
Chapter 5
Representation of Security and Dependability
Solutions

Francisco Sánchez-Cid, Antonio Maña, George Spanoudakis, Christos Kloukinas,
Daniel Serrano, and Antonio Muñoz

Abstract AmI considerations lead us to argue that it is essential for Security and
Dependability (S&D) mechanisms to be able to adapt themselves to renewable con-
text conditions in order to be applied to the ever-changing AmI scenarios. The key
for this dynamic adaptation relies on the ability to capture the expertise of S&D
engineers in such a way that it can be selected, adapted, used and monitored at run-
time by automated means. S&D Artefacts proposed in this chapter represent the
core of author’s approach to precisely model such expertise in form of semantic de-
scriptions. They adopt an integral methodology covering the complete system life
cycle going from S&D Classes, mostly used at development time, to S&D Patterns
and S&D Implementations, perfectly suited for deployment and runtime use. This
chapter traces the foundations and internals of S&D Artefacts, describing how they

Francisco Sánchez-Cid
Computer Science Department, University of Malaga,
Campus de Teatinos. 29071 Málaga. e-mail: cid@lcc.uma.es

Antonio Maña
Computer Science Department, University of Malaga,
Campus de Teatinos. 29071 Málaga. e-mail: amg@lcc.uma.es

George Spanoudakis
Department of Computing, City University of London,
Northampton Square, London, EC1V 0HB, UK. e-mail: gespan@soi.city.ac.uk

Christos Kloukinas
Department of Computing, City University of London,
Northampton Square, London, EC1V 0HB, UK. e-mail: C.Kloukinas@soi.city.ac.uk

Daniel Serrano
Computer Science Department, University of Malaga,
Campus de Teatinos. 29071 Málaga. e-mail: serrano@lcc.uma.es

Antonio Muñoz
Computer Science Department, University of Malaga,
Campus de Teatinos. 29071 Málaga. e-mail: amunoz@lcc.uma.es

70 Francisco Sánchez-Cid et al.

are defined and structured, and how they are categorized and grouped to form an
exhaustive library of sound S&D Solutions.

5.1 Introduction

It is now widely accepted that end to end security should be adopted and ac-
complished as part of the early application design and development process. If
addressed at the end of the deployment phase or even considered just before the
system testing in a pre-production environment, options for reactive or post-mortem
security fixes are very limited.

Moreover, as nowadays threats quickly evolve and make existing solutions ob-
solete, what was considered a secure application design might be insecure in short
term. Thus, the challenge faced by our work is to create a quality application se-
curity design to ensure that (i) all aspects of application security are considered
during the early design stages; (ii) the security and dependability requirements are
correctly translated from the design to the implementation; and that (iii) once the
system has been deployed, it adopts a reactive approach, ensuring service continu-
ity and recovery in case of a security breach or malicious attack. For this challenge
to be accomplished, existing Security and Dependability (S&D) Solutions must be
analysed and then described in such a way that allows them to be selected, adapted,
used and monitored at runtime by automated means.

S&D Solutions refer to any security or dependability mechanism (e.g. the Apache
Rampart mechanism for automatic encryption and decryption of messages ex-
changed between web services [1]) that realizes an S&D Requirement (e.g. authen-
tication, integrity...). Following SERENITY approach, S&D Experts study, analyse
and eventually come out with a sound description of the functionality of S&D So-
lutions. They design S&D Solutions as blocks or services and use the language of
S&D Artefacts to represent them either as S&D Classes or S&D Patterns, depending
on the abstraction level considered. They should also have expertise in verification,
validation and certification of S&D Solutions as well as in legal issues related to
information technologies. This approach is specially interesting for ambient intelli-
gence environments (AmI) because its particular S&D requirements.

Once a solution is described in terms of the Language of S&D Patterns, engineers
acting as Component Developers are able to implement it following the strategies
defined in the language. As all security mechanisms studied by S&D Experts are
described as abstract solutions, both independent of the target platform and imple-
mentation language, component developers can create a variety of implementations
of the same solution for different platforms and programming languages. The re-
sulting product is an Executable Component which, in turn, is described as an S&D
Implementation using the language of S&D Artefacts to facilitate its dynamic ap-
plication at deployment time.

Each artefact in SERENITY is conceived to represent a solution that provides
certain security and dependability requirements. Thus, one of the main aspects in

5 Representation of Security and Dependability Solutions 71

S&D Patterns’ specification is the elicitation of the S&D Properties they provide
(i.e. the requirements they fulfil). The definition of these properties along with their
formal description is task of the S&D Engineers.

