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Abstract Meeting multiple Quality of Service (QoS) requirements is an important
factor in the success of complex software systems. This paper presents an automated,
model-based scheduler synthesis approach for scheduling application software tasks
to meet multiple QoS requirements. As a first step, it shows how designers can meet
deadlock-freedom and timeliness requirements, in a manner that (i) does not over-
provision resources, (ii) does not require architectural changes to the system, and that
(iii) leaves enough degrees of freedom to pursue further properties. A major benefit
of our synthesis methodology is that it increases traceability, by linking each schedul-
ing constraint with a specific pair of QoS property and underlying platform execution
model, so as to facilitate the validation of the scheduling constraints and the under-
standing of the overall system behaviour, required to meet further QoS properties.

The paper shows how the methodology is applied in practice and also presents a
prototype implementation infrastructure for executing an application on top of com-
mon operating systems, without requiring modifications of the latter.

Keywords CASE · Model checking · Process management · Real-time systems and
embedded systems

1 Introduction

The importance of QoS and, in general quantitative non-functional requirements,
e.g., computational power, memory size, power consumption, etc., is increasing every
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day, as computer systems move far away from the scientific and office applications
of the past. Designers face these QoS requirements in many domains—from mobile
embedded systems running on batteries to big server farms, like those of Google (Bar-
roso et al. 2003) and of Second Life, whose avatars are estimated to consume “con-
siderably more” electricity than people in developing countries do (Carr 2006). As
sometimes these QoS requirements are conflicting, it is imperative to develop analy-
sis methods that enable designers to tackle complex systems and their multiple QoS
requirements (Fohler and Buttazzo 2002; Henzinger and Sifakis 2007), without im-
posing artificial constraints on either the design or the implementation.

One such type of requirement is real-time (R-T), supported by specialised OS like
VxWorks and commodity OS, up to commercial, large-scale Java VMs like Sun RTS
and IBM WebSphere. From embedded systems, such as the anti-lock breaking sys-
tem in automobiles, to big distributed systems, such as those in the financial market,
designers need to guarantee timeliness for the various tasks. Some of these systems
are mission critical—performing an action at an unsuitable time can lead to a big fi-
nancial loss, as is the case with the financial markets, where “A common Wall Street
belief is that for every millisecond an investment bank can beat the market, it has the
potential to earn an additional $100 million per year” (Bruno 2007). Even worse, oth-
ers are safety critical—an untimely computation can lead to loss of human life. For
this reason, R-T is one of the most important QoS requirements. However, system
design and validation remains a difficult and error-prone task. Often, designers have
to be overly pessimistic in estimating the demands on system resources, which leads
to systems that have fewer capabilities and are more expensive than need be.

Classic R-T scheduling approach The general scheduling problem cannot be solved
in polynomial time (Garey and Johnson 1977; Baruah et al. 1990). In order to have
techniques that can be applied in practice (and in some cases at run-time), the clas-
sic approach to R-T scheduling abstracts the complexity of a software system’s tasks
into a model that is simple enough to permit an analysis that is of polynomial com-
plexity and extremely fast. However, these classic (and still widely used) scheduling
analyses for R-T, such as Rate Monotonic Analysis (RMA) or Earliest Deadline First
(EDF) (Liu and Layland 1973) that are typically combined with the Priority Inheri-
tance/Ceiling synchronisation Protocols (PIP/PCP) (Sha et al. 1990), make assump-
tions that are hardly realistic nowadays. For example, they assume that task periods
equal their deadlines, that task importance is directly associated with its deadline,
that non-periodic tasks are not critical, or that the goal is to derive a deterministic
scheduling policy (which greatly hinders further optimisation). At the same time,
these analyses are flow-insensitive and they ignore the order in which shared re-
sources are acquired. Furthermore, the loss of detail in the models means that more
resources are needed for guaranteeing timeliness, even though this is unnecessary.
This is also true for extensions handling task dependencies, such as the Harbour-
Klein-Lehoczky (HKL) response-time analysis (Harbour et al. 1994). For instance,
Tripakis (2002) reported that the (manually performed) HKL-based analysis failed to
safely schedule an automated vehicle control software, whereas Tripakis and Yovine
(2001) succeeded using the automata-theoretic Model-Driven Engineering (MDE)
framework TAXYS (Closse et al. 2001).



Autom Softw Eng (2011) 18: 5–38 7

Another problem is that it is not obvious how to extend classic scheduling analy-
ses, so as to easily meet further QoS requirements, because these analyses are rigid.
While the response-time analysis of HKL allows the use of (fixed) task priorities
for meeting other system concerns in principle, the majority of the schedulability
analysis theory is concerned with how to assign priorities for meeting deadlines. By
focusing only on deadlines and by deriving deterministic schedulers, they remove
all degrees of freedom that could be used to control for other QoS. Thus, classic
scheduling analyses effectively require designers to either restructure their system
or to try to work against the analysis method, by artificially changing some of the
inputs it considers, e.g., the worst case execution time (WCET) or periodicity of a
task. Restructuring is not an easy task—not only because of the transformation steps
themselves but also because it is not clear what the transformation goal should be for
a given system. Indeed, designers are called upon to correctly identify which analysis
theory among the massive (and ever-growing) body of knowledge is able to faithfully
analyse the systems of their domain (Bordin et al. 2008). This is a big problem be-
cause violating some of the analysis assumptions or constraints may lead to results
that are overly pessimistic. Worse even, invalidating the analysis assumptions may
lead to incorrect results and a system that behaves differently from the analysis pre-
diction. Given that systems are becoming heterogeneous, trying to continuously adapt
the basic theory to accommodate each and every new sub-case is a Sisyphean task—
asking software engineers to search among these cases for the one that best matches
their needs and master it so that they can apply it in practice is simply unrealistic.
Indeed, even the simplest of the classic techniques, RMA, needs to be applied with
care—a book for practitioners that was published in 1993 is 712 pages long (Klein et
al. 1993).

A model-based approach to scheduling This situation calls for a more automated
framework based on a generic solution instead of a case-by-case one. An appealing
approach in this direction is to automatically synthesise a scheduler (Altisen et al.
2002) for a model of the system given in an automata-based formalism. This solution
can be part of a MDE framework (Schmidt 2006) and can greatly reduce the effort re-
quired by designers. Thanks to the ongoing advances in model-checking, this alterna-
tive is becoming more and more interesting for real-world systems. Indeed, scheduler
synthesis is now tractable for many systems and, as such, one can forgo the limited
models of the classic schedulability theory and consider far richer models that capture
more details of a system. Here, we show how one can perform such a fine-grained
analysis of systems and implement these in a way that guarantees safety properties
(i.e., deadlocks, deadlines) and that can furthermore be easily extended to support
other quality aspects of the system (e.g., jitter, memory, energy). We show how one
can achieve these goals through a new methodology that increases the applicabil-
ity and benefits of scheduler synthesis (Kloukinas and Yovine 2003), which has two
goals. First, it reduces the state space scheduler synthesis has to explore so that the
inherent complexity of synthesis does not render it impractical. Second, it links better
the synthesised scheduler constraints with the properties that they are guaranteeing,
so as to achieve traceability of the constraints to the properties. It achieves so by syn-
thesising successive scheduler layers for guaranteeing different QoS requirements,
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considering a number of system models and platform execution policies. Thus, each
synthesised scheduler is linked directly to a specific QoS property and platform exe-
cution policy, making it easier to understand and validate the schedulers themselves,
as well as the system behaviour under various operational conditions. Our system
analysis and scheduler synthesis methods do not make any assumptions on the tasks
comprising the system, their periodicity, their synchronisation patterns, etc. Thus,
they are easily applicable to systems where classic scheduling analysis proves to be
problematic. Indeed, one of the main advantages of scheduler synthesis is that the
application does not need to be restructured to facilitate the analysis and control of
the system, nor does it require designers to make error-prone choices, such as where
to enable PIP, that can lead to problems like those faced by the Mars Pathfinder ro-
bot (Reeves 1997).

Structure of the paper In the following, we present our system and scheduler archi-
tecture and a simple case study that we use to illustrate the various notions introduced.
Then we detail our approach for modelling the QoS (here R-T-related) requirements
of a system and for synthesising a scheduler for it. We follow with an in-depth pre-
sentation of scheduler synthesis in practice, showing how one can do such a task
gradually, in order to better understand the resulting schedulers, analyse the system
under different assumptions/conditions and better tolerate the inherent state-space ex-
plosion problem at the same time. We then introduce a more complex case study, on
which we apply our scheduler synthesis approach. This is followed by the description
of the implementation of a library of synchronisation and communication primitives,
which allows the use of synthesised schedulers in currently available OS. We then
consider the subject of robustness, i.e., what happens when our modelling assump-
tions do not hold, for example when an operation finishes executing later (or indeed
earlier) than expected. Even though this is a subject that has to do with how the sys-
tem is modelled and not with scheduler synthesis per se, it is very important to know
how a system will behave when the modelling assumptions are invalid and what can
be done to render it more robust. Finally, we compare our work with other related
approaches, before finishing with a concluding discussion.

