLEMS TOLERATED

CONSIDERATIONS ON COST,
EFFICACY, PRACTICAL
EXPERIENCE

A.1 Data diversity:

- using random
perturbations of inputs,
or

- using algorithm specific
re-expression of inputs

Ensuring that if the input to one
channel is within a failure region, the
input to another identical channel may
not be.

It should be more effective with failure
regions that are small or irregularly
shaped

Generally cheap as no diverse versions
required. Efficacy proven in experiments,
very variable between faults.

"Random" data diversity is often
obtained gratis as a side effect of other
decisions in fault-tolerant design.

Special re-expression algorithm may
imply additional costs

A.2 Design Diversity

A.2.1 Separate
("independent")
developments

Protection of developments against all
unnecessary common influences that
may lead to common failures

Most basic DSD, necessary pre-
condition (and necessary cost) for
applying most others. In some
situations may be the most effective
DSD.

A.2.2 Diverse development
teams

"Forced" diversity via team selection is
an appealing idea, but not proven in
practice

Appears very desirable, if difficult to
implement, within version
developments; between version
developments, serious issues of
"diversity vs version reliability"

A.2.3 Diversity in
description/programming
languages and notations

Probable defence against some slips, and
cognitive diversity against mistakes in
higher-level problem-solving.
Advantages affect both writers/verifiers
of documents/programs and their users:
implementors of next-stage, more
detailed document.

Diverse programming languages also
usable to promote diversity in demands
on platform

Efficacy must depend heavily on "how
different" the languages are (e.g.,
functional vs imperative).

With very diverse languages, issues of
"diversity vs version reliability"

With diverse specs, it may be possible
to use appropriate language for each
version and have very different languages

A.2.4 Diverse requirements
or specifications

At all stages in development: cognitive
diversity.

Advantages affect both writers/verifiers
of documents/programs and their users:
implementors of next-stage, more
detailed document.

Wide range of options, from purely
aesthetic differences to specifying
completely different behaviours, at
system or subsystem level. The latter is
presumably most effective, but increases
system design effort

A.2.4.1 Different
expressions of
substantially identical
requirements.

cf "Diversity in
description/programming languages and
notations"

Often cheap

A.2.4.2 Different required
properties implying the
same behaviour

Cognitive diversity benefiting both
writers and verifiers of the specification
and implementors of the specification

Special cases:

reduced-functionality secondary version,
with scope for higher reliability

checker-only channel, with greater scope
for cognitive diversity

Applicability varies. Some problems
may be easily specified via alternative,
equivalent sets of required properties,
some cannot.

Issues of in-process vs between-
processes diversity
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Table 1: Synopsis of diversity-seeking decisions (continued)

DIVERSITY-SEEKING
DECISIONS

PROBABLE MECHANISM OF ACTION,
PROBLEMS TOLERATED

CONSIDERATIONS ON COST, EFFICACY,
PRACTICAL EXPERIENCE

A.2.4.3 Requiring
different behaviours from
the diverse versions

Cognitive diversity benefiting both
specifiers and implementors

See also "functional diversity".

Applicability varies with availability of
alternative algorithms for achieving
same goal

System design and version specification
complications to ensure that diverse
version exhibit consistent enough
behaviour

A.2.5 Diverse development
methods

Cognitive diversity benefiting those
applying the methods and those
applying its results

With complete, "packaged" methods
(e.g. Booch vs Jackson) there is little
chance of redesigning DSDs in detail:
limitation but also probable savings.

When designing differences of detail
(e.g. applying different methods in
requirement elicitation), issues of in-
process vs between-processes diversity

A.2.6 Diverse verification,
validation, testing

Both inherent differences in defects
covered, and cognitive diversity

Issues of in-process vs between-
processes diversity, "diversity vs version
reliability"

A.2.7 Automatic code
transformation

Producing different inputs to compilers
to tolerate their faults

Cheap and obvious, but may be defeated
by compiler optimisation

A.2.8 Diverse
development platforms:
diverse tools

Diversity in:
limitations of tools in preventing
mistakes;
defects in tools that may cause software
faults;
presentation of problems to users
(cognitive diversity)

A mixed bag of heterogeneous
possibilities: wide range of costs, many
practical constraints as tools are limited
to applying specific methods and
notations. In this sense, diverse tools
may improve separation between
developments

Diverse compilers
(also applicable to replicas
of a single version)

Diverse compiler bugs, so that any
failure points they introduce are hoped
to be different in different versions;
diverse executable which may tolerate
faults in run-time platforms

Usually cheap, popular due to compilers
being in universal use, complex and
known to have bugs

A.2.9 Diverse support
platforms: run-time
platform

Diverse platforms should exhibit
different bugs possibly failing on
different demands; diverse robustness
w.r.t. application failures; possibly
diverse requirements on application
behaviour

Important as run-time platforms are
known to have design faults and are
often outside the control of application
system designers. Also, platform faults
may cause common failures on specific
[classes of] demands irrespective of
details of application

A.2.9.1 Separation and
loose coupling. Diverse
timing

Data diversity for both applications and
platforms, in addition to better tolerance
to upsets from EMI etc.

Usually decided on grounds of system
design philosophy, hardware fault
tolerance: advantages for software fault
tolerance are gratis.

With more complex adjudication than
wired-OR, loose-coupled redundancy
requires special care in design



Bev Littlewood, Lorenzo Strigini:                       A discussion of practices for enhancing diversity in software designs

p. 36

Table 1: Synopsis of diversity-seeking decisions (continued)

DIVERSITY-SEEKING
DECISIONS

PROBABLE MECHANISM OF ACTION,
PROBLEMS TOLERATED

CONSIDERATIONS ON COST, EFFICACY,
PRACTICAL EXPERIENCE

A.2.9.2 Diverse hardware Different bugs, different compiler bugs Comparatively inexpensive as mostly
about buying diverse off-the-shelf
components. Virtually mandatory as
microprocessors (and probably complex
ASICs) should be expected to have
design faults. Cf practice in avionics for
civil aircraft

A.2.9.3 Diverse operating
systems or run-time
executives

Different OS bugs; different
requirements on applications, hence
some cognitive diversity for application-
level developers; different demands on
hardware and thus some tolerance of
hardware faults

There is evidence that even different
COTS implementations of the 'same'
operating system specifications (e.g.
POSIX standard) exhibit some failure
diversity.