5.2 Existing Approaches for Modeling S&D Solutions

Existing approaches for modeling security and dependability aspects in Ambient In-
telligence ecosystems go from approaches based on middleware, through the adap-
tion of Frameworks and Agents technologies, to the enhanced concept of Pattern.

Approaches based on Middleware, capture expertise of S&D Engineers in the
form of standard interfaces & components that provide applications with a simpler
facade to access this set of specialized, powerful and complex capabilities. Though
useful, an important problem with middleware–based approaches is that the compu-
tational cost of middleware components is far too high for computing devices with
limited capabilities. In addition, the security infrastructure of middleware systems
is traditionally restricted to authorization and access control issues [2, 3].

Application Frameworks [4, 5] have emerged as a powerful technology for de-
veloping and reusing middleware and application software. However, this approach
does not support secure interoperation with external (and not trusted) elements, and
given that frameworks are application templates, they are not well suited to cope
with scenarios with high degrees of heterogeneity, dynamism and unpredictability.

In this sense, Agent paradigm emerges as a well-suited solution for such highly
distributed environments where independent components from different owners
coexist and interact. However, minor work has been done in the field of agent-
based systems, built on the basis of properties like autonomy, interaction, context-
awareness and goal-oriented nature [6]. Authors present in [7] a methodology that
takes advantage of the organizational structures of agent systems in order to deal
with simple access control and interaction patterns. However, they show limitations
when modeling complex security aspects [8]: an agent is an independent entity by
definition and many security solutions like a complete access control model (e.g.
XACML) can not be represented. Other approaches [9] provide developers with the
guidelines for the selection of security patterns, but use natural language and thus
do not allow their automatic selection and posterior deployment.

Approaches to simplify the development of a complex system include those
based in Aspects. Aspects “isolate” the different aspects that must be considered
during development of a system (functionality, performance, reliability, security,
etc.) managing security solutions as independent modules. Unfortunately, aspects
are mainly an implementation technique and not suitable to provide and manage
S&D solutions as a whole [10, 11].

72 Francisco Sánchez-Cid et al.

5.2.1 Components

Components capture expertise in the form of reusable software elements that solve
a certain problem in a certain context, having a set of well-defined interfaces and
an associated description of their behavior [12, 13]. The main interest of component
composition is to build new systems from their requirements by systematically com-
posing reusable components. In general, this concept is not appropriate to represent
S&D solutions because security mechanisms can not always be represented as units
that can be connected to the rest of the system by means of well defined interfaces
[14].

Nevertheless, components technology has presented advances on several issues
relevant to SERENITY. The first refers to interface discovery and analysis, removal
architectural mismatches or architecture selection and system composition. In [15],
authors assume the use of previously-unknown components that are discovered at
runtime but are used without further guarantees of origin or behavior. This is unac-
ceptable from the point of view of security, so SERENITY proposes a framework for
the rigorous treatment of security and dependability components introducing trust
mechanisms for the component descriptions.

Some authors address the characterization and semantic definitions of compo-
nents for their selection at development time. One possibility is the addition of se-
mantic descriptions to CORBA in the form of protocols and roles [16], which is not
far way from our approach in the sense of enriching the semantic descriptions of
S&D Patterns with a set of semantic information. Other approaches first represent
components using a well-known structure such as Trees [17], and then use these
representations to reason on them and build component classifications. Although
Trees offer a semi-formal technique for component description, security properties
are not well suited for tree-based classification.

The dynamic analysis of component compatibility, with the objective of adapting
components and synthesizing suitable software architectures [18], has been studied
as well. Several component-based security models have been proposed in the liter-
ature [19, 20] but, unfortunately, these proposals have been based on oversimplified
views of security, like those based on security levels [21], not applicable in AmI.
These models are useful in specific systems like military organizations but they are
just not applicable in more open and heterogeneous environments.

Finally, the issue of trust is usually addressed on the basis of component certifica-
tion and secure composition [22]. Component Security Certification (CSC) pipeline
[23] is an approach for certifying security of software components that provides
security-oriented testing processes for software component. SERENITY follows a
similar approach in the sense that all S&D components have a certified description,
but we also support the runtime management of these components and provide a
complementary mechanism for monitoring the components’ behavior.