2 Overall system architecture

The overall system architecture we consider is depicted in Fig. 1(a), where arrows
show the interactions among the different system components. The application code
is instrumented so as to be able to observe and control it. The instrumentation code
keeps track of the state of the application and intercepts application requests for lower
level mechanisms of interest for the scheduler (e.g., synchronisation, communica-
tion). The intercepted requests are redirected to a subsystem which is responsible
for controlling the system. This scheduler subsystem uses a number of application
specific scheduler constraints to make a decision about whether it should block the
application requests, when they may lead to an unsafe (or suboptimal) system state,
or forward them to the underlying OS. Finally, the OS primitives are effectively our
means to observe and interact with the environment and the application. This is a
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Fig. 1 Architecture of the system and the scheduler

general system architecture for uni-processor reactive systems and closed-loop con-
trol. In the RMA/PCP framework, the “instrumented” synchronisation, etc. primitives
use a set of scheduler constraints that together form the RMA/PCP priorities. In our
context, the scheduling constraints are automatically synthesised from an automata
based model of the application and its environment.

The controllable primitives (e.g., request and release of shared resources) are
the synchronisation by means of monitors (monitorEnter, monitorExit) and the
communication by means of condition variables through notification, broadcasting,
waiting for a notification and waiting for a notification until some timeout (noti-
fy, notifyAll, wait, timed_wait), with the well-known POSIX (IEEE. POSIX.1.
2001) or Java (Joy et al. 2000) semantics. Finally, awaitPeriod causes tasks to wait
for their next period.
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2.1 Scheduler architecture

The architecture of the component called application-specific scheduling constraints
in Fig. 1(a) is depicted in Fig. 1(b). As shown there, the application tasks make some
request that is forwarded to one of two scheduler stacks. The right stack elects a task
as a target for a pending signal/notification and is executed when a task performs a
notify, while the left scheduler stack is responsible for electing some application
task for execution and is executed when a task performs any other scheduling prim-
itive. Both of these stacks have the same structure; they are effectively subdivided
into three main layers. The topmost scheduler layers (Ready-Exec, resp. Ready-Notif )
identify application tasks which are eligible either for execution (Rexec) or for notifi-
cation (Rnotif ). They effectively model in user-space the ready queue of the OS and
its waiting-for-notification object queues respectively. The middle layers (Safe-Exec,
resp. Safe-Notif ) are the most important in a critical system. They elect among the el-
igible tasks those that will not lead the system to a bad state (task sets Sexec and Snotif

respectively). That is, the middle layers are responsible for guaranteeing the safety
properties of the system (e.g., deadlock-freedom, meeting deadlines). Finally, the
lower layers (Quality-Exec, resp. Quality-Notif ) are responsible for imposing further
constraints, which are needed for guaranteeing other QoS, e.g., jitter minimisation,
power consumption minimisation, etc. The sets of safe tasks meeting these further
quality constraints (Qexec, resp. Qnotif ) form the final output of the application de-
pendent scheduler constraints subsystem. The scheduler subsystem passes them to the
OS, which chooses tasks for execution, resp. notification, using some OS dependent
rule. From the point of view of the scheduler, the OS choice is non-deterministic. It is
exactly this non-determinism that allows designers to easily explore further schedul-
ing strategies for extra QoS requirements. In fact, the scheduler subsystem does not
even assume that the OS choice is fair. For tasks with deadlines, fairness will be
imposed by the scheduling constraints for timeliness. For tasks with no deadlines,
fairness (if required) can be imposed by the use of some QoS scheduling policy, e.g.,
Round-Robin.

Our scheduler architecture has two different stacks for execution and communica-
tion so as to explicitly control task communication as well. This is an aspect which
is usually not considered by other approaches, since it is assumed that the system
designers have already solved all communication problems. Nevertheless, we believe
that, given its complexity, the scheduler should explicitly cover this aspect as well.

The two scheduler stacks in Fig. 1(b) are exclusive iff we are interested in
deadlock-freedom, where notifications are handled by the right stack alone. This is
because the notified task will not be executable, since it must reenter the monitor that
is still occupied by the notifier. However, the left stack needs to be given control after
notifications when scheduling for deadlines and other QoS, so as to ensure some hard
to meet deadline/constraint by preempting the notifying task.

2.1.1 Increasing system quality

As aforementioned, the bottom Quality-Exec and Quality-Notif layers of the sched-
uler, allow designers to easily experiment with and introduce additional constraints
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for increasing the quality of the system. Software engineers control the complexity of
these layers directly and can employ a best-effort policy or a more contract-like QoS
one, where specific bounds for certain values of the system state must be guaranteed.
In the latter case, the QoS policy must be verified as a safety policy, to ensure that the
system will never break its QoS contract.

A simple example of a (best-effort) quality policy is the local minimisation of con-
text switches (LMCS), in order to speed-up the execution and (hopefully) minimise
cache misses/flushes and, thus, also power consumption. This policy can be imple-
mented quite easily, by examining whether the currently executing task, ti , is in the
set Sexec of tasks which are safe to execute next. If this is the case, then we can let it
continue its execution, by setting the set Qexec equal to the singleton {ti}. Note, that
LMCS differs from a non-preemptive platform execution policy, since LMCS allows
preemption when the currently executing task is not in the safe set.

3 A simple system

This section introduces the simple system of Fig. 2(a), to be used for illustrating the
various notions through concrete examples. The system consists of the Writer, User
and Refresher tasks. The Writer produces values for variable V continuously (e.g.,
by reading a sensor or retrieving a stock price), which the periodic task User con-
sumes. The production of these values takes place in the transition W1->W2, where
the write computation is performed. As indicated by the interval [2,3], this com-
putation takes between 2 and 3 time units. However, User needs the values of V to be
“fresh”, i.e., they must have been produced recently and as such represent the current
state of the environment. For that, the Refresher task uses an auxiliary variable L, to
distinguish values of V that are too old, from these that are fresh enough for User. It
does so by marking the current value of V as not fresh and then waiting for 13 time
units. If the Writer produces a new value for V during that time, the freshness of V
will be true, otherwise it will be false.

Notice that, as they obtain V and L in the opposite order, there is a potential dead-
lock between Writer and Refresher that arises when the Writer is at state W2 and the
Refresher at state R3.

Remark In our prototype tool, the control-flow diagrams as the one in Fig. 2(a) are
expressed in the simple language of the dot graph drawing tool from the Graphviz
package (Gansner and North 2000). The main reason for this is that we do not expect
our language to be used by software engineers directly, but automatically generated
from application software code in the context of a full-fledged MDE framework. This
was done in Kloukinas et al. (2003) and in Assayad et al. (2005) for annotated Java
and C programs, respectively. At the same time, having a very simple language means
that designers who wish to quickly explore an initial design can do it easily, without
having to master a new complex language. Design changes at the program code level
would be in general far more expensive—that level is better suited for fine-tuning
through the use of extra information, such as additional application variables that
could be taken into consideration by the scheduler (e.g., type of data to be processed).
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Fig. 2 A simple system model and the internal model expansion for one of its waiting primitives

4 System modelling

This section presents our modelling of a system through discrete-time stopwatch au-
tomata. Stopwatch automata (SA), called integration graphs in Kesten et al. (1999),
allow for fine-grained modelling, thus permitting us to synthesise a flow-sensitive
and not over-constraining scheduler, which needs fewer resources to meet require-
ments. The discrete time SA we are using are normal finite-state automata, where
certain variables serve as discrete time clocks. The difference between SA and timed
automata (Alur and Dill 1994) is that SA can stop certain clocks (without resetting
them) and restart them later on. Thus, SA can model preemption. Since continuous-
time SA are known to be undecidable in general (Kesten et al. 1999), in this work we
resort to discrete-time SA.
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4.1 Application modelling

As aforementioned, we consider that the application comprises a set of concurrently
executing asynchronous tasks, T = {ti}i∈I , where I is the set of task indexes. Tasks
can synchronise through monitors, communicate through condition variables, wait
for their next period or perform a computation.

Each task uses two clocks to model time-related behaviour. The first clock, SW i ,
models the duration of computations of task ti and so is stopped when the computa-
tion is preempted. SW i is also used when a task performs a timed_wait, to measure
the distance till the timeout. The second clock, CPeriodic

i , measures the time remaining
until the next period (or deadline) of a task and is never stopped; it is only reset at
each new period.

4.1.1 Expansion of application models

One thing that is not shown in the input model is the meaning of the wait and
timed_wait primitives. These are directly linked with the reservation and release of
shared resources, so we need to model them carefully. These communication prim-
itives (notify/wait) must, by definition, be used inside a critical section/monitor. So,
in order to notify some task that resource r has been modified, the notifying task
must enter the monitor of r (r .monitorEnter), notify tasks interested in events
about this resource (r .notify/All) and subsequently leave the monitor (r .moni-
torExit). Tasks interested on events for resource r , must enter its monitor, wait
for an event (r .wait/timed_wait), treat the event in an application specific manner
and then leave the monitor. Note that wait primitives force waiting tasks out of the
corresponding monitor, so as to allow notifying tasks to enter it, and then attempt to
re-enter the corresponding monitor once the task has been notified.