There is the attractive though unproven
possibility of running application
versions on radically different OSs, e.g.
event-triggered vs time-triggered

A.2.9.4 "Partial" diversity,
limited to subsystems

The subsystems that are diversified
benefit from the effects of the DSDs
applied to them; they may produce
beneficial  data diversity for the other
(non-diverse) subsystems

May be a way of containing the cost of
diversity, focusing resources on the
more critical subsystems

A.3 Functional
diversity

Cognitive diversity at all stages in
development, and differences in
limitations of sensors and physical
models in regions of controlled system's
state space

May tolerate all kinds of errors,
including specification errors and even
gaps in understanding of controlled
system's behaviour

It should not be assumed to ensure
failure independence between versions;
common causes of mistakes causing
common-mode failures may re-appear in
later stages of development despite
diversity at requirements level

Widely used throughout safety-critical
applications to tolerate both physical
and design faults.

Intuitively appealing: maximum
possible degree of cognitive diversity
between developments, at the cost of
developing separate specifications for the
diverse channels; enforces separation of
developments in later stages

Increases system design effort to ensure
consistency of top-level requirement on
all versions (lesser problem for simple
protection systems)

See also "Requiring different behaviours
from the diverse versions"
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Appendix to section 3: detailed comments on DSDs

A.1 Data Diversity
Data diversity can be used as a stand-alone DSD, with identical copies of the software, or as an
additional DSD in addition to design or functional diversity. In the latter case, it is usually the
results of decisions primarily motivated by other reasons. We will mention these cases together
with these other DSDs. The considerations about its probable advantages, however, are
generally the same in all cases and we collect them here.
In trusting data diversity alone (input re-expression or differences between sensors or sensor
readings) we trust that the differences we create between the inputs to two identical software
replicas (similar arguments apply to configurations with more than two replicas) are large
enough to give a low probability of both inputs lying in a same failure region, but small enough
that both versions will usually produce correct and consistent results, to contain the number of
spurious disagreements. The latter property is under the designers' control; the former is not,
and we depend for it on assumptions on the sizes and shapes of failure regions.
Evidence about effectiveness of data diversity is somewhat sparse. Loosely-coupled replication
is widely adopted, even without explicit consideration for design faults. In records of operation
of Tandem fault-tolerant systems (with two copies of the software running on loosely-coupled
computers), for instance, it tolerated [Lee & Iyer 1995] 82% of the software-caused failures:
many software failures only happen in specific states of the operating system and application
processes, which do not occur identically on the two machines. For intentionally-seeded
discrepancies between inputs, Ammann and Knight [Ammann & Knight 1988] found that, on a
failure-causing demand, retry with a slightly different demand would only cause a failure with a
probability that varied, for different faults, from 0 to 99%. On the same principle, it has been
shown that unreliable software may be made more reliable by frequent restarts ('software
rejuvenation' [Huang et al. 1995]) which reset state variables of the system, purging them of
erroneous values or other unusual, untested-for conditions they may have reached - this is also a
form of fault tolerance. All these examples concur to indicate that data diversity would often be
effective, but its effectiveness in a specific application is highly variable.
Further variations of data diversity require the "re-expression" of data to be constrained (though
with possible elements of random choice) in relation to the algorithm implemented, to produce a
special form of primary-checker architecture. E.g., if the software has to compute a function f(x)
of its input x, and it is known that f(x) and f(x+ε) satisfy a certain invariant I(x,ε), we may feed to
the second replica of the software a value x+ε chosen with a large value of ε, to decrease the risk
of x and (x+ε) lying in the same failure region. The fault-tolerant architecture then takes the
form sketched below. Ingenious examples can be found in [Blum & Kannan 1989, Blum et al.
1993, Blum & Wasserman 1994], although the probabilistic estimate proposed for the reliability
increase they achieve may be optimistic, as based on implicit assumptions of independence
between the presence of different failure points. Unfortunately, these methods can only be
applied when we can first prove that useful invariants exist for the special algorithm considered.
This is, in a sense, a boundary case between "diverse-modular redundant" and "primary-
checker" architectures.
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Software replica 1
Output

Computation
 Input

Verifier of 
invariant I

Approve/reject

Software replica 2+ε

Fig. A.1 Self-checking software using input re-expression.

A.2 Design Diversity
Following common usage, we collect under the heading "design diversity" all those DSDs that
can be applied to redundant channels which are specified to compute the same input-to-output
function, although these DSDs can also be applied with "functional" diversity (which we
discuss further on).
Terminological note; stages in development and development documents. All rigorous
development processes used in safety-critical systems produce a hierarchy of artefacts, with
some sort of requirements document stating "what the versions have to do" at the top end.
Development entails transformations on the requirements to produce increasingly detailed
design documents (variously designated as requirement documents, design specifications,
design documents and so on) all the way to the source code, which in its turn can exist in
different levels (e.g., application-specific language, C code, assembly code). In the discussion
that follows, we somewhat arbitrarily divide these phases and the corresponding notations and
tools into three groups: requirement specification, design and coding. The various sets of
documents may be developed in a repetitive "spiral" fashion rather than in a monolithic
"waterfall" process, but this definition of groups of documents remains valid.

A.2.1 Separate ("independent") developments
This is usually considered the basic requirement for diversity, and is pursued by forbidding
direct communication between the development teams for different versions. Otherwise, it is felt,
a misunderstanding within a team could be transmitted to the other one, and cause common
development errors, faults and in the end failures. More subtly, a common perception could
develop about what is the best solution for a certain design problem - e.g., allocation of required
functions to program modules - which might well be indeed the best solution, but would reduce
diversity among the developments in their subsequent phases, like the coding of the modules of
the two versions.
A counter-argument here is often that more interaction would allow the natural diversity between
human mental processes to improve both teams' understanding. However, this benefit of natural
human diversity can to some extent be preserved despite strict separation between teams:
•  each development team needs to have "enough human diversity", i.e., enough people and

the standard procedures of inspection, testing etc. This will naturally happen on larger
projects, but may be difficult to ensure in smaller ones;

• some (at least indirect) communication between the teams is unavoidable and necessary, but
this can be mediated by project management to contain possible harmful effects on
diversity. The necessity of communication arises if one team discovers an ambiguity or an
error in the common specifications (which could cause common faults, or faults in one
version that could easily have been avoided, or even spurious discrepancies between correct
versions at run time). The management must then at times issue a correction to both teams.
This problem was felt keenly during the "NASA-4 universities" experiment [Eckhardt et al.
1991]: the specifiers were application experts, while the programmers were not and required
many clarifications. After each question, the experiment co-ordinators would broadcast the
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question-answer pair to the programmers of all the versions, as an amendment to the
specification documents. A long stream of amendments was thus generated. It was noted
that this procedure risked propagating one programmer's perception of the problem to the
programmers of the other versions: a better way would be for the project management, after
answering each question, to decide which specification amendments should be broadcast to
all developers, and distribute these as formal updates to the specs that do not reveal the
reasoning of the specific programmer who asked the question.

