Programming in C++
Session 3 — Overloading

Dr Christos Kloukinas

City, UoL
https://staff.city.ac.uk/c.kloukinas/cpp
(slides originally produced by Dr Ross Paterson)

UNIVERSITY OF LONDON
EST 1894

Copyright © 2005 — 2023

Programming in C++ 1/27

Dr Christos Kloukinas (City, UoL)

Overloading

Term symbol is overloaded. ..
A single symbol has multiple meanings.
The meaning of a particular use is statically determined by the types of
its arguments.
The following may be overloaded in C++:

@ constructors (as in Java) — often useful.

@ member functions (or methods, as in Java) — a dubious (and
dangerous) feature.

@ independent functions — ditto.

@ operators — heavily used in the standard libraries.
Operator overloading makes for concise programs, but overuse
may impair readability.

Dr Christos Kloukinas (City, UoL)

https://staff.city.ac.uk/c.kloukinas/cpp (i

Programming in C++ 3/27

Polymorphism

Code that works for many types.

subtype polymorphism (dynamic binding) - session 7
The version executed is determined dynamically. (Savitch
14,15; Stroustrup 12; Horstmann 14)

ad-hoc polymorphism (overloading) — this session
The version executed is determined statically from the
types of the arguments (Savitch 8.1; Stroustrup 7.4,11;
Horstmann 13.4)

parametric polymorphism (genericity) — next session
A single version, parameterized by types, is used (Savitch
16.1-2; Stroustrup 13.2-3; Horstmann 13.5)

Dr Christos Kloukinas (City, UoL)

Programming in C++ 2/27

Implicit conversions and overloading

@ Recall that numeric types may be implicitly converted, e.g. given a
definition
void f(double x) { ... }

it is legal to write £ (1), because 1, of type int can be implicitly
converted to double. (Later: similar situation with inheritance of
class types.)
@ Now suppose there was another definition
void £(int n) { ... }
If we call £(1), the best (most specific) definition is selected, i.e.
the one closest to the call type.

So, to be explicit - say which you really want: £(1.0)
or even better £(double(l))

Dr Christos Kloukinas (City, UoL)

Programming in C++ 4/27

https://staff.city.ac.uk/c.kloukinas/cpp
https://staff.city.ac.uk/c.kloukinas/cpp

.
Ambiguity

Given the definitions

void f(int i, double y)
void f(double x, int j)

{ ...}
{ ...}

the following is rejected by the the compiler:

£(1, 2);

// ambiguous!

We could get around this by also defining

void f(int i, int j) {

}

Then every application would have a best match.

Dr Christos Kloukinas (City, UoL)

Ove rRiding

Loading

Overriding — compare:

void move (person p) {

if (p isA driver) {

} else if (p isA cyclist) {
} else if (p isA pilot) {

} else { //*DEFAULTx* }

Overloading — compare:

void £(x) {

if (x isA double) {

} else if (x isA float) {
} else if (x isA int) {

} else {assert (0);}//*ERROR*

Programming in C++ 5/27

— Write fewer if’s with OOP!

class person {//*DEFAULT*

void move(){...} }
class driver :personf{
void move(){...} }
class cyclist :person{
void move(){...} }
class pilot :person{
void move(){...} }

void f (double x) {...}
void f(float x) {...}
void f (int x) {...}
//*NO* (runtime) *ERRORx*!!!

They allow us to write if/then/else’s better — the compiler does it!

Dr Christos Kloukinas (City, UoL)

Programming in C++ 6/27

Programming in C++

2023-11-20

L Ambiguity

You're writing programs for PEOPLE first!

So, DOCUMENT THEM!

f(int (1), double(2));

Overloaded equality

In C++, we can compare values of built-in types:

int i;

if (i == 3) /7 T

We can also compare objects:

string sl, s2;
if (sl == s2)

And similarly for vectors.

The == operator is overloaded:

special definitions have been given for string, vector and many
other types.

[*] Prefer (3 == i), because “if (i = 3)”isvalid C++ (andit's
always true...)