This behaviour is critical for the scheduler, since waiting on a notification releases
and then re-acquires a lock on a shared resource. So, wait primitives are expanded
to two states (R2, R2_Relock), as Fig. 2(b) shows using part of the Refresher’s model
from Fig. 2(a). The transition from the previous state to the first one (R1 → R2) also
causes the task to leave the monitor, after having executed the action the program
was performing there ([1,1] Late := true), as shown in Fig. 2(b). Then, the
transition from the first to the second wait states (R2 → R2_Relock in Fig. 2(b))
waits for a notification (or a timeout if it is a timed_wait). Once a task is notified,
it attempts to fire the transition from the second wait state to the subsequent program
state (R2_Relock → R3 in Fig. 2(b)), so as to reenter the monitor and continue its
execution.

4.2 System state

The system state model comprises: (i) an abstract program counter (PCi ) for each
of the application tasks; (ii) a stopwatch (SW i ) for each task; (iii) N periodic clocks
(CPeriodic

i ), for the N periodic tasks, taking values over the interval [0,Pi), where
Pi is the period of the task; (iv) N Boolean variables (task_Alarm), for dissoci-
ating the cases “start of period” and “deadline/end of period”, since for some tasks
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we may have Di = Pi (see Sect. 7); (v) a variable (TExec) for the currently executing
task or IDLE when no task is executing; (vi) a 4-valued variable (mode) controlling
which of the SchedExec, SchedNotif, Timeout, or one of the Application
automata should execute in the current step (these automata are described in the fol-
lowing section); and (vii) the Boolean variables of the application guarding waiting
statements and branches, if we wish to model them.

Example 1 For the system of Fig. 2(a), the variables are:
PCWriter ∈ {W0, W1, W2, W3, W4, W5, W6},
PCRefresher ∈ {R0, R1, R2, R3, R2_Relock, R4, R5, R6, R7},
PCUser ∈ {U0 ,U1, U2, U3, U6, U4, U5, U6_Relock},
SWWriter ∈ [0, 6], SWRefresher ∈ [0, 13], SWUser ∈ [0, 6], CPeriodic

User ∈ [0, 19],
User_Alarm ∈ {false, true}, TExec ∈ {IDLE, Writer, Refresher, User},
mode ∈ {Sched-Exec/Notif, Timeout, Application},
Late ∈ {false, true}, Fresh ∈ {false, true}.

4.3 Model structure and execution modes

The system model we construct is the synchronous composition of automata with
shared execution of commonly labelled transitions of:

– the Timeout automaton which fires timeouts,
– the Execution and Notification Scheduler automata, and
– one automaton for each of the application tasks.

Application automata are derived from control-flow diagrams describing the applica-
tion tasks.

The system operates in three modes, as can be seen in Fig. 3(a). In Timeout
mode the Timeout automaton (shown in Fig. 3(b)) is the only one enabled in the
system. It can fire one or more timeouts (corresponding to a timed_wait or await-
Period expiring) if any is enabled currently. When a timeout is fired, mode changes
to “Schedulers Only” (where mode= SchedExec), so that our scheduler can han-
dle it. If there is no timeout to be fired then the mode changes to “Application” (where
mode= Application). At this mode, the automaton of the TExec application task
becomes enabled. If the TExec task needs to execute a time guarded action (i.e., a com-
putation), then it causes time to advance by performing a tick (i.e., a time step). The
tick action causes all periodic clocks (CPeriodic

i ) to advance at the same time. It also
causes local stopwatches (SW i ) to advance, if the respective task is executing, i.e.,
TExec = ti , or if it is performing a timed_wait. Ticks change mode back to Time-
out, so as to check for new timeouts. If, however, TExec needs to perform an ac-
tion which causes re-scheduling, then it passes control back to the schedulers, i.e.,
mode becomes “Schedulers Only” (mode ∈ {SchedExec,SchedNotif}). Ini-
tially mode is Timeout, for periodic tasks to start their first period.

Remark It should be noted that the only activity that can cause time to advance is a
computation by the application or waiting for an event. Indeed, the model assumes
that scheduling decisions (i.e., the transitions of the scheduler automaton) take no
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Fig. 3 Execution modes, Timeout and Execution Scheduler automata

time at all. This means that the (rather small) time needed for scheduling needs to be
budgeted within the duration of computations. Another alternative modelling strat-
egy would be to explicitly account for the execution time of the scheduler in the
model. This could be achieved by a simple modification of the scheduler automaton
by adding explicit time intervals to its transition.

5 Scheduler synthesis

Scheduler synthesis is a two-player game (Asarin et al. 1995). For each scheduler
action (i.e., selection of an application task), there is a sequence of actions of its ad-
versaries (i.e., timeout and application automata), and so on. In this game, scheduler
synthesis amounts to finding a winning strategy for each state where it is the turn of
the scheduler to act, if any such strategy exists indeed. That is, whenever the sched-
uler is called to perform a controllable action, it must have a plan that informs it
which future uncontrollable actions of its adversaries it should render impossible, in
order for the system to remain in a safe state. Thus, the scheduler synthesis problem
can briefly be stated as “for each control state, find the environment actions that must
be rendered impossible for the system to always remain in a safe (optimal) state.” In
our case, we have two layers which are needed for guaranteeing safety—the top one
(Ready-Exec & Ready-Notif ) and the middle one (Safe-Exec & Safe-Notif ).

5.1 Synthesis of the ready task layer

We synthesise the top layer through a simple static analysis of the task control-flow
graphs. This assigns to each of the task states, N(t), the resources it holds and the
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ones it wishes to lock, constructing two different sets for each task: one stating when
task t wants to lock a resource r , WR(r, t), and another one stating when the task has
the resource locked, LR(r, t):

WR(r, t) = {n ∈ N(t)

| ∃n1 ∈ N(t) . n
r.monitorEnter−−−−−−−−−−−−→ n1} (1)

LR(r, t) = {n ∈ N(t) | ∃n1, n2 ∈ N(t)

. (n1
r.monitorEnter−−−−−−−−−−−−→ n2 →∗ n)

∧ (� ∃n3, n4 ∈ N(t) . n2 →∗ n3 ∧ n4 →∗ n

∧ n3
r.monitorExit−−−−−−−−−−−→ n4)} (2)

States with a wait transition are expanded as in Fig. 2(b). For the WR and LR
sets, these are equivalent to a monitorExit and then a monitorEnter on the re-
source. The i × j sets produced, for the i program counters and j resources, inform
us whether a task is blocked or not, which is needed for the top Ready-Exec and
Ready-Notif scheduler layers.

Example 2 For the system of Fig. 2(a), these sets are:
WR(V ,Writer) := {W0}, WR(L,Writer) := {W2},
LR(V ,Writer) := {W1,W2,W3,W4,W5,W6}, LR(L,Writer) := {W3,W4,W5},
WR(V ,Refresher) := {R3}, WR(L,Refresher) := {R0,R2_Relock},
LR(V ,Refresher) := {R4,R5,R6}, LR(L,Refresher) := {R1,R3,R4,R5,R6,R7},
WR(V ,User) := {U1,U6_Relock}, LR(V ,User) := {U2,U3,U4},
WR(L,User) := LR(V ,User) := ∅.
Potential deadlocks are easily identified by considering the intersection of the sets
WR and LR. Indeed, there is a potential deadlock at states (W2, R3,*) because we
have that:
WR(L,Writer) ∩ LR(V ,Writer) = {W2} and
WR(V ,Refresher) ∩ LR(L,Refresher) = {R3}.

Sets WR and LR also show which are the tasks that cannot be involved in a dead-
lock, e.g., here the User task.

5.1.1 Potential vs real deadlocks and over-constraining

Of course one cannot be certain that potential deadlock states identified through the
WR and LR sets are real, until they are shown to be reachable. Attempting to render
them unreachable by enclosing the corresponding critical regions inside a new moni-
tor (e.g., enclose each of R1–R7 and W0–W6 inside a monitor on a new resource D)
will certainly remove any chance for that deadlock but will unnecessarily decrease
the degree of concurrency in the system, especially so if the deadlock is unreach-
able. In fact, for the system of Fig. 2(a), such a solution would be inadvisable as it is
too constraining. Indeed, if we attempted such a solution, then variable Fresh would
never become true and User would never finish its period (states U3, U4, and U5
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would become unreachable). The reason for this is that whenever Refresher gains ac-
cess to D, it will set Fresh to false and remain in the monitor of D while waiting, thus
not allowing Writer to reset Fresh. This is like a financial system ignoring all stock
values as too old or a web server dropping all client requests. Thus, we can see that
this solution, advocated in Wang et al. (2009) for its simplicity, can break the applica-
tion logic itself by removing too many valid execution traces. The problem identified
with the approach of Wang et al. (2009) is a more general one—constraining against
deadlocks (or for some other reason) can cause other properties to become invalid.
For example, general liveness properties may no longer hold, i.e., a task may never
advance. In our case, the introduction of timing constraints such as deadlines, make
liveness properties to be bounded in time, and therefore reduce to safety ones. Indeed,
one no longer is concerned whether the system will eventually react to a stimulus but
whether it will do so before a deadline. As such, we do not have to check for liveness
properties explicitly. This simplifies our synthesis tool since the synthesis procedure
for liveness properties is different to that for safety ones, almost its dual (Tripakis
and Altisen 1999). However, a designer should always at some point verify that both
general liveness properties and any other application-specific properties hold, e.g.,
that Fresh will be true at some point when the User task checks it. Working in a
model-based setting allows designers to easily verify such properties through model-
checking—something which the classic schedulability theory cannot do. This is one
of the benefits of an automata-theoretic model-based approach.