It is interesting that Boeing [Yeh 1998] indicated these communication needs as the main reason
for not using software diversity in the Boeing 777 ( they did instead use hardware diversity
among the redundant processors). This reference says that in the development of the 7J7 model
the exchange of questions and clarifications between software developers and requirement
owners was so intense that it "irreparably undermined the independence of the three teams".
This is an example of the trade-offs between diversity and reliability of the individual versions:
this intense traffic presumably improved the requirements and thus all the versions, and was
more beneficial because multiple development teams were scrutinising the same requirements. It
was reported in the PODS experiment [Bishop et al. 1986] that different interpretations of the
same specs by two teams revealed specification ambiguities. By only considering
"independence" (i.e., separation) among version developments as the desired goal of diversity,
the Boeing managers were led to believe that they must discard diverse developments; had they
considered that version reliability also contributed to the true goal of system reliability, they
might have concluded that diverse developments were indeed the better option.
A function of separate developments is clearly to allow all the other kinds of DSDs, and their
various effects of diverse processes as discussed in section 2. In theory, we could expect some
diversity of effects even without separate developments. We could even re-use the same team
twice to produce two versions; however, we know that members would be likely to remember
how they saw the problem the first time around (or even how they solved it) and follow the same
path, making it more likely that they repeat the same mistakes. There are cases in which diversity
is entrusted to a single team: in defensive programming and primary-checker diverse
architectures, it is often trusted that the diverse functions served by the primary software and the
checking code are different enough to avoid common mistakes in their implementation phases,
although we must observe to the contrary that the difference may not avoid common mistakes in
the understanding of the models underlying both specifications. E.g., the specification of a file
system manager and that of a file system integrity checker both rely on a common specification
of the file system's redundant data structures.
The practice has also been recorded in which a team first develops by rapid prototyping an
inefficient prototype of a system, and then the actual production version, and the prototype is
used for back-to-back testing of the production version. This practice is usually a way of
extracting additional benefits from the expense of prototyping, undertaken for a separate
purpose like clarifying user requirements, not a way of pursuing diversity as a goal.

A.2.2 Diverse development teams
In practice, separate development teams always introduce some human diversity of cognitive and
problem-solving style, backgrounds, skills. Forced, "designed" diversity could extend to the
choice of staff, so that a certain role in one team is filled by a person whose main strength is in
dealing with demands of class DA, the same role in the other team is given to a person with more
expertise on demands of class DB. The practical difficulties in this approach are obvious,
although it may be feasible in some projects. On the other hand, practices like having
requirement reviews conducted by staff with diverse expertise can be justified on these grounds,
and to an extent can be guided by considerations like these.
This is a case of possible trade-offs between version reliability and diversity, so the issue of
unnecessary vs necessary weaknesses emerge. So long as we could afford it, we would tend, for
instance, to provide multiple inspectors, with diverse skills, for design inspections on each
version. Dilemmas may well arise here, for instance if we had only two inspectors that are expert
(respectively) in two specific aspects of system operation: we could decide to dedicate one of
them to each version, avoiding the risk of an inspector causing commonalities between the
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modes of thought of the two development teams and thus increasing the risk of common
failures, but giving up useful diversity within the development of each versions, and risking that
some error be overlooked by one inspector that the other inspector would have picked up. If this
latter risk were too much of a concern, we could even decide to share both inspectors between
both versions, but we would try to adopt a communication protocol that minimises the risks of
inspectors actually driving the developments of both versions. We would then be trading off
diversity between the development of the two versions against that of diversity within each
development (and thus higher version reliability).
A more extreme idea that could apply to diversity either between or within developments is that
of choosing staff for their different personal characteristics - mental or generally personality
traits - rather than just for different technical skills and backgrounds. Psychologists have
identified, for instance, different problem-solving styles in people. One could try to recruit staff
which exhibit desirable differences from these viewpoints. Experimental attempts [Westerman et
al. 1995] have failed to show positive effects from this kind of diversity, while demonstrating
positive effects of diversity in techniques used. This result does not discredit the idea
completely, of course, but the lack of positive confirmation combines with the practical
difficulties to make it less attractive. In addition, development processes for critical systems
include many formalised procedures (e.g. structured checklists, HAZOP) which may either
reduce the effects of such personal differences, or select for personnel with similar attitudes.
Unless positive evidence emerges of its effectiveness, selection for personal and cognitive
differences does not seem to be recommended.

A.2.3 Diversity in description/programming languages and notations
We discuss here the use of diverse notations for two versions, at any stage in development:
specification languages, system design languages, programming languages. Many common
considerations apply to all these cases. The main advantage to be expected is that of introducing
"cognitive diversity" into the tasks performed using these languages: writing artefacts,
inspecting and checking them, and understanding them to produce downstream artefacts, e.g. a
program from a specification. As a minor advantage, notational differences may also help to
prevent involuntary accidental communication between teams, as concepts may be difficult to
translate between notations (on the other hand, some possibly useful notational differences are
just restrictions on the use of a common notation, e.g. coding style standards or language
subsets).
Important common considerations include:
• when the two languages are very similar (e.g., two forms of state transition diagrams for

specification, or, among programming languages, C and Pascal) we would expect the only
significant benefit to be protection against low-level mistakes: syntax errors that are
common in one language but not particularly so in the other one (e.g., accidental use of
assignment, "=", instead of equality "==" in C, much less common in Pascal due to
different notations and because an assignment statement cannot be a term in an expression),
and such. Whether this protection is significantly higher than allowed by simple separate
developments (or possibly by more thorough V&V) is doubtful. On the other hand, if
experience indicates that such an advantage exists, the cost of obtaining it is low;

• different advantages can be hoped from using together higher-level and lower-level
languages, in the range (for programming, i.e., executable languages) from assembly-level
to application-specific languages and executable specification languages: the advantage
would come from shifting responsibility between application developers and
platform/compiler developers. If a language provides built-in functions (or libraries) for
doing something that would otherwise need to be programmed explicitly, the responsibility
of avoiding mistakes in doing that is shifted from the program designers to the designers of
the compiler and run-time support. We commonly recognise this as a potential benefit, in
that compilers can be built to high quality standards as the cost is spread over many users
(in some cases the opposite may be true, that compilers are less trustworthy than the present
application's designers); but another aspect of this shift may be that different errors are
common between compiler writers than are among application writers for a certain
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application. Perhaps this difference would improve diversity in failures due to coding errors,
but we do not see convincing arguments for supporting this claim. It may instead be the
case that programmers working with languages of different levels may be in a better
position to notice different kinds of deficiencies in the specifications from which they work:
with a lower-level language, the programmer has to examine more implementation
alternatives (e.g. in implementing data structures), which are instead pre-decided for the
higher-level language programmers, with possibly important implementation details hidden
and undocumented; the latter, on the other hand, may have more ease of examining the
broad-brush architecture of the product;

