
Fault tolerance via diversity against design faults:
design principles and reliability assessment

Bev Littlewood Lorenzo Strigini
Centre for Software Reliability

City University
Northampton Square,

London EC1V OHB, U.K.
+44 20 7477 8420 +44 20 7477 8245

b.littlewood@csr.city.ac.uk l.strigini@csr.city.ac.uk

Design faults account for a large part of failures in mature
software-based products. It is accepted that software will
contain faults, and the unreliability due to these faults
cannot be bounded with sufficient confidence for many
applications.

With mature, high-quality development processes,
investing additional resources into avoiding faults yields
unknown and presumably diminishing results. Fault
tolerance offers an alternative: employing some resources
in making a system more robust against residual faults,
instead of trying to eliminate them. Fault tolerance adds
code intended to detect and/or correct errors produced by
other code, at execution time. It depends on "diversity":
the added code should not succumb to the same errors,
during the same executions, as the code that is to be
protected.

Some degree of fault tolerance - defensive programming -
is commonly applied and accepted practice. Some
industries with safety concerns (civil aviation, railways,
nuclear) have applied diversity in a more extensive form:
e.g., "multiple-version programming" and forms of
"functional diversity". These uses, however, have
attracted much controversy. The important questions
include: is diversity cost-effective for increasing reliability
or safety, when compared with other means for
improvement with comparable costs? Can diversity
produce higher reliability or safety than other methods
would? Does it make it easier to certify the achieved
reliability or safety before a system is delivered for
operation? How should a diverse development be
managed to be effective in improving reliability or safety?

Research results indicate that (as usual in software
engineering) these question can only be answered with
reference to each specific application context and that
diversity is no “silver bullet”. But diversity is an
attractive option, made more interesting by current trends
like the preference for COTS items, and it is important
for practitioners to go beyond the summary opinions and
misunderstandings that surround it.

This tutorial is designed for people involved in system
design, acceptance or certification, especially in
companies with high dependability requirements or plans
to improve on current levels to move into more
demanding markets. It is also appropriate for researchers
in software engineering wishing to obtain an up-to-date
view of knowledge in this area.

This tutorial describes:

- the motivations behind the use of software fault
tolerance, and thus the circumstances in which it
should be considered as a possible choice;

- what design schemes one may adopt, and which
issues a designer needs to be aware of, for effective
application. We present both examples of industrial
use and explanations of the important design choices
and trade-offs. In this part, we cover the widely
published solutions of N-version programming and
recovery blocks, but also describe the various
options available to a designer, and interesting
specific solutions adopted in the railway and aviation
industry, and scheme for applications to safety
systems. We discuss the factors that may decide the
scheme to be adopted and the design of adjudication
between conflicting results;

- "what one should really believe" about the
effectiveness of software fault tolerance in improving
reliability, beyond the controversy and the
misunderstandings surrounding it. We give a
picture, assembled from more than 10 years of
research, of what evidence has really been produced
for and against software diversity. We explain the
weaknesses of the extreme opinions voiced for and
against software fault tolerance, and discuss the
criteria that should affect practical decisions about
using it, about how to improve its effectiveness by
appropriate decisions in developing alternate
versions of software components, and about its value
for system acceptance.

To appear in Proc. ICSE 2000, the 22nd International Conference on Software Engineering
Copyright © 2000 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of
this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this
work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post
on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications
Dept, ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org.

This copy is posted by permission of ACM and may not be redistributed.