5.2 Synthesis of the safe task layer

The basic method for synthesising the Safe-Exec and Safe-Notif scheduler layer,
starts by first constructing the set of reachable states and, thus, identifying the bad
states. These are the states where the application tasks are deadlocked, or the states
where some task has missed its deadline. Having bad states means that the current
set Sexec, of tasks that are safe to execute at a state s, needs to be constrained. The
only controllable actions that can be constrained in the system are the transitions of
the scheduler automata, shown in Fig. 3(c). Sexec is initially true, thus accepting all
tasks in the set Rexec as safe. Having obtained the bad states, we do a backwards tra-
versal of the state space starting from the bad states, until we reach a state, s, which
corresponds to a controllable choice of one of the scheduler automata. There, we
identify the controllable transition a outgoing from s which sets TExec to be task ta ,
effectively enabling the path leading to a bad state, and create a new constraint for
the layer Safe-Exec at state s for the controllable transition a. The constraint is con-
structed by changing the set Sexec to be:

S ′
exec(s) := Sexec(s) \ {ta} (3)

If at some point we find that S ′
exec(s) becomes equal to the empty set after constrain-

ing it, that is, if there is no safe task to execute at state s, then we also mark the state
s as bad and continue the synthesis procedure.

So, the set of states where a task t is unsafe to execute is:

Unsafe(t) = {s|t ∈ Rexec(s) ∧ ¬Sexec(s)} (4)
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Table 1 Refresher timeliness constraints

(a) Refresher constraints when observing clocks and allowing preemption

LET A = (PCUser=U5 ∧ CPeriodic
User =13)

IN (A ∧ (PCRefresher=R0 ∧ (PCWriter=W0)∨ (PCWriter=W2 ∧ (( TExec=PCRefresher∨ TExec=PCWriter)))∨ (PCWriter=W6 ∧ TExec=PCWriter))∨ (PCRefresher=R3 ∧ PCWriter=W0)

(b) Refresher constraints when not observing clocks

(PCRefresher=R7 ∧ PCUser=U1 ∧ PCWriter=W1 ∧ TExec=PCWriter)

Example 3 This set is expressed as a predicate over model variables. Table 1(a) shows
the synthesised predicate for Refresher for ensuring the timeliness property of User
(i.e., its period is never violated). The constraints essentially forbid Refresher from
executing when User is about to miss its deadline (e.g., at U1 ∧CPeriodic

User = 11), since
Refresher would consume computational resources and/or invalidate the current value
of V, in which case the User would need to wait for a new fresh value to be produced.

5.2.1 Partial state observability

In reality, the scheduler cannot observe the full state of the system. That is, the sched-
uler uses an observation function, obs, presenting it with a partial view of the current
system state. Our default assumption is that the scheduler sees at most the values of
the task program counters, PCi , and those of the clocks, i.e., SW i and CPeriodic

i , along
with the value of the last task that was executing, TExec. All other system variables
are hidden to it. The scheduler can observe these variables only, so that the instru-
mentation of the application will be minimal and easy to perform in practice, though
system designers are free to enlarge the observation set. So the scheduler synthesis
procedure really uses (5) and (6), rather than (3) and (4):

S ′
exec(obs(s)) := Sexec(obs(s)) \ {ta} (5)

Unsafe(t) = {s|t ∈ Rexec(obs(s)) ∧ ¬Sexec(obs(s))} (6)

Example 4 Again for the system of Fig. 2(a), the constraints we synthesise to render
the system deadlock-free, once we have applied the projection on the state variables
are:

Unsafe(User) := FALSE (i.e., User is always safe),
Unsafe(Writer) := (PCWriter = W0) ∧ (PCRefresher = R3),
Unsafe(Refresher) := (PCRefresher = R2_Relock) ∧ (PCWriter ∈ {W1,W2}).

Table 1(b) shows timeliness constraints for Refresher, when hiding clocks.
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A consequence of the partial state observability is that the synthesised scheduler
is not necessarily the maximal one. This is because the scheduler may apply more
constraints than is absolutely required to some system state s, if these constraints are
needed by states that are equal to s modulo the observation function.

5.2.2 Branching bisimulation equivalence reduction

In order to render synthesis more tractable, we reduce our models modulo the branch-
ing bisimulation equivalence (bbe) reduction (van Glabbeek and Weijland 1996). The
bbe reduction eliminates actions we do not wish to observe, called τ actions. Here,
τ actions are all the uncontrollable actions, i.e., those of the timeout and the applica-
tion automata. Indeed, since our scheduler can only act whenever some controllable
action is enabled, we do not gain anything by storing uncontrollable ones. Compared
to other bisimulation reductions, bbe has the property that it removes τ actions, only
if doing so does not change the branching structure of transition systems. Thus, the
bbe-reduced system is equivalent to the original with respect to safety properties.

The synthesised scheduler for the bbe-reduced system will be exactly the same
with the one we would have synthesised for the non-reduced system. This is because
in our initial parallel automata model, it is always the case that either some state
has outgoing τ transitions or transitions labelled by some non-τ scheduler action a.
Indeed, note that when the mode variable equals SchedExec or SchedNotif the
current state has only non-τ transitions enabled (those of the scheduler automata),
while in modes Timeout and Application we can only perform τ transitions.
So, it is never the case that a state, s, can do both a τ and an a transition, where
a �= τ . As a consequence, after the bbe reduction on the initial state space graph, we
obtain classes of equivalence, where, if we can leave them with a transition a, then we
cannot leave them with a transition τ and vice versa. So, the controllable equivalence
classes are characterised by their frontier, which is exactly the member states having
non-τ transitions. So, we define the frontier of a class, c, of bbe-equivalent states as
in (7), where enable() produces the set of states enabling a particular transition. Note
that the frontier of an uncontrollable equivalence class is the empty set, ∅:

frontier(c) = c ∩
⋂

a �=τ

enable(a) (7)

5.2.3 Synthesis procedure

The synthesis procedure has three steps. First, the bbe reduction is applied. Then,
scheduling constraints are synthesised. This assigns to each branching bisimilar class
c the set Bad(c), i.e., the transitions the scheduler must not take in that class for
the system to stay safe. If a τ action is a member of Bad(c) then the whole class c

is marked as unsafe. Otherwise, the constraints of c are assigned to its controllable
member states, i.e., the states in c that have at least one non-τ transition. This effec-
tively computes the set Sexec. So, for all s ∈ frontier(c), where Bad(s) = Bad(c):

S ′
exec(s) := Sexec(s) \ {ta|a ∈ Bad(s)} (8)
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When using the observation function obs to project the states of the frontier to the
observable system variables, we may cause classes to share projected states, i.e., there
may be two classes, say c and c′, such that obs(s) = obs(s′) for some s ∈ frontier(c)
and s′ ∈ frontier(c′), or, equivalently: obs(frontier(c)) ∩ obs(frontier(c′)) �= ∅.
This means that the scheduler cannot dissociate these states, so each projected frontier
state is assigned the union of all the constraints of the bbe-equivalent classes it is a
member of:

S ′
exec(obs(s)) := Sexec(obs(s)) \ {ta|a ∈ Bad(obs(s))} (9)

Bad(obs(s)) = Bad({c|obs(s) ∈ obs(frontier(c))}) (10)

6 A methodology for synthesis

Despite the bbe reduction, the size of the state space can still be considerable. As
will be seen later in Sect. 7, it can easily run up to tens of thousands of states, e.g.,
lines (10)–(15) of Table 3 for an already constrained system. Therefore, it is imper-
ative that synthesis follows a methodology which reduces the state-space explosion
problem. Another problem with scheduler synthesis is that the resulting scheduling
constraints can be difficult to understand and relate to specific system properties.

Thus, the methodology for scheduler synthesis presented herein has a dual pur-
pose. First, it reduces the size of the state space, by synthesising schedulers for suc-
cessively more detailed models. In this way, more complex models are only con-
sidered when a safe scheduler has been synthesised already for a more constrained
version of the model. Second, this methodology also has as a purpose (and advan-
tage) to synthesise scheduler constraints that are more easily related to a specific
safety property and platform execution model. So, it can be immediately identified
which constraints are needed for avoiding deadlocks due to resource synchronisa-
tion, which ones for meeting deadlines when computations are not preemptable, etc.
Thus, it is easier to understand the constraints themselves, as well as, the behaviour
of the different system tasks and their importance as far as each safety property is
concerned, leading to a better analysis of the system under scrutiny. This is advanta-
geous both for validating the synthesised scheduling constraints and for discovering
ways to optimise the system further (Kloukinas 2004).

Our methodology for scheduler synthesis considers four orthogonal aspects of the
modelled system: (i) modelling of time, (ii) platform execution model, (iii) schedul-
ing policies for overall system quality, and (iv) compositional analysis. We take ad-
vantage of these aspects by performing scheduler synthesis in four major steps.

6.1 Abstraction of time

First, we consider the issue of time, by examining the untimed model of the system
and synthesising a scheduler to guarantee the absence of deadlocks due to synchro-
nisation, when that is indeed possible. For the case study of Sect. 7, the reduction
obtained is 97% of the full timed model (see line (2) of Table 3).