• the goal of cognitive diversity between users of the language seems best accomplished by
diversity between styles of language, e.g.: functional vs logic vs imperative programming
languages, or data-flow vs control-flow based specifications. In specification language,
useful diversity may be claimed between axiomatic specifications (e.g. algebraic), defining
properties that must hold about the input-output behaviour of a program, and operational
specifications, given in terms of operations to be executed.
Such different styles of descriptions of problems or implementations may encourage
different ways of seeing the problem, both at the level of small subsystems in a version and
of a whole version. It should be noticed that seeking language diversity could impose a cost
in reliability of some versions: some types of language will not be as suitable for the
specific application as others. In an extreme case, it was noted in an experiment that
programmers required to use PROLOG to program a control application ended up
emulating an imperative language by PROLOG clauses: this was probably a pure loss in
expected reliability for that version without any serious gain in diversity from the other
versions. It is unclear whether a claim for effective cognitive diversity can be made for the
difference between procedural and OO language. Perhaps the latter lead to a more data-
centred view of design, the former to a more process-centred view; possibly, both views are
possible with either style of language and their use for diversity should be encouraged with
other means;

• for programming languages, another useful form of diversity is in promoting different
lower-level implementations of the versions. For instance, block-structured languages use
stacks more heavily than static-memory allocation languages; externally equivalent
behaviours of two versions, implemented in an imperative language and in a logic language
will probably be the results of very different sequences of machine instructions, memory
access patterns etc., implying that similar demands on the versions are less likely to trigger
similar design faults in the processor, compiler etc. (cf sections A.2.8-A.2.9). Different
programming languages, of course, may also make it easier to use different compilers.

A.2.4 Diverse requirements or specifications
Development of diverse versions must of course start with a common system-level requirement
stating "what the versions have to do". This applies even in the case of "functional" diversity,
except that the described common behaviour concerns the effects of the versions' actions on the
controlled system rather than the actions themselves (and the controlled system's states that
trigger the actions rather than the way these states are detected). Development can start from a
requirements document common to all versions, from which the recursive transformations into
more detailed documents will proceed. At some stage in the development, diversity must be
introduced, while preserving the initially specified degree of equivalence between the required
behaviours of the versions. It seems desirable to introduce diversity as early as possible in this
process (perhaps limited to subsets of the versions' subsystems or functions - e.g. protection
functions but not control functions, if these co-exist in the same diverse system), as it is
recognised that errors in the early stages are those against which even mature organisations have
less effective defences. Faults due to omissions and ambiguities in the specification have been
observed in several diversity experiments (e.g. the Project on Diverse Software (PODS)
[Bishop 1988; Bishop et al. 1986]).
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Two possible benefits can be identified from diversity in top-level specifications: diversity in
errors in the definitions of the top-level specifications themselves; and introduction of cognitive
diversity, from the very beginning, into the successive stages of version developments.
Several practical issues arise with diverse specifications:
• the different specifications must be equivalent, in a sense (specified by the higher-level

system designers) which may vary from requiring bit-by-bit equality between their outputs,
all the way to simple consistency with broadly-defined system goals. "Equivalence" here
means compliance with both the requirements on the system that is to be implemented by
diverse versions (e.g., implementing a protection function or control law), and requirements
dictated by the need for the diverse versions to operate together. Equivalence is probably not
a difficult problem for simple protection systems, but it may become an issue, for instance,
with the introduction of cross-checks between the versions and the possibility that a looser
form of equivalence causes more frequent spurious trips. These problems pose more
serious constraints in control systems, where the diverse versions must: i) implement the
same control laws within the approximation that would be required in a single-version
system, but also ii) implement them in such ways that disagreements between versions are
usually limited to cases of version failure (frequent disagreements among correct outputs
would make adjudication and redundancy management difficult) and that the controlled
system can tolerate the sudden change in the outputs of the control system that may occur
when the adjudicator reacts to a version failure (the goal of smooth transitions at version
failure can be pursued by appropriate design of the controlled system and the adjudicator,
not only of the versions. The point we are making is just that the problem exists);

• so, the requirement specification for the multi-version system must include a specification
of the desired form of "equivalence" between the versions' behaviours; and the validation of
requirement specifications for the versions must include the demonstration of this restrictive
form of equivalence (which may be difficult for some application problems). To verify
equivalence, if two version specification documents are both derived from a higher-level
formal requirements document, we can certainly check that both are faithful translations of
it. But either the lack of this higher-level document, or the risk that the version specifications
add details that would create unacceptable differences between the behaviours of the
versions, may require some form of direct comparison of the diverse specification
documents themselves;

• there is a trade-off between diversity and ease of error correction and detection. In a simple
protection system, in which adjudication is logically a simple wired-OR connection of the
versions' outputs, there is almost no constraint on how the diverse versions implement their
common requirements. If, to improve error detection, it is desired to cross-check the
versions' internal representations of the state of the controlled plant, it becomes necessary to
specify relationships that these internal variables must satisfy at the moment of cross-
checking. This constrains the freedom of the different developments to produce different
designs, but perhaps not in a dangerous way, since maintaining these state variables may be
a necessary part of any sensible implementation. Far greater constraints were imposed in
some case studies implementing multiple-version, voted control systems [Avizienis et al.
1987, Eckhardt et al. 1991]: a common algorithm was specified in some detail for all
versions. It has been claimed that in this last case no useful diversity can be obtained, and it
is difficult to judge this claim: the diverse implementation did have different failure points,
so that they were useful for fault tolerance, but it could be argued that those faults would
have been eliminated by a higher-quality process, without a need for diverse coding;

• procedures for managing and controlling evolving specifications need to be established.
Specifications tend to evolve, as errors and ambiguities are discovered and corrected during
development. Keeping the specifications logically equivalent, particularly in a project with
several teams, is generally perceived as substantially more difficult and expensive than for a
single product. This additional difficulty may be even greater when products that are already
in operation have to evolve, as there are additional design concerns that the specification
changes must safeguard.
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There are various ways of producing differences between specification documents, which we
group into three categories: different expressions of substantially identical requirements;
specifications of different required properties which still imply the same behaviours for all
versions; and different required behaviours.