Dr Christos Kloukinas (City, UoL)

Programming in C++

7127

I
Expanding overloaded operators

An operator can be either an independent function or a member
function, in each case with a special name starting with operator:

Binary operators An expression a == b could mean either of
@ operator==(a, b) (independent function)
@ a.operator==(b) (member function)
a is the implicit 15 argument!
Unary operators An expression ! a could mean either of

@ operator! () (independent function)
@ a.operator! () (member function)
As with ordinary overloading, there must be a unique best match.

a.method (b, ¢, d) isinreality: method(a, b, ¢, d)

Dr Christos Kloukinas (City, UoL)

Programming in C++ 8/27

|
An alternative definition

We could instead have defined an independent function:

// pl == p2; now stands for operator==(pl, p2);
bool operator==(const point &pl, const point &p2) {
return pl.x() == p2.x() && pl.y() == p2.y();
}

In either case we can then write
point pl, p2;
ifl(pl == p2)
if (pi.;= point (0, 0)) // temporary object

// (only works if second parameter is *constx)

Dr Christos Kloukinas (City, UoL)

Programming in C++ 10/27

I
Comparing points

class point {
int _x, _y;
public:
point (int x, int y) : _x(x), _y(y) { }

int x() const {return _x;}//pl.x();pl as if const
int y() const {return _y;}
// pl == p2; stands for pl.operator==(p2);
bool operator==(const point &p) const {
return _x == p._x && _y == p.y();
}// methods can read private fields
}i
@ Use const as much as possible.
@ Put it in by default, only remove it if you (really) need to.
@ If you need a non-const version, see if you can also provide a
const one (for use with constant objects).

Dr Christos Kloukinas (City, UoL) Programming in C++ 9/27

A note on types

@ The language does not enforce any constraints on the argument
types and return type of operator==, or any other operator.

@ ltis conventional that the arguments have the same type and the
result type is bool.

@ ltis also conventional that the == operator should define an
equivalence relation.

@ Departing from these conventions is permitted by the language,
but will be very confusing for anyone trying to understand your
code (including a future you).

Equivalence Relation R:
ez Rz Reflective

@erRy—yRz Symmetric
xRy N yRz—z Rz Transitive

Other comparison operators

The <utility> header file (which is included by <string>,
<vector> and other data types) defines

@al'=b as !'(a==b)
@a>b as b<a

@ a<=b as !(b<a)
@ a>=b as !(a<b)

So usually we need only define == and <, but we can also define the
others if required.

You need to declare:

using namespace std::rel_ops;

Dr Christos Kloukinas (City, UoL)

Programming in C++ 12/27

.
Qutput of built-in types

Consider
cout << "Total = " << sum << ’'\n’;
This is equivalent to

((cout << "Total = ") << sum) << '\n’;

@ The operator << is overloaded in iostream, not in the C++
language.
@ It associates to the left.

@ ltis defined as a member function of ostream, and returns the
modified ost ream.

Dr Christos Kloukinas (City, UoL)

Programming in C++ 14/27

Dr Christos Kloukinas (City, UoL)

Operators available for overloading

Only built-in operators can be overloaded:

unary ~ ! + - & * -+

binary + - * / % ” & | << >>
+= —= *= /= %= ~= &= |= <<= >>=
== 1= < > <= >= && I

Their precedence and associativity can’t be changed, so the
expressions

a+b+c*xd (a + b) + (¢ » d)

are always equivalent, no matter how the operators are overloaded.
++a; is a.operator++();
a++; iS a.operator++ (int);//dummy argument (ignored)

Dr Christos Kloukinas (City, UoL) Programming in C++ 13/27

The << operator

@ The built-in meaning of << is bitwise left shift of integers, so that
the expression 5 << 3 is equal to 40.

@ It associates to the left, so 5 << 2 << 1 is also equal to 40.

@ It was selected for stream output for its looks. Luckily it associated
the right way.

o Different overloadings of the same symbol need not have related
meanings, or even related return types.