Autom Softw Eng (2011) 18: 5–38 21

Example 5 Indeed, for the example of Fig. 2(a), the synthesised constraints on the
untimed model remove the deadlocks due to the wrong synchronisation of Writer
and Refresher.

While the system cannot deadlock anymore, there are still cases where User misses
its period. Bad states representing these timeliness violations must be rendered un-
reachable through further constraints. Table 2 shows the results from the various syn-
thesis stages for achieving this (lines (3), (5) and (7)), by synthesising 163 additional
constraints.

Finding and removing all deadlocks in the untimed model means that the syn-
chronisation and communication protocols used are now logically correct. That is, no
deadlocks will ever occur, even if computation execution times have been wrongly
estimated or they change later on, by changing implementations, porting to differ-
ent hardware platforms, etc., as long as the basic assumption (execution on a uni-
processor system) holds. This is particularly important for product families, since in
these the timing information differs for each family member (Coplien et al. 1998).

It is not always possible to synthesise an untimed model that fulfils the safety
properties. If a scheduler cannot be synthesised it means that there is a trivial
deadlock— a state with no outgoing transitions—that cannot be avoided, e.g., a task
exits abruptly. If such a behaviour is indeed desirable and the task is not supposed
to iterate, then the model could be extended with a self-loop transition at the end
state to allow the synthesis procedure to generate a strategy. The only other case
where a deadlock cannot be avoided is when a task waits for a notification that never
comes in—this is a clearly wrong interaction protocol that needs to be redesigned.
Otherwise, all deadlocks due to shared resources can be avoided—the synthesised
scheduler will effectively avoid the situation where wait-for cycles are created, by
disallowing tasks to execute and claim resources when that can lead to a wait-for
cycle. This is indeed the case in the scheduling constraints for deadlock-freedom in
Example 4.

Remark Of course, the constraints synthesised on the untimed model could be so
strong that tasks may miss their deadlines. But they will be still less conservative
constraints than those imposed by other techniques, as for example the PCP family of
synchronisation protocols. In PCP a task always raises its priority to the “ceiling” of
a shared resource, i.e., the priority of the highest priority task that uses that resource.
In our case, priorities are raised only when there is indeed a danger of deadlock—
otherwise all tasks have the same priority. We can achieve this because unlike PCP,
which considers simply the information about which resource a task locks and which
other tasks use that resource, we also consider the information about which other
resources these other tasks have locked and which resources they may attempt to
lock at the specific program state they are.

Having found all the deadlocks in the untimed system, we impose the synthesised
Sexec and Snotif scheduler constraints upon the timed model, and search for timeliness
constraints, so that all tasks will meet their deadlines. As aforementioned in Sect. 5.1,
the scheduling constraints for deadlock freedom may constrain the system so much
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that liveness properties become invalid, i.e., they can introduce livelocks. These live-
locks will usually appear as missed deadlines in the timed version of the model, so
we do not check for them explicitly.

6.2 Platform execution model

Again, we do not attack the full timed model immediately but consider first a con-
strained version of it, where tasks execute under a non-preemptive execution model.
The non-preemptive platform execution model reduces the state space by removing
all cases where an interrupt suspends a task computation.

6.2.1 Non-preemption and scheduler synthesis

To better explain the benefits of examining the non-preemptive execution model
first, let us consider the example in Fig. 4. As shown there, when imposing the
non-preemptive execution model at state AB we are effectively cutting the branch
AB → B, where the scheduler chose to preempt the execution of task A with task
B after the alarm. This kind of reduction has a repercussion on the preemptive
execution model we will examine subsequently. The result of examining the non-
preemptive case first, depends on the kind of scheduler we will synthesise. If in the
non-preemptive case we find that there is a winning strategy at point (III) and so we
do not forbid branch AB → A, then adding preemption at the next stage will simply
add branch AB → B. If, however, branch AB → A in the non-preemptive model is
unsafe, then we will be obliged to constrain the system earlier on (since now branch
AB → B is not available). If we needed to constrain the system at state AC, by cut-
ting branch AC → A and selecting branch AC → C, then permitting preemption
later on would mean that the whole sub-graph after branch AC → A will have been
removed by the scheduler we synthesised for the non-preemptive execution model.
Therefore, we have gained by being able to examine the inherent non-determinism
of the scheduler synthesis problem, without being overwhelmed by the additional
non-determinism introduced by the interrupts.

Once we can safely schedule the system for a non-preemptive execution model, we
use the scheduling constraints to reduce even further the state space that we have to
analyse, when we permit preemption. Observed reductions with the non-preemptive
execution model and the bbe reduction ranged around 95% of the preemptive, uncon-
strained timed model (see lines (3) and (11) of Table 3).

The non-preemption of tasks is easily added to our models through the use of a
quality-level policy that forbids the schedulers from choosing a task for execution,
when another task is already in a state where it is computing:

Qexec(obs(s)) := {t | computes(t)

∨ (t ∈ Sexec(obs(s)) ∧ ¬∃t ′ �= t . computes(t ′))} (11)

Example 6 For the system of Fig. 2(a), the bbe-reduced non-preemptive system has
973 states (see line (3) of Table 2), while the bbe-reduced preemptive one has 804
states (using the constraints from the non-preemptive one, line (5)).
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Fig. 4 Preemption and state space size

It is still worthwhile to perform these separate synthesis steps even when the gains
in state reduction are not spectacular, since it helps to understand the system behav-
iour better.

We should note here that we cannot safely schedule all systems when we do not
allow tasks to be preempted. Indeed, in (11) we explicitly ignore the set of safe
tasks (Sexec) when some task is computing. For these systems we will not obtain
any scheduling constraints and, therefore, will be obliged to examine the larger, un-
constrained state space of the timed model, corresponding to a preemptive execution
model.

6.3 Policies for overall system quality

Once we have synthesised a safe scheduler for deadlocks and deadlines, we can com-
pose it with other policies to further constrain the set of safe states to those guar-
anteeing other QoS system requirements, e.g., memory or power consumption, jitter
minimisation, etc. Designers can balance between the execution time and extra mem-
ory needed by these policies and the gains they offer to the overall system quality.

The aforementioned LMCS policy observes only the current system state, while
more complex policies may examine application variables or the execution history.
Such a policy, which also observes an application variable, is the optimisation policy
of (12), which favours User to proceed if the current value is fresh. Multiple QoS
policies can be applied as is shown in lines (13)–(14) of Table 2, where the policy
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of (12) has been applied to the safe system of line (8) and then the LMCS policy has
been applied on top of it.

TExec :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{User} if Fresh = true ∧ User ∈ Sexec

∧PCUser = U1 ∧ PCWriter = W0
{Writer} if Fresh = false ∧ Writer ∈ Sexec

∧PCUser = U1 ∧ PCWriter = W0
TExec otherwise

(12)

6.3.1 QoS conflicts

In most cases, QoS policies will be conflicting with each other. A designer would
need to explore different combinations of these, e.g, LMCS first and then the policy
of (12) or vice-versa, to better understand what their impact on the system is. As
a general advice, one should order the policies in a way which follows the critical
nature of the corresponding non-functional requirements and at the same time leaves
enough freedom to apply further policies. So, if a requirement A is much more impor-
tant than a requirement B then the policy of A should be applied first in most cases. At
the same time, if a policy constraints the number of system states substantially then it
might be a good idea to apply it at a later stage, so that other requirements can also be
considered. Indeed, this is how our synthesis methodology has been structured—we
start by the most important requirement (deadlock-freedom) and then try to succes-
sively constrain the system further but in a manner that leaves enough degrees of
freedom for controlling according to subsequent QoS policies as well.

6.4 Compositional synthesis

Finally, designers can partition the system and independently synthesise constraints
for subsystems. Then the synthesis algorithm is applied again on the parallel compo-
sition of the already constrained models, to obtain a scheduler guaranteeing the safety
properties for the whole system.

Such a compositional synthesis allows designers to analyse bigger systems. Some-
times even ignoring a single task can make a great difference in the resulting state
space—in our case study we observed a reduction of 82% by doing so (from 353730
down to 62137 states), as can be seen in Sect. 7.

Example 7 Table 2 shows the results of our methodology for the system of Fig. 2(a).
As shown in line (15), without our methodology, one has to attack the full state space,
which contains 21730 states (1338 after the bbe reduction), and will synthesise 56
constraints, instead of 163 that we had synthesised in line (6) for the same case (timed,
preemptive execution).

Fewer constraints are synthesised without our methodology because the controller
can be less conservative. That is, it ignores deadlocks hidden by time relations and
deadline misses that occur only under a non-preemptive execution policy. Even if one
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Table 2 Synthesis results for the system of Fig. 2(a)

T/U: Timed/Untimed model, P/NP: Preemption/No-Preemption

Model kind States Red. Bad
Constraints

Used/Prod.