A.2.4.1 Different expressions of substantially identical requirements.
We can produce diverse, but equivalent, high-level specification documents by using different
specification languages, e.g. ordinary English with various forms of mathematical and graphical
notations, "formal specification languages" (e.g. Z). The general considerations of section A.2.3
apply here. We can decide to use notations which emphasise different viewpoints, e.g. data-
centred vs state-transition centred. Alternatively, we could just rely on separate development of
specification documents, possibly at the very top level from informal requirements. Whether this
would allow greater or lesser "cognitive diversity" in the specification task depends on the
particulars of the problem, people and methods concerned. In any case, it would complicate the
task of checking equivalence of the two specifications.
Several experiments have used diverse specification languages. It appears that this, together with
other DSDs employed - at least separate developments - tolerated some faults, but this is no
clear basis for believing that diverse specification languages will produce substantially better
reliability than could be achieved by simple diverse developments (see for example [Kelly &
Avizienis 1983, Bishop et al. 1986, Bishop 1988]. Stronger, though anecdotal evidence that
different specification languages can be quite useful in introducing cognitive diversity comes
from an experiment on using diverse formal specification languages [McVittie et al. 1992]: the
versions generated from one of the diverse (but equivalent) specifications tended to share some
implementation details (not shared with the versions derived from other specification versions),
although the investigators could not identify a direct cause of this similarity.
Diversity of specification languages can be applied in conjunction with either of the next two
forms of specification diversity.

A.2.4.2 Different required properties implying the same behaviour
The two specifications may describe different required properties, which allow but do not
prescribe identical internal behaviours. For instance, suppose that specification A describes a
required condition R(i, o(i)) linking each input to the corresponding required output.
Specification B might describe another such condition, R'(i, o(i)) which is equivalent to R. Or it
might describe a series of operations on the inputs, which will in the end produce an output
satisfying R. So, in general, the two specifications may be linked by the fact that satisfying
specification B implies satisfying specification A (specification A contains fewer unnecessary
constraints), or vice-versa, or both. We might even have that neither implication is known to
hold: both specifications are believed to satisfy an "upstream" requirement (say: "the reactor
shall trip when X happens", or "the credit application shall be classified as too risky if Y"), but
their other implications are unknown (i.e., we do not know exactly in which range of
circumstances spurious trips will happen according to either specification).

A.2.4.3 Requiring different behaviours from the diverse versions
We may require two diverse channels to exhibit different behaviours. In many cases this would
produce what is usually called "functional diversity". We discuss functional diversity in another
section, but the boundary between the two is not sharply defined, and both sections should be
read in conjunction..
The specified differences in behaviour may affect internal behaviour only, e.g., the two versions
have to run two different algorithms that produce equivalent results. This is a commonly
adopted DSD, desirable whenever different algorithms exist for the function to be implemented.
An interesting class of specification diversity affecting the externally visible behaviours of the
versions is as follows: one of the two versions ("primary") has a more sophisticated behaviour
and the other ("secondary") a more rudimentary, but still acceptable one. For instance, the
primary may offer better precision, better discrimination against false trips (if in a protection
system), smoother control (in continuous control), etc. The "secondary" serves as a safety
monitor for the primary, and/or a backup in case the primary fails. The failure diversity gains
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that may be expected depend on the degree of "cognitive difference" between the two
behavioural specification, but often the main goal is just higher reliability for the "secondary"
channel, which is simpler to design, and has lower run-time resource requirements. In an
extreme case in which the secondary version is very simple, so that there is a chance of believing
it defect-free, through extensive verification or proofs, a sort of "argument diversity" may
become feasible allowing a special form of independence claim between the probability of the
primary failing and that of the secondary containing any fault. This subtle argument is
developed in [Littlewood 2000].
A further development of this class of diversity leads to "primary-checker" architectures: the
secondary version becomes a checker module, which no longer performs a function similar to
that of the primary, but only acts as a watchdog on the primary, checking the correctness (when
correctness tests are feasible for the function of the primary), reasonableness or safety of the
primary's operation and outputs. These architectures are considered very attractive when the
checker can be made much simpler (and thus probably more reliable) and/or cheaper to run than
the primary. They should also be considered attractive for the degree of cognitive diversity they
seem to allow between tasks in developing the primary and the checker: even if the checker were
not expected to be more reliable than the primary, it would give better system reliability than a
simple two-version system, as explained in section 2.7.

A.2.5 Diverse development methods
At all phases in the life cycle, from requirement specifications, steps of design refinement,
coding, V&V, configuration control etc., the methods that are used can in principle be
diversified. In practice, this is easier where possible alternative methods to use are clearly
codified. E.g., the Jackson, Booch etc. methods are defined in reference books, as are more
narrow techniques to be applied to specific phases of development, like "use cases" view or
from a table-based notation.
Diversity in the development method may be essentially diversity of notations, discussed in
section A.2.3, which may bring substantial advantages; but there may be more substantial
differences in the activities performed, and these may be beneficial. Diversity in these methods
is an intriguing possibility, especially in terms of producing "cognitive diversity", but little has
been proven about it. On the down side, cost and availability of trained personnel are clearly
serious issues. We give a couple of examples of how diversity of methods can be thought to
help, with the warning that they are based on speculation, not on any empirical demonstration of
the relative strengths and weaknesses of the methods:
• a "formal" development process - one which introduces "formal" specification notations

early on - allows proofs of useful properties and forms of validation that are not possible in
a development which does not use them. This is a strength of the method, but it may be
accompanied by weaknesses: perhaps a risk that early proofs depend on assumptions that
are inadvertently relaxed in the implementation, causing flaws the V&V process; or that the
formal notations make it difficult for engineers to validate the specifications. Here we would
have a case for imposing diversity between a process that relies heavily on formalism and
proof and one that does not, in the hope that the weaknesses of the two tend to affect
different classes of demands;

• "object-oriented" development presumably focuses attention on simplifying the inventory of
code needed for a system, and avoiding integration problems through information hiding,
while a procedurally-oriented development gives greater prominence to system behaviour. It
is tempting to think that the two approaches will create useful diversity;

• the practice of specifying "use cases" as part of the requirement elicitation process may help
completeness in defining the system behaviours required in some cases. It does not focus
on completely covering the demand space. Thus, it is plausible that starting a requirement
phase with use cases for one version, and with a more typically engineering-oriented
method for another version, would give the two processes complementary strengths in
analysing details of the required system behaviour in one case, of the demand space in the
other. One may want to make sure that each development also applies the "other" method as
well to validate the requirements, but even so, the different orders in which the methods are
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applied may give the two processes complementary strengths and weaknesses in terms of
the demands that can be affected by faults.