Bitwise left shift

5<<0 101 = 5
5<<1 1010 = 10
5<<2 10100 = 20
5<<3 101000 = 40
<<y = x*2Y

>>y = zx27Y = x/

Programming in C++ 15/27

The ostream class

class ostream {

public:
ostream& operator<<(char c);
ostream& operator<<(unsigned char c);
ostream& operator<<(int n);
ostream& operator<<(unsigned int n);
ostream& operator<<(long n);
ostream& operator<<(float n);
ostream& operator<<(double n);

}i
In the string header file an independent function:

ostream& operator<<(ostream &out, const string &s);

Why not define it as a member function???

ostream& operator<<(ostream &out);

Dr Christos Kloukinas (City, UoL) Programming in C++ 16/27

.
Output of a user-defined type

class point { int _x, _y;
public:
point (x, y) : _x(x), _y(y) { }
int x() const { return _x; }
int y() const { return _y; }
};

The output operator for points is defined as a non-member function:

ostream& operator<<(ostream &s, const point &p) {
return s << ' (/ << p.x() << /,’ << p.y() << ")’;

Again — why as a non-member function ???

Dr Christos Kloukinas (City, UoL) Programming in C++ 17/27

Programming in C++

L_The ostream class

2023-11-20

Why not define printing string objects as a member function?

The writer of the string class cannot modify the ostream class.
So if they want to declare it as a member function they can only do so
within the class string.

But then the meaning of the operator changes — instead of writing
cout << s; we would have to write s << cout; — not what we want!

Do you understand why we’d have to write s << cout; to printa
string s on cout if we'd have defined operator<< as a member
function of class string?

If you do not, start reading again from slide “Expanding overloaded
operators” (slide 8) — repeat until it’s clear.

Output of a user-defined type — ATTENTION!!!

@ Always output to the ostream parameter (s), NOT to cout/cerx!!!
@ cout/cerr might not exist!
e May want to print to a socket, a string buffer. ..
@ Always return the stream received as parameter
o To enable chaining: cout << a << b;
© Return type and the parameters should all be references — the
object should be a const reference.
e We need to change the ostream (so a reference) and we want to
avoid copying the object (so a const reference).
© We NEVER print a newline at the end!
e Some may need to print more things before the newline.
@ We output the bare minimum — nothing more!
Never print things such as:
“The point object is (3,4)”
@ We keep the output simple and easy to READ BACK.
o We must be able to eat our own dog food!

Dr Christos Kloukinas (City, UoL) Programming in C++ 18/27

Using various versions of the << operator

Suppose we have an expression a << b, where a has type A, and b
has type B. Then the relevant definition of << could be either
@ a method of class A taking one argument of type B:
ReturnType A::operator<<(B x)
@ or an independent function (not a method in a class) taking two
arguments of types A and B:
ReturnType operator<<(A x, B y)
For example the following uses a mixture of these:
point p(2,3);
cout << "The point is " << p << '\n’;
Can you identify which occurrences of the << operator are
independent functions and which are member functions?
(Hint: Think which types were already known to whomever wrote the
ostream class.)

Programming in C++ 19/27

Dr Christos Kloukinas (City, UoL)

.
Input of built-in types

Input is almost the mirror image of output:

int x, y, z;
cout << "Please type three numbers: ";
cin >> x >> y >> z;

@ Again >> is overloaded: it knows what to look for based on the
type of its argument.

@ It also associates to the left, and returns an istream.

@ By default, >> will skip white space before the item; in this mode
you will not see a space, newline, etc.

Dr Christos Kloukinas (City, UoL)

Programming in C++ 21/27

Dr Christos Kloukinas (City, UoL)

Dr Christos Kloukinas (City, UoL)

On accessing private state

An accidental consequence of the way operators are defined in C++:
@ An operator defined as a member function has access to the
private and protected fields of its first argument, but not its second
(when the second is an object of a different class).
@ Sometimes this is not what we want (e.g. for << and >> of
user-defined types).
@ One work-around is to declare the operator as a £riend of the
second class.
@ Even better to use a helper member function:
class point {
public:
ostream& print_on(ostream &s) {
return s << /' (/ << _x << ', << y << ")"; }
};
ostream& operator<<(ostream &s, const point &p) {

return p.print_on(s); }
Programming in C++ 20/27

The istream class

class istream : virtual public ios {

public:
istream& operator>>(char &c);
istream& operator>>(unsigned char &c);
istream& operator>>(int &n);
istream& operator>>(unsigned int &n);
istream& operator>>(long &n);
istream& operator>>(float &n);
istream& operator>>(double &n);

};
In the string header file, as an independent function:
istream& operator>>(istream &in, string &s);

Programming in C++ 22/27

The state of an istream

The following methods of istream test its state:
bool eof() the end of the input has been seen.
bool fail() the last operation failed.

bool good() the next operation might succeed.
(Equivalentto ! eof() && ! fail().)
bool bad() the stream has been corrupted: data has been lost

(data was read but not stored in an argument).
(Implies £ail (), but not vice-versa.)