Synthesis Steps for the system of Fig. 2(a)

(1) T P, no bbe 21730 0.00% 4 N/A

U 2293 89.45% 24 N/A

T NP, No Deadlocks 14009 35.53% 4 N/A

T NP, Safe 7023 67.68% 0 N/A

T P 13228 39.13% 1 N/A

T P, Safe 11222 48.35% 0 N/A

T P, Time Ind. 2762 87.29% 5 N/A

T P, Time Ind., Safe 2680 87.67% 0 N/A

Synthesis Steps for the system of Fig. 2(a), with bbe

(2) U 279 98.72% 0 0/36

(3) T NP, No Deadlocks 973 95.52% 1 36/80

(4) T NP, Safe 574 97.36% 0 116/0

(5) T P 804 96.30% 1 116/47

(6) T P, Safe 702 96.77% 0 163/0

(7) T P, Time Ind. 282 98.70% 1 163/4

(8) T P, Time Ind., Safe 285 98.69% 0 167/0

System from line (8), with the LMCS QoS policy

(9) Model of (8), with LMCS 1406 93.53% 0 167/0

(10) Model of (9), bbe 142 99.35% 0 167/0

System from line (8), with the QoS policy of (12)

(11) (8) & (12) 2665 87.74% 0 167/0

(12) Model of (11), bbe 285 98.69% 0 167/0

QoS policy of (12) and then LMCS on system of (8)

(13) (8) & (12) & LMCS 1281 94.10% 0 167/0

(14) Model of (13), bbe 130 99.40% 0 167/0

Synthesis in one step, for preemption—compare with (6)

(15) T P, bbe 1338 93.84% 1 0/56

would consider this as an advantage (we do not), there would still remain the prob-
lem of understanding why each constraint has been synthesised—to guard against a
deadlock, a missed deadline or both? On the contrary, our step-by-step synthesis ap-
proach solves this issue. It also makes the constraints more robust, since now changes
to timing relations cannot reveal previously hidden deadlocks.
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6.4.1 Identifying system partitions

There are no general guidelines for deciding how to partition a system. Nevertheless,
we believe that the first thing a designer should consider is the shared resources and
what the tasks are trying to do with them. For example, one may consider first to
partition according to how many resources the tasks use. For the case of Fig. 2(a),
a possible partition would be to consider tasks Writer and Refresher first, since they
use resources V and L, while task User only uses V. So one cannot expect User to be
involved in a deadlock. Similarly, if a task is waiting at some point for a notification,
then it does not make sense to consider it without the task that can notify it.

6.5 QoS for reducing the state-space

When the state-space is too big to be treated with our methodology, a designer might
be able to employ QoS policies to control the state-space explosion. That is, do the
synthesis with a policy that always gives priority to some tasks when that is possible,
for example considers User a higher priority task than Refresher and Writer the least
important task. Then use the synthesised constraints to constrain the system, remove
the QoS policy and synthesise scheduling constraints for the general case, in a similar
spirit that we have used non-preemption in our methodology.

7 Case study: a robotic arm

In this section we consider a case study based on a robotic arm system from Vicario
(2001), shown in Fig. 5(a). The arm takes objects from a conveyor belt, stores them
temporarily on a buffer shelf, and puts them into a basket. The arm is controlled by
tasks running on a single processor.

Figure 5(a) shows the control-flow graphs of the tasks. TrajectoryControl
reads commands from a shared buffer (C) and issues set-points (L) to the low-level
arm Controller. If there are no commands (modelled by the predicate T) it holds,
otherwise it reads the sensor value (S) and computes a new set-point. Its execution
time is between 5 ms and 8 ms. There are two motion executors, Lifter and Put-
ter. Lifter is activated periodically every 40 ms. It commands the arm to pick ob-
jects from the belt and place them into the buffer shelf. Upon termination, it issues a
command to TrajectoryControl and activates Putter, sending it commands
for moving the object from the shelf to the basket (predicate P). Its execution time is
between 4 ms to 9 ms. Putter sends commands to move the object from the shelf
into the basket. Its execution time is between 4 ms to 10 ms. The SensorReader
task reads sensors every 24 ms. Its execution time is 1ms. Sensor readings are used by
TrajectoryControl. Controller is a periodic task with a period of 16 ms.

7.1 Stopwatch automata model of the robotic arm

Figure 5(b) shows Lifter’s stopwatch automaton model. Note how the mode is
changing—after each clock tick (e.g., L1 → L1), which increases all running clock-
s/stopwatches, the mode changes to Timeout, so that we can check for deadli-
nes/alarms. Mode changes to SchedExec before each monitorEnter (L1 → L2),
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Fig. 5 A robotic arm case study

to ask the Execution scheduler for permission to enter the monitor. It also changes
to SchedExec after each monitorExit (L5 → L0), to get permission for continu-
ing execution. Note finally, that before performing the notifyAll at state L4, mode
changed to SchedNotif, so that the Notification scheduler stack can decide what
task(s), if any, should be notified.

Figure 5(c) shows the part of the Timeout automaton which is relative to Lifter.
Transition T0

α−→ T0 is used when Lifter is at its initial position and it should start
a new period. So, its guard checks that Lifter’s clock has a value which is a mul-
tiple of its period. In this case, mode changes to SchedExec so that the Execution
scheduler can respond to this “new task period” event. Transition T0

γ−→ T0 is used
when there is no deadline/period to be signalled; we simply change mode back to
Application to allow the application to continue. Transition T0

δ−→ T0 is for the
case where the scheduler had selected the IDLE task to execute; we just advance all
running clocks/stopwatches (arming all alarms as a byproduct), waiting for a time-
out. Finally, transition T0

β−→ T1 is when Lifter misses its deadline. In this case
we move to a deadlock state and do not change mode; thus now the whole system be-
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comes deadlocked. The Boolean variable Lifter_Alarm is used to dissociate between
the cases CPeriodic

Lifter = 0 (start of period) and CPeriodic
Lifter = 40 (deadline). In the former

case Lifter_Alarm is false and thus the deadlocking transition β is disabled, while in
the latter case Lifter_Alarm is true and transition β is enabled. This variable starts
with a value of true, gets disabled at each new period and automatically becomes
enabled by each tick.

7.2 Applying scheduler synthesis

We decided to partition the application in two sub-systems, one comprising the 4 tasks
Lifter, Putter, SensorReader, and TrajectoryControl, and one con-
sisting solely of the Controller task. Table 3 shows the results obtained when ap-
plying our methodology on the case study. We started with the untimed model of the
4-task system, so as to check for deadlock states (see line (2) of Table 3). Not finding
any, we used a non-preemptive execution policy to check the timed model of the sys-
tem for states where deadlines are missed (line (3)). Such states indeed exist and we
synthesised 103 scheduler constraints for avoiding them. In line (4) we see that when
applying these constraints to the model, all deadline-miss states become unreachable
(always assuming a non-preemptive task execution policy). Then, in line (5) we con-
sidered the timed model of the system under a preemptive execution policy. In this
model, there are 15 more constraints we synthesise for avoiding the states where we
can miss some deadline. When adding these 15 constraints to our scheduler we obtain
a safe 4-task system, under both a non-preemptive and a preemptive execution pol-
icy, driven by a synthesised scheduler consisting of 118 constraints in total, as shown
in line (6). In lines (7) and (8), we have attempted to synthesise constraints for the
deadlines, when the scheduler is not allowed to observe the clock values. As can be
seen, no extra constraints are needed, meaning that the 118-constraint scheduler from
line (5) is already independent of time when the clock valuations are projected out of
the constraints.

Having obtained a safe 4-task system, Controller is added to it to analyse the
complete system. In line (10) of Table 3 we analysed the timed model of the sys-
tem under a non-preemptive execution policy. We used as a scheduler the 118 con-
straints we had synthesised for the 4-task system, see line (8). As we can see, there
were indeed new bad states where deadlines are missed and we synthesised 2325
constraints for avoiding them. Indeed, in line (11) where we applied these 2325 (plus
118 = 2443) constraints to the system, all deadline-miss states have become unreach-
able. Then, in line (12), we examined the timed model under a preemptive execution
policy, synthesising 976 new constraints. Using all the 3419 synthesised constraints,
in line (13) we checked that they safely scheduled the system and then in line (14)
we synthesised the final set of 71 constraints that are needed for a time-independent
scheduler. The resulting scheduler (line (15)) has 3490 constraints, which keep the
system in a safe state under both a non-preemptive and a preemptive execution pol-
icy, without observing the system clocks.

Finally, lines (16) and (17) apply the LMCS quality policy to the system of
line (15), whose effect is to halve the number of states of the safe system. This shows
that the preemptive, time-independent scheduler synthesised at line (15) does not
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Table 3 Synthesis steps

Model kind States Red. Bad
Constraints

Used/Prod.