It can be seen from these examples that these forms of diversity are attractive, but:
• judging their effectiveness is difficult, because the strengths and weaknesses of the various

methods are not well enough known (there is a case for more empirical study, which would
benefit all software engineering, not just the engineering of diverse systems);

• therefore, decisions are affected by the problem of trading off diversity against reliability of
individual versions (section 2.7). Since we cannot argue strongly that these DSDs will
produce gains in system reliability through better diversity, we ought to ensure that the
processes applied to the diverse versions are equivalent in the levels of reliability we can
expect from them, i.e., we ought to eliminate any serious weakness that we perceive in a
process compared to the others.

A.2.6 Diverse verification/validation/testing
Different V&V methods may offer two kinds of benefits:
• direct benefits, in that they differ in their inherent efficacy against different faults: e.g.,

- "operational" testing tends to find faults with higher contribution to unreliability first,
while "coverage" testing will have no such bias. So, for a given finite amount of testing
effort, the sets of faults that (if present) are found by the two methods would be
different. Formal proofs may find yet other kinds of faults

- different formal methods are appropriate for describing different subsets of the
properties of a program, and thus to detect different faults;

• indirect benefits, via cognitive diversity: different procedures may cause people to focus on
different aspects of the problem, and of different strategies in the attempt to cover the
problem exhaustively (cf the popularity of both FMEA and fault tree analysis, both of
which, are just procedures for systematically covering the space of failures and their
consequences, and thus may be considered, at a rather abstract level, as equivalent
procedures).

Regarding testing in particular, there appears to be little experience of diverse testing to create
diversity in the different software versions. One reason for this may be that it can be seen as a
way of deliberately withholding one or more types of testing from a particular version (i.e.
because they had been used on another version). Software developers might think this unduly
constraining, and that it may result in individual version reliabilities that are lower than would
otherwise be the case. It is likely that the efficacy of a testing method for detecting faults and
improving reliability, for a single version diminishes with additional use. If this reduction in
efficacy is rapid, it would be better (from the point of view of achieving version reliability most
cost-effectively) to use a particular method for only a part of the allotted testing time, and then to
switch to another method. On the other hand, using the same set of testing methods on each
version in a set of diverse versions may not achieve the same diversity between versions as
would using (say) a single (different) testing method on each.
The issue here is one of trading off increases in version reliability against increases in diversity
between versions, and of how to best allocate diversity within and between version
developments, which we have treated extensively in section 2.7. This issue requires further
investigation (a work item planned for the DISPO2 project will extend the models of V&V
diversity within one version - cf section 2.8 - to multiple versions)
A special case is that of "back-to-back" testing. This clearly offers a cheap test oracle and
cheaper test generation than testing two versions separately. These savings may be important in
some applications, so as to recommend back-to-back testing without question. However, if
testing does lead to detecting and correcting faults, it will certainly reduce diversity between the
versions. This will probably not matter as long as all the corrections are successful, but will tend
to eliminate mostly bugs that do not produce common failures (or common identical failures).
In detail: using comparison of the two versions as the only oracle means that we may mostly
eliminate faults that did not threaten system reliability in any case (at least for 1-out-of-2



Bev Littlewood, Lorenzo Strigini:                       A discussion of practices for enhancing diversity in software designs

p. 46

protection systems). Even with additional oracles, if we can afford few test cases and failure
regions may be many and small, it may be more cost effective to provide different test cases for
the two versions. We may eliminate more faults this way, and possibly more that have
overlapping failure regions in the two versions.
Some of these considerations also apply to other components of verification and validation, such
as walkthroughs and inspections, and formal proofs. However, the application of all these
methods is both obviously constrained by available resources and dependent on other aspects of
development. For instance, suites of development tools contain their own specific static analysis
tools, which cannot be applied with other development methods. When such constraints exist, it
is presumably desirable to select tools and methods in such a way as to enhance diversity. For
instance, having to develop two versions, and to choose among three tool suites which appear
equally suitable to support reliable development, but differ in the forms of V&V that they
support, it would be reasonable to choose the two that appear to differ most in these V&V
components.

A.2.7 Automatic code transformation
As a safeguard against compiler errors, hardware design faults and problems with arithmetic
precision, there has been some limited use of automatic transformation of the source code of
one version to obtain another, "diverse" version. For instance, arithmetic expressions can be
automatically transformed by exploiting the commutative and distributive properties of
arithmetic operations; Boolean expressions can be changed into equivalent expressions using
the negations of the Boolean variables involved; conditional statements can be rearranged by re-
expressing the condition ("IF A=0 THEN do x ELSE do y" becomes "IF A≠0 THEN do y
ELSE do x"); statements can be reordered; one could (though this kind of transformation does
not appear to have been used) convert arithmetic operations into equivalent ones by standard
logarithmic or trigonometric transformations on expressions, and so on.
At least for simple transformations, these methods are very cheap and thus to be recommended.
Their effectiveness is not fully proven with respect to real processor design faults, but they
derive from time-honoured, empirically proven methods for detecting hardware faults by time-
replication and comparison; so, we should believe that they are quite effective, at least if the
processor design faults are similar to the artificial faults injected for evaluating these method
against hardware faults.
A problem for these methods come from modern compilers' attempts to optimise code in such
ways that all effects of these transformations may be cancelled by the optimisation steps. Then,
this kind of diversity would only offer protection in those safety-critical development processes
in which optimising compilers are still considered inappropriate, or only against errors in the
front-end stages of compilation.

A.2.8 Diverse development platforms: diverse tools
We collect here some considerations that apply to all software engineering tools, although
DSDs concerning specific tools are also discussed under other categories. Diversity is a
concern with all software engineering tools because:
• they affect the way tasks are presented to people, and thus possible cognitive diversity

between tasks affecting the relative likelihood of different human failures. Tool diversity is
thus a way of achieving "notational diversity (cf section A.2.3) or method diversity (cf
section A.2.5). Tools that support comprehension of designs and programs (e.g., behaviour
and structure visualisation) also seem good candidates for diversity, either within or between
development processes;

• they also have a direct role in preventing human errors or removing their effects on the
developed program. If different tools cover different sets of probable errors, diversity seems
useful;

• they are complex products, presumably never defect-free, and their defects can violate the
intentions of their users and introduce faults in the developed versions. For many tools
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(e.g., compilers, proof checkers), verifying their results directly is extremely difficult, so
diversity appears to be a necessary precaution.

