
Software reliability: basic concepts and assessment methods

Bev Littlewood Lorenzo Strigini
Centre for Software Reliability

City University
Northampton Square,

London EC1V OHB, U.K.
+44 20 7477 8420 +44 20 7477 8245

b.littlewood@csr.city.ac.uk l.strigini@csr.city.ac.uk

Software reliability is important for many sectors of the
software industry. Besides knowing how to achieve it, it
is important to know the actual reliability achieved in a
specific software product. Assessing the reliability of
software-based systems is increasingly necessary: more
users bet larger amount of money, the survival of
companies and at times the lives and limbs of people on
the service they expect from the software. Sound
decision-making requires some understanding of the
uncertainties thus incurred. Meanwhile, software
complexity increases and progress in development tools
enables more poorly-trained people to build software-
based systems. The short-term economic incentive to use
off-the-shelf software, even in sensitive applications,
imposes new requirements to evaluate the risk thus
assumed. The pressure on vendors to guarantee some
level of quality of service will thus also increase,
extending from bespoke software to off-the-shelf software
and from mission-critical to productivity-critical software.

The only sound methods now available rely on direct
evidence from observing software behaviour in realistic
test situations.

A difficulty is that many methods are recommended for
software reliability assessment, but this variety hides the
common underlying principles and makes it difficult to
decide which method to use.

Given that different methods often produce different
estimates, practitioners may well conclude that software
reliability prediction is about producing precise numbers
with no definite meaning. It is significant that many
companies accept, as a substitute for software reliability
predictions, inappropriate measures like the number of
defects detected during development.

This tutorial is designed for practitioners who need to
deal with reliability claims (in procurement of software,
shipping decisions, contractual matters), with choosing

ways of estimating software reliability and with
interpreting the resulting estimates.

It covers:

- the need for probabilistic measures of software
dependability;

- the principles of realistic testing for reliability
estimation, and methods for defining and
reproducing input profiles, i.e., criteria for defining a
test case and for choosing a sequence of test cases;

- the precise meanings of the various questions that
can be asked of reliability prediction, and of the
predictions produced by different methods. We
clarify the two scenarios of reliability evaluation:
stable reliability and reliability growth. We also
explain the practical differences between the
predictions produced by "classical" and "Bayesian"
methods;

- how to decide among various reliability growth
projections using the techniques developed at the
Centre for Software Reliability. Many alternative
models have been produced that purported to be able
to compute reliability predictions from failure data,
but none of these could be shown to be universally
accurate, so that it could be chosen with confidence
by practitioners. The selection techniques allow a
prediction method to be chosen, during a specific
software project, by a procedure based on the
method's performance to date during the same
project;

- the limits in the levels of reliability that can
confidently be predicted, how these are affected by
the specific information available, and how they can
be somewhat improved by more sophisticated
approaches.

The tutorial is meant for an audience with a software
engineering background, with a basic understanding of
probability and statistics.

To appear in Proc. ICSE 2000, the 22nd International Conference on Software Engineering
Copyright © 2000 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of
this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this
work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post
on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications
Dept, ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org.

This copy is posted by permission of ACM and may not be redistributed.