Synthesis Steps for the 4-task system, i.e., no Controller

(1) T P, no bbe 62137 0.00% 7 N/A

U, No Deadlocks 24597 60.41% 0 N/A

T NP, No Deadlocks 50139 19.31% 6 N/A

T NP, Safe 49054 21.06% 0 N/A

T P 61333 1.29% 4 N/A

T P, Safe 61051 1.75% 0 N/A

T P, Time Ind. 41574 33.09% 0 N/A

T P, Time Ind., Safe 41574 33.09% 0 N/A

Synthesis Steps for the 4-task system, with bbe reduction

(2) U, No Deadlocks 1553 97.50% 0 0/0

(3) T NP, No Deadlocks 2645 95.74% 1 0/103

(4) T NP, Safe 2605 95.81% 0 103/0

(5) T P 2740 95.59% 1 103/15

(6) T P, Safe 2702 95.65% 0 118/0

(7) T P, Time Ind. 2610 95.80% 0 118/0

(8) T P, Time Ind., Safe 2610 95.80% 0 118/0

Synthesis Steps for the 5-task system

(9) T P, no bbe 353730 0.00% 176 N/A

T NP, (4-task Safe) 260020 26.49% 85 N/A

T NP, Safe 239501 32.29% 0 N/A

T P 337032 4.72% 113 N/A

T P, Safe 325460 7.99% 0 N/A

T P, Time Ind. 123514 65.08% 174 N/A

T P, Time Ind., Safe 120449 65.95% 0 N/A

Synthesis Steps for the 5-task system, with bbe reduction

(10) T NP, (4-task Safe) 17604 95.02% 1 118/2325

(11) T NP, Safe 16476 95.34% 0 2443/0

(12) T P 23013 93.49% 1 2443/976

(13) T P, Safe 21913 93.81% 0 3419/0

(14) T P, Time Ind. 12313 96.52% 1 3419/71

(15) T P, Time Ind., Safe 12428 96.49% 0 3490/0

System line (15), with the LMCS QoS policy

(16) Before bbe 57003 83.89% 0 3431/0

(17) After bbe 7858 97.78% 0 3431/0
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over-constrain the system, thus allowing designers to effectively attack further qual-
ity properties.

8 Scheduler implementation

Once we have synthesised a scheduler we need to integrate it with the code of the
application and the underlying OS. Time-independent schedulers can be easily im-
plemented using widely available OS primitives, i.e., a preemptive, priority based
FIFO scheduling policy, notify, notifyAll, wait and timed_wait on condition
variables, and mutexes without priority inheritance. In addition to these, for time-
dependent schedulers we need alarms and timers to measure how long a task opera-
tion has been executing. Almost all R-T OS provide access to alarms and timers—the
problem is that the timers provided are usually measuring response time instead of
pure execution time, i.e., they also measure the time an operation has been preempted.
This creates a problem because in our model, duration intervals for operations are
expressed as pure execution time, without considering the effects of preemption—
[2,3] write means that write can take between 2 and 3 time units when ex-
ecuting without preemption, while its response time interval really depends on the
possible preemptions it can suffer. So if one wants to keep these duration intervals
and not replace them with intervals describing the best and worst case response times
instead (which can be derived by considering the longest execution trace for an op-
eration in the system space graph), then we need timers capable of measuring the
exact execution time of computations, even in the presence of preemptions. Unfortu-
nately, such timers are far from being widely available. For exactly this reason, our
methodology produces time-independent schedulers at the last stage—to avoid re-
quiring extremely reliable and precise timers. In fact, we also developed a version of
our control subsystem for supporting synthesised schedulers on FAST-OS, the propri-
etary POSIX-compliant OS of Thalès Airborne Systems, for the PowerPC architec-
ture. Unlike most OS, FAST-OS does not allow direct setting/observation of timers
at all—a major reason behind our attempt to synthesise time-independent scheduling
constraints (see Sect. 5.2.1, Table 1(b), and line (15) of Table 3). In the following, we
present the core implementation of time-independent schedulers.

The code consists of two parts—the application code and the control subsys-
tem (U_Scheduler). The application code is instrumented to call U_Scheduler
when an application thread executes one of monitorEnter, monitorExit, noti-
fy, notifyAll, wait, timed_wait or awaitPeriod. In its turn, U_Scheduler
evaluates the application-specific synthesised scheduling constraints corresponding
to the different scheduler layers. The control subsystem is implemented as an accom-
panying library.

Our library uses a single mutex (sched_mx) and provides to each application
thread a unique condition variable. These condition variables are all associated with
the aforementioned mutex (a capability which exists in POSIX but not in Java). This
construct is used simply for simulating the disabling of interrupts and can be used
when our code needs to run in user space. Finally, we use three different priority
levels, namely, BLOCKED, EXECUTING & INTERRUPT (from lowest to highest)
and the SCHED_FIFO POSIX scheduling policy.
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Fig. 6 Pseudo-code of the application scheduler

Figure 6 shows the pseudo-code of the implementation. Before calling procedure
U_Scheduler, our monitorEnter locks the sched_mx variable and updates
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Table 4 Timing primitives
under eCos (results in µs) Primitive Min Avg. Max Avg.-Dev.

Synthesised constraints 0.00 0.66 4.00 0.45

Context switch 0.00 0.77 1.00 0.35

Trylock (unlocked) 0.00 0.69 2.00 0.47

Unlock (locked) 0.00 0.75 3.00 0.47

the application task’s position to be the same as in the model (lines 47–48). U_-
Scheduler then calls Synthesized_Constraints (generated by the synthe-
sis tool) in line 9, passing it the current task PC. If the thread to be executed next
(tnext) is different from the current one (tcurrent) and tcurrent is not doing a notification,
tnext’s priority is set to EXECUTING (line 18), the condition variable (cvtnext ) of tnext is
notified in line 20 and we finish by having tcurrent wait on its own condition variable,
cvtcurrent , in line 24. This final action releases sched_mx just before blocking, thus
allowing the notified thread tnext to resume execution. If tnext is the same as tcurrent,
then the application scheduler returns normally and tcurrent unlocks sched_mx.

The algorithm changes somewhat when calling the application scheduler through
a timed_wait or an awaitPeriod. In this case, we also pass to our scheduler the
time that the current thread should wait. The scheduler then performs a timed wait on
cvtcurrent in line 28, using as timeout the absolute deadline argument, instead of doing
a simple wait. It also increases the priority of tcurrent to INTERRUPT just before
performing the timed wait (line 27), so that tcurrent gets the CPU when it timeouts.
When tcurrent timeouts, it re-evaluates the scheduler predicates (line 32), so as to
find out if it is indeed safe to continue execution. Before calling U_Scheduler,
functions U_timed_wait and U_wait (not shown in Fig. 6) set field PC_Notif
to the label of to the internal state of the wait, where the thread has been notified but
has not yet re-acquired the mutex of the object on which it was waiting. Similarly,
functions U_timed_wait and U_wait_for_period set field PC_Timeout to
the label of the internal state of the timed_wait, or the label of the first statement
after a new period.

We have successfully executed our implementation over two different combina-
tions of hardware architecture and embedded OS, namely an Intel Pentium II run-
ning eCos over Linux and a PowerPC simulator with FAST-OS. Experiments with
eCos showed that the execution time of the synthesised predicates (i.e., function
Synthesized_Constraints) is comparable to the execution time of locking
an (unlocked) mutex, having a WCET in the order of 4 µs. Table 4 gives the results
of our experiments under eCos. Experiments were run 1000 times on a 330 MHz
Pentium II, where eCos was using the synthetic Linux hardware architecture, e.g.,
running over Linux as a user process. eCos had the highest real-time priority in
SCHED_FIFO scheduling policy, thus running uninterrupted by all other processes.
In addition, all memory pages of the eCos process were locked in RAM, so as to
avoid paging from the OS.

The implementation pseudo-code shown in Fig. 6 refers to a POSIX-API imple-
mentation of this library. This implementation had to support FAST-OS that does not
allow access to alarms. This is why timeouts (for U_timed_wait and U_awaitPe-
riod) were implemented with the timed_wait primitive. We also have a non-POSIX
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implementation over eCos that uses OS alarms and alarm handlers directly, giving
us finer control over timeout events, since these are now treated by high priority in-
terrupt handlers. In this way we can support deadline and period miss handlers as for
example proposed in the RTSJ (Real-Time for Java Expert Group 2001).

9 Scheduler robustness

Synthesised schedulers can be intolerable to the wrong estimation of a computation’s
WCET. In fact, a computation should not finish earlier than its Best Case Execu-
tion Time (BCET) either; in both cases the system enters a state that was not in
the model used to synthesise the scheduler. Since this state was not explored dur-
ing synthesis, the scheduler does not have a strategy for it and thus can take an unsafe
action. It should be noted that by unsafe we mean an action leading to a deadline
miss, since deadlocks have been eliminated using the untimed model of the system,
thus the deadlock-safety synthesised constraints are not sensitive to timing errors (in-
deed, our scheduler synthesis methodology was explicitly developed to guard against
such a situation). Robustness is the reason for which RMA is sometimes preferred
to EDF, since when the timing assumptions are invalid one still knows how the sys-
tem will behave with RMA—the task with the smallest period will execute first and
so on—while EDF’s dynamic nature renders the system rather unpredictable. In our
setting, the time-independent scheduler constraints offer the same level of robustness
as RMA—they define the scheduling priorities independently of timing relations and
therefore are robust to any changes to these.