Diverse compilers
A category of tools that has received great attention in safety critical systems is compilers, as
being, among automated tools, especially pervasive and complex. Compilers are known to
introduce some faults, and diversity between compilers is likely to tolerate some of these. In
addition, diverse compilations will often mean that the two compiled versions will not produce
identical requests on the hardware, and will thus add a degree of protection against the
ubiquitous design faults in complex modern hardware.
The use of diverse compilers is very cheap in terms of both money and time, and thus desirable
although presumably ineffective against faults of the application versions proper. Diverse
compilation is thus advisable even (or especially) in those modular-redundant systems where all
channels run a single version of the software. Diverse compilations on one version can also be
used, before deployment, to flush out via back-to-back testing or reverse compilation any bugs
introduced by the compiler, and thus improve the individual versions (e.g. by avoiding the
patterns of code that trigger the compiler's faults). Indeed, it would seem somewhat perverse to
withhold from a version this kind of check.

A.2.9 Diverse support platforms: run-time platform
Diversity in the run-time platforms has received little attention in the literature on software
diversity, but it is arguably the only form of diversity that is generally and absolutely necessary,
as the system designers usually have no other effective defence against platform faults. Its
effectiveness cannot be quantified yet: to our knowledge, there has been no empirical study of it;
even studies of design faults in microprocessors [Avizienis & Yutao 1999] lack statistical data
about design-caused failures.
We have argued before that diversity in the earlier, "higher-level" stage of development is not a
sufficient protection against common failures due to hardware design faults, and hardware
diversity should not be assumed to guarantee independence of these failures. Examples of
stressful, "difficult" situations that are likely to be created for the support platform by the same
demands on the system, even if applied to diverse versions of the application software, include
demands with high rates of external events (discussed as an example in section 2.6.2), or other
sources of overload (in operating systems, heavy requirements for communication buffers,
processes, etc); floating-point problems, which have growing importance as it becomes more
common to exploit microprocessor floating point arithmetics even in critical applications:
failures (or exceptions, often treated poorly by compilers) are more likely to arise in some
ranges of values of the controlled system's state variables.

A.2.9.1 Separation and loose coupling. Diverse timing
We recall here that increased separation between the diverse channels - separate sensors, loose
synchronisation between sensor readings and between scheduling of internal actions - are ways
of promoting data diversity between whole versions or subsystems thereof. This "data diversity"
may, for instance, protect one channel from unusual timing patterns on which the other channel
fails. It is often dictated by other design considerations than design faults, as it creates some
degree of decoupling between the effects on the diverse channels of time-dependent
disturbances: electro-magnetic interference, special situations in the computing platforms (e.g.
transient overloads, buffer overflows, race conditions). Of course, it also introduces the potential
for undesired discrepancies.
Redundancy without tight synchronisation requires special attention in designing
communication and adjudication (e.g., insufficient care in implementing communication and
voting among asynchronous redundant channels caused serious problems in the AFTI F16
experimental fly-by-wire programme), and some experts argue that the advantages are not worth
the risk of design faults. But these objections do not seem to hold for simple protection
systems. In any case the choice between synchronous and asynchronous operation is often
made upstream of choices about software development.
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Even if the diverse channels are part of a tightly synchronised architecture with a common time
reference, timing diversity may be enforced by requiring that sensors be read at specified,
different times.

A.2.9.2 Diverse hardware
The hardware of computer-based systems cannot be assumed to be free from design faults: it
uses components (e.g., microprocessors, ASICs - application-specific integrated circuits) which
are extremely complex, and many such components in the recent past have indeed been found to
contain design faults. Especially with microprocessors, system developers may face the choice
between using mass-produced, cheap, high-performance recent models and using much simpler
chips (or even "formally proven" designs), with much lower performance and less of the
assurance given by large-volume production.
It is thus clearly desirable to employ hardware design diversity, for the same reasons that call for
using diversity in software. Diversifying the components that are considered more susceptible to
design faults will to some extent create diversity in the rest of the design as well. It should be
noticed that hardware design faults may be not just sensitive to input, but sensitive to history,
time and environment (e.g., temperature or supply voltage) as well. It is thus possible for
hardware to have many, low probability, design-induced failure modes, all of which can be
tolerated to some extent by diversity.
Although the design faults in chips have received much publicity, one cannot exclude design
faults in assemblies (boards, backplane-based assemblies, etc.), e.g. in the timing of bus
interactions or the thermal design of boards. In hardware that is qualified for safety applications,
these faults are likely to be rare and only triggered under special environmental conditions
(ambient temperature, radiation levels), resulting in increased failure rates under special
conditions: in other words, these faults, if present, will undoubtedly cause positively correlated
failures in any non-diverse system. With respect to sensor design, this kind of considerations is
already currently accepted as one of the motivations for adopting "functional" diversity.
A couple of less important, positive effects of hardware diversity are:
• hardware design diversity will also require diverse compilers, thus allowing some limited

degree of protection against compiler errors. Indeed, modern microprocessors require
increasingly complex compilers (to manage architectural features like pipelining, speculative
execution and such; some newer designs depend on the compiler or assembler even to
guarantee correct sequencing between operations belonging to separate instructions),
increasing the risk of compiler errors and the desirability of protection against them;

• hardware diversity, even with software compiled from identical source code, is likely to
create slight differences in execution timing between the redundant channels, and quite
possibly in the results of computations (e.g., floating-point arithmetics). These effects may
have the same desirable (and undesirable) results as explicitly-mandated data diversity.

If the executions in the multiple computation channels must be synchronised and/or voted,
hardware diversity carries the cost of more complex hardware and/or design. Fortunately, this
need not be the case in protection systems.
Hardware design diversity may be relatively cheap: it leads to an n-uplication of the project-
specific hardware design costs; but, if the computers used are off-the-shelf units, these costs will
be low compared to software design costs. For entirely bespoke hardware designs, of course,
the cost of designing one hardware channel will be multiplied by the number of diverse channels
required.