Atest “if (s)” isequivalentto “if (! s.fail())”

Dr Christos Kloukinas (City, UoL)

Programming in C++ 23/27

I
Input of a user-defined type — ATTENTION!!!

@ Always read from the stream received as parameter — NEVER cin!
@ cin may not exist!
o May want to read from a file/buffer/socket. . .
@ Always return the stream received as parameter
o To allow checking for input success.
o To allow for chaining.
Return and all parameters should be references (non-const).
Set the badbit if there’s a problem (i.e., you've read something but
cannot use it to set your object) — failing to read anything at all
because of an EOF is NOT a problem.
Always read what you print — always (so, keep the format simple!).
NEVER use getline () — you're corrupting the stream!
NEVER read into a string and parse that — stream corruption!
NEVER, EVER print anything!
Prefer constructors over setter member functions.
Avoid setters altogether — not very OO. Same with getters. ..

Dr Christos Kloukinas (City, UoL)

©0

00000

Programming in C++ 25/27

Dr Christos Kloukinas (City, UoL)

Dr Christos Kloukinas (City, UoL)

Input of a user-defined type
istream& operator>>(istream &s, point &p) {
int x, y;
char lpar, comma, rpar;
if (s >> lpar) { //met EOF (End Of File)
if ((s >> x >> comma >> y >> rpar) &é&
(lpar == ' ('’ && comma == ’',’ && rpar == ')’))
p = point(x, y); // *constructor*, not setters!
else
s.setstate (ios::badbit); //read failed
}
return s;

}

When “i£ (s >> 1lpar)” fails, that means there is no more input.
We have not read any data so far, so have not corrupted the input.
Therefore, we simply return the input stream.

Programming in C++ 24/27

Getters/Setters — Why Not

o Avoid getters
o Objects should be asked to do tasks themselves:
pointl.move(3,5);
shape2.scale(.5);
employee3.clock_in(log_register); efc.
e When you're using getters, you end up doing the task yourself using
the state data you got.
But that's procedural, not OO programming. . .
@ Avoid setters
o Object’s state should only change because of actions they’ve
performed on your behalf, not because you've done a task and
are now giving them the results.
Don’t spoon-feed your objects — they can take care of themselves.
o Setters need to preserve the class invariance.
Much easier to get this right once (in the constructors) and re-use
the constructors from that point on.

@ Delegate! “What can | ask an object of this class to do for me?”

Programming in C++ 26/27

Next session

@ Genericity (parametric polymorphism)
@ Template classes and functions in C++.
@ Reading: Savitch 16.1-2; Stroustrup 13.2—3; Horstmann 13.5.

@ Introducing the Standard Template Library: some container
classes.

@ Reading: Savitch 19.1; Stroustrup 16.2.3,16.3; Horstmann 13.5.

Dr Christos Kloukinas (City, UoL) Programming in C++ 27127

2023-11-20

Programming in C++ Nertsession

L_Next session

Final Notes

@ a + b, canbe either a.operator+ (b) or operator+(a, b). All

methods receive the current object (xthis) as their implicit first
argument.

Avoid friend functions — use helper methods.
“Treat your friend as if he might become an enemy.” — Publilius Syrus,
85-43 BC.

@ Output: Read again slides 17-18. Repeat.
@ Input: Read again slides 24-25. Repeat.

@ More on Operators:

https://www.cplusplus.com/doc/tutorial/operators/

More on Operator overloading:
https://en.cppreference.com/w/cpp/language/operators

More on friends: https://isocpp.org/wiki/faq/friends

https://www.cplusplus.com/doc/tutorial/operators/
https://en.cppreference.com/w/cpp/language/operators
https://isocpp.org/wiki/faq/friends