However, knowing which task will execute when the timing relations have been
estimated wrongly does not respond to the more important question of whether the
system will behave in a desirable manner. To answer that question, one needs to
explicitly analyse what the consequences of the invalid timing assumptions will be—
will they lead to missed deadlines and, if so, is there a way to further constrain the
system so as to render it safe even for these cases? The simplest solution for compu-
tations finishing before their BCET, is to impose it for each computation, by idling.
This, however, implies that we either use a non-preemptive execution model, or that
we have execution time timers (that do not measure the preemption time for a compu-
tation) so that we know how long the computation has executed. Unfortunately, such
timers are not currently supported by many OS. Instead of imposing the BCET, we
can explicitly verify whether the synthesised scheduler tolerates wrong estimations of
it. To do so, we need to apply our synthesised scheduler to a model where all BCET
are substituted by zero, thus exploring all possible cases of early completion of com-
putations. If we do not need to synthesise any new constraints for keeping the system
in a safe state, then our scheduler tolerates all the cases where a computation finishes
earlier than expected. Otherwise, we can use the additional constraints synthesised in
this step to render it safe anew. This step should evidently be performed last, since we
need to explore a much bigger state space. In addition, by considering the question of
tolerance to BCET estimations last, we can better identify the constraints which are
needed explicitly for this case and keep them separate from the constraints needed
for the case where our assumptions hold.
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There are two different manners to establish tolerance of the scheduler to wrong
estimations of the WCET of computations, similar to those for the BCET. If the
OS supports execution time timers then we need do no further analysis. Indeed, it
suffices to set alarms on these timers for the case where a computation exceeds its
WCET. Otherwise, we need to translate each WCET into a Worst Case Response
Time (WCRT) by taking into account all possible preemptions of this computation
by other computations. In the state space graph we identify the WCRT as the longest
path for each computation. Having done this, we need to verify again the model,
using now the interval [BCRT = BCET, WCRT] as the execution time of a computa-
tion (since the underlying OS does not allow us to differentiate between execution and
response time). The synthesised scheduler for this model can then be implemented
along with watchdogs which guard against computations exceeding their WCRT. At
the same time, we need to change the behaviour of the task stopwatches in the model
so that they are no longer stopped when computations are preempted (otherwise we
will be comparing execution versus response time). Another way of achieving this is
by adding new clocks so as to be able to measure the preemption time of tasks in the
model but then complexity goes up.

If the model using response times cannot be scheduled safely, then we need an
OS with execution time timers, or a non-preemptive execution model to render the
WCRT of computations equal to their WCET (since now computations cannot be
preempted). So for the transition W1->W2 in Fig. 2(a), the computation write will
have a WCRT equal to its WCET, that is 3 time units, since it cannot be preempted
once started. If this results in an unacceptably constrained system, we can break up
computations to introduce explicit preemption points by introducing synchronisation
constructs on new task-local objects. Thus, the deadlock-freedom of the system con-
tinues to hold (since the new synchronisation objects are local) and the scheduler has
additional points where it can exert control.

10 Related work

Our methodology for building application-driven schedulers follows the controller
synthesis paradigm (Wonham and Ramadge 1987) and builds upon (Altisen et al.
2002; Asarin et al. 1995). Controller synthesis for timed automata was also consid-
ered in Hoffmann and Wong Toi (1991), where the problem is reduced to the untimed
framework of Wonham and Ramadge (1987) using the region graph construction that
results in state space explosion. Wong Toi (1997) considers the more general setting
of linear hybrid automata and presents a semi-decision procedure. The approach of
Kwak et al. (1998) is also similar to ours since it uses an automata-based formalism
(after translation from ACSR) but it relies on a different algorithm, based on weak
bisimulation, and does not propose a particular scheduler architecture or implemen-
tation. A scheduler synthesis tool has also been described in Mok et al. (1996). It
differs from ours in two major aspects: (i) it computes static cyclic schedules by se-
quencing events in a fixed time frame, whereas our algorithm produces dynamic (and
not necessarily cyclic) schedules for an unbounded time frame; and (ii) it is restricted
to deterministic execution times, while we can handle non-deterministic ones.
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Task inter-dependencies due to resources are not considered in Isović and Fohler
(2000), though applications are allowed to have heterogeneous task types. The ad-
vantage of our method is the handling of larger models than if we had tried to attack
the original timed version of the model at once. In addition, following our method de-
signers can better understand the behaviour of a system, since we successively drive
them through: (i) states which cause a deadlock later on; and, (ii) states where a sys-
tem is overloaded (and, thus, task preemption is needed). Our method can be applied
to applications comprising any mix of periodic, aperiodic, etc. tasks sharing resources
and communicating through condition variables.

A disadvantage of our method is that we must build the entire state space before
synthesising a scheduler. It could be possible to adapt to our setting the on-the-fly
synthesis algorithm proposed in Tripakis and Altisen (1999). Concerning state-space
explosion, it is interesting to note Wang et al. (2009), who synthesise controllers
for deadlock-freedom, using structural characteristics of Petri net models of the pro-
grams. This approach scales easily to very large programs, since it does not explore
the full state space. It is similar to using the sets of task states where they hold or want
to hold a resource (see Sect. 5.1), to identify potential deadlocks. Apart from the fact
that not all potential deadlocks are real, the main problem with Wang et al. (2009)
is the solution advocated—to add extra locks to render deadlocks impossible. As we
have shown at the end of Sect. 5.1, this solution is rather Procrustean, since it greatly
over-constrains the valid execution traces and can break the application logic (even
in non-R-T systems). In fact, this is a problem that is shared by all approaches, the
RMA family included—it is not known what are the repercussions of the constraints
they impose on other properties of the system. Our methodology is best poised to
deal with this problem for two reasons. First, by attempting to synthesise the maxi-
mal controller, it applies as few constraints as possible, so when it does change the
application logic it is because that is the only possible way for safely controlling the
system. So the designer has to accept this change, add extra control points and/or
observation variables, or redesign the system completely—there is no other alterna-
tive. Second, since our methodology builds on model checking, software engineers
can easily verify whether the synthesised scheduler respects basic application prop-
erties, which is not supported by the approach of Wang et al. (2009) or these based
on RMA-type analyses. So for the system of Fig. 2(a) one can easily check whether
the variable Fresh will ever become true so that the User task uses the value pro-
duced by the task Writer—indeed this is the case for our scheduling constraints but
not for the solution of Wang et al. (2009). For this system the violation of this prop-
erty will eventually show up as a missed deadline, since the User task cannot finish
its iteration without reading a fresh value. But in other systems, that may not be the
case—indeed, the User task could very simply have ignored old values and wait for
its next period to treat a fresh value, thus never doing any real work. This could not
have been identified easily without model-checking and designers should realise that
meeting the deadlines does not necessarily mean that the program has done the work
it needed to do.

Several have considered quality requirements for rate-monotonic scheduling. For
instance, Dobrin and Fohler (2004) proposes a technique for reducing the number of
preemptions, but at the cost of eventually having to increase the number of tasks by
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splitting some of the original ones. Flexible scheduling techniques (Fohler and But-
tazzo 2002) consider the problem of scheduling together hard and so-called soft real-
time tasks that are characterised by quality-of-service demands. However, they do
not cope with quality requirements of hard real-time tasks, which our approach han-
dles easily. Then, Combaz et al. (2008) handles hard deadlines together with specific
quality properties, but only for video encoding/decoding. Besides, the major problem
with such approaches is that each QoS property has to be tackled individually with a
new algorithm and/or run-time system. In contrast, our methodology is able to handle
QoS requirements by specifying the appropriate constraints at the Quality-Exec and
Quality-Notif layers and possibly enriching the model, while the controller synthesis
algorithm and the controller subsystem do not change.

Finally, compared to MDE approaches like Bordin et al. (2008) that are based on
classic scheduling analyses, the general applicability of scheduler synthesis means
that analysis tools do not need to be extended for each new analysis theory and that
it can seamlessly support verification of general properties through model-checking,
since it is based on automata.

11 Conclusions

Scheduling system tasks to meet multiple QoS requirements is an extremely difficult
but at the same time very important task. We have introduced an automata theoretic
model-based approach (based on scheduler synthesis) to achieve this, focusing as a
start on meeting the most basic (i.e., deadlock freedom) and the most critical (i.e.,
timeliness) requirements, while showing how further QoS properties can be easily
achieved as well (e.g., the reduction of context switches).

Our scheduler architecture and synthesis methodology allows to break the syn-
thesised scheduling constraints into different parts, each representing some particular
safety property and platform execution mode. This helps software engineers better
understand the schedulers themselves and to get a better understanding of the be-
haviour and importance of the different tasks. Another advantage is that schedulers
can be synthesised for larger systems by doing the synthesis successively, each time
using a more detailed model of the system, after having applied to it the schedulers
synthesised in previous steps.

Our approach does not impose restrictions on the type of tasks nor does it require
that the system is restructured simply to facilitate analysis and control.

We have also performed a prototype validation of our scheduler synthesis method-
ology by using two OS (eCos and FAST-OS). On top of these we can execute an ap-
plication controlled by a synthesised scheduler, through the use of a library we have
developed to support application-specific synthesised schedulers. We have developed
two versions of this library: one POSIX compliant (which works unchanged in both
FAST-OS and eCos) that we have described herein, and a non-POSIX one that uses
OS alarms and alarm handlers directly (for eCos). Our approach has been first in-
tegrated in an industry-strength RTSJ-compliant compilation infrastructure and run-
time environment (Kloukinas et al. 2003): the model extraction and synthesis steps
were interfaced with the Java-to-C TurboJ compilation chain (Weiss et al. 1998) and
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our controller subsystem was part of the Expresso executive (Gauthier and Richard-
Foy 2002). More recently, it was used as part of an MDE framework for real-time em-
bedded systems comprising the formal, model-transformation and code-generation
tool Jahuel (Assayad et al. 2005) and the FlexCC2 compilation technology of STMi-
croelectronics (Bertin et al. 2002).
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