A.2.9.3 Diverse operating systems or run-time executives
It is common in simple, safety critical computing systems to have essentially no operating
system. However, with increasing complexity of the application a layer of common support
functions is desirable, which can be called an operating system or real-time executive: we will
use the abbreviation "OS" to cover the whole category. Re-using pre-existing OSs is attractive
in terms of costs and presumed reliability. Design faults in this layer can of course cause
system failures. Hardware diversity will cause some differences in the behaviour of OSs, even if
its is "the same" OS, ported to different hardware platforms, but these differences may be too
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superficial to avoid common failures due to design faults. We see three directions for
diversifying the OSs:
• OSs with equivalent functionalities but different origins. Here, the purpose is to avoid any

common faults originated by common causes in OS developments. So, one would try to
avoid, for instance, "ports" of the same OS to different machines, or OSs that share a
common ancestor. The costs would be limited, and the interfaces presented to application
versions would be rather similar. The more different the application interfaces, the more we
could expect some additional advantage in reducing common failures due to errors in the
designs of the application versions;

• OSs providing different levels of services. For instance, we may use for one version a basic
executive that only provides time-slicing, and for another a more complete OS that provides
inter-process synchronisation and message passing, scheduling and management of
asynchronous peripherals. The effects would be similar to those described in A.2.3 for
diversity between "higher-level" and "lower-level" languages;

• OSs implementing different architectural approaches: for instance, an "event-triggered" vs a
"time-triggered" approach. Here, we could hope for greater advantages. Many design
problems for the two OSs are likely to be different. The differences between OSs also
impose serious differences in the way the application versions must interact with them,
hence algorithm diversity, and probably in the whole way version developers have to
visualise their designs. Moreover, it is a way of creating diversity in demands on the low-
level platform (processor hardware) for similar demand on the versions, and thus improve
tolerance of hardware design faults.

A.2.9.4 "Partial" diversity, or diverse execution environments for non-diverse subsystems
In a modular-redundant system, it is possible that, of the different subsystems comprising each
channel, some are implemented diversely between channels, and some are not. Such a
configuration does not pose any substantial new questions: the subsystems that are diverse can
be considered as diverse systems in their own right, and create some form of data diversity for
those subsystems that are identical (cf 2.6, item 5).

A.3 Functional Diversity
In functional diversity, a certain system-level requirement (e.g., emergency shut-down of a
reactor under certain conditions) is satisfied by multiple redundant channels that implement
different input-output functions: they typically use readings of different physical variables as
inputs, and different algorithms, if possible based on different physical laws linking the state
variables of the controlled system. Furthermore, the channels are often implemented in different
technologies, e.g. software vs hard-wired electronics, although this possibility is being limited
by the decreasing availability of non-computer based components.
Functional diversity has a long history in conventional reliability engineering as a protection
against common mode failures. For instance, diverse back-ups to an electrical power supply
might be both batteries and a diesel generator set.
Functional diversity is especially attractive as a protection against design faults because it may
protect from errors in the functional specification of software, which could cause identical faults
in diverse software versions. This is a difference of degree rather than one of kind, as we shall
see, but it is still an advantage.
The possibility of applying functional diversity varies, of course, between different systems.
Protection systems (where a pre-defined situation has to be detected), and other measurements
systems where multiple sources of information exist (e.g. flight instruments) are typical
applications.
High claims are commonly made for the effectiveness of functional diversity. In particular, it is
claimed that it can be expected to achieve failure independence between the diverse channels.
We have shown elsewhere [Littlewood et al. 1999] that this general claim is incorrect, for
essentially the same reasons for which we cannot expect, in general, "conventional" design
diversity to deliver failure independence: two functionally diverse channels operate on two
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different transformations or projections of a common demand space (the physical state space of
the controlled plant), characterised by its own varying "difficulty". This of course does not mean
that functional diversity is a bad idea. It is plausible that it will often deliver better protection
than pure design diversity, but we should examine under which circumstances the justifications
for this plausible expectation hold. Since "functional diversity" is a general term for systems
that have "more than just design diversity", we should analyse the various ways in which it is
expected to be beneficial.
The use of diverse technologies in different channels is presumably a defence against common-
mode physical failures (non-zero correlation between failures in hardware and software can be
described by rather similar models [Hughes 1987, Littlewood 1996]. With respect to design
faults proper, it seems to imply several DSDs that are considered beneficial with design
diversity: different technologies often require different design notations and implementation
techniques. Most importantly perhaps, there may be the advantage of cognitive diversity between
the tasks of specifying the top-level requirements for the diverse channels: the mappings
between the controlled system's state space and the demand space of each channel may be
different enough to cause useful differences between these tasks.
Even for systems in which all channels are software-based, different algorithms are often
specified for the diverse channels, either directly, or indirectly through basing their functional
specifications on different physical laws. All the advantages listed remain, except the first. We
have already discussed algorithmic diversity (cf A.2.4.3).
On the other hand, several factors may reduce the additional advantage that we expect functional
diversity to produce compared to design diversity:
• the intellectual process of obtaining the diverse specifications from common system-level

requirements is similar, with respect to human failures, to the process of writing programs
from these specifications. We should examine how this task is made different for the
different specifications of channels in the case of functional diversity, rather than assuming
enough difference to produce substantial gains ([Burlando et al. 1992] attempts to model
functional diversity in terms of differences between the "semantic domains" of the diverse
versions);

• any uncertainties in predicting how the controlled system will behave in rare situations are
likely to affect the specifications of both diverse channels - a concern that applies to most
protection systems;

• for software-implemented channels, many needed algorithms (e.g., digital filtering) perform
essentially the same function, irrespective of the input they process, and we should thus
expect them to be subject to similar human mistakes in design, causing common-mode
failures (e.g., both channels might behave incorrectly when their sensor readings vary along
a certain pattern, and some reactor failure modes may produce this similarity in behaviour);

• last, there may be true commonalities in implementation: use of common software libraries,
or libraries derived from common mathematical sources; similar processor hardware,
sharing design faults that are likely to cause failures under similar conditions; etc. Some of
these plausible sources of common-mode failures are not limited to software-implemented
channels: e.g., filters with incorrect responses to specific input waves could well be a
common-mode failure source in analog hardware implementations; application-specific
integrated circuits are often designed by assembling pre-defined subcomponents from
libraries and/or using CAD systems that may introduce common faults. What distinguishes
software-based implementations is the difficulty of excluding such failure modes, due to the
complexity of software and modern computer hardware.

In conclusion,
• it is likely that functional diversity will increase (possibly to a useful extent) the degree of

diversity that could be obtained by "conventional" design diversity (applied to the same
subsystems), although functional diversity should not be assumed to guarantee failure
independence;
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• this probable gain can be limited by common, system-level causes of common errors, e.g.
difficulties in predicting stresses on the controlled system or its reaction to them, and by
difficulties in applying truly different algorithms in the diverse channels; and may be limited
or even nullified by commonalities introduced at lower levels, like similar implementation
algorithms or similar platforms (hardware, operating systems, support software - cf 2.6.1,
A.2.8, A.2.9). All these commonalities can be detected to some degree by analysing the
specific system, and at least the latter can to some extent be mitigated by further DSDs.
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