5 Representation of Security and Dependability Solutions 73

5.2.2 Patterns

The concept of security pattern was first introduced to support system engineers in
selecting appropriate security and dependability solutions. However, most security
patterns were expressed in textual form as informal indications on how to solve
some (usually organizational) security problem [24, 25, 26]. Some of them do use
more precise representations based on UML diagrams, but these patterns do not
include sufficient semantic descriptions in order to automate their processing and to
extend their use.

Perhaps the first and most valuable contribution as pioneer in security patterns
as we know them at present, is the work from Joseph Yoder and Jeffrey Barcalow
that adapts the object-oriented solutions to recurring problems of information secu-
rity [27]. A natural evolution of [27] is the work presented by Romanosky in [28],
which takes into consideration new questions that arise when securing a networked
application. Indeed, there is an increasing interest in proposing more formal and
precise descriptions to enhance the special needs of secure-ware systems with high
dependency on the environment in which these systems are deployed. Konrad et al.
took an step in that direction in [26], studying the security patterns proposed by
Gamma et al. in [29] and using UML to represent both the structural and behavioral
information that had not been considered in general design patterns but appears as
mandatory in the new security context.

In an ambitious paper [30], Eduardo B. Fernandez follows the track initiated
in [31] and proposes a methodology for using security patterns at every stage of
the software lifecycle, combining for the first time the idea of multiple architec-
tural levels with the use of design patterns [32]. Using more precise representations
based on UML, this methodology was a first attempt to bridge the gap between de-
sign patterns and their final implementation. Evolutions of that approach use logic
formalisms [33] and formal methods [34] with an associated graphical notation to
specify rich structural properties.

In an attempt to enhance the organization and applicability of the emerging pat-
terns, Wassermann and Cheng presented in [35] a revision of most of the patterns
from [31, 27] and categorized them in terms of their abstraction level. Unfortunately,
none of these approaches include enough semantic information for automating their
processing, making it impossible to face the possible change of requirements at run-
time and the consequent need of adapting or changing the patterns in use. In order
to find some advances in this direction, we must refer the use of Design by Contract
(DbC) [36]. Contracts are meant to precisely specify a given class using class in-
variants and pre and post-conditions for characterizing the behaviors of individual
methods of the class. In [33, 37] authors follow this approach to preserve the design
integrity of a system so that it continues to be faithful to the patterns used in its
initial design even as it evolves to meet changing requirements.

Some security patterns have also been proposed for Web Services systems. From
the very beginning, the tendency has been to use the object oriented paradigm: in
[38] an object oriented access control (OOAC) was firstly introduced as a result of
consequently applying the object oriented paradigm for providing access controls in

74 Francisco Sánchez-Cid et al.

object and interoperable databases. Fernandez proposes in [39] some specific solu-
tions oriented to web services: a pattern to provide authentication and authorization
using Role-based access control (the so-called Security Assertion Coordination pat-
tern) and a pattern for XML Firewalls. Other source for patterns on XML Firewalls
is [40]. To end with, [41] is a good source to study the historical approaches that
have been appearing in the scientific literature as pattern systems for security.

5.3 S&D Artefacts: Supporting Security and Dependability at
Runtime

This section presents the expression of security knowledge following the SEREN-
ITY approach. Current processes for providing security and dependability (S&D) in
computing systems require a detailed a priori knowledge about the target systems
and their environments. However, in emergent computing scenarios like ubiquitous
computing or ambient intelligence, it is not possible to foresee all possible situations
that may arise at runtime, so the necessary knowledge is not available at develop-
ment time. This section introduces the concept of S&D Artefacts: a set of S&D
Classes, Patterns and Implementations; an approach that makes accessible security
and dependability knowledge at runtime by extracting and capturing sensitive infor-
mation of S&D Solutions in a machine-readable way. The structure of these arte-
facts, along with the relations established among them is described in detail here,
including the definition of roles, preconditions, provided properties ...

5.3.1 The Conception of S&D Patterns

It is leisure time at “Las Acacias” College and Alice and Bob enjoy a Race Game
using their wireless ACME game-consoles. Charlie asks them to join the race us-
ing his brand new BOXX630 SERENITY-enabled game-console. Alice and Bob
are willing to accept their friend to join the game, but the ACME consoles require
confidentiality for wireless connections to other devices. Basically, this is a pre-
configured setting for preventing eavesdroppers from obtaining information about
the parties that are interacting and the services they use.

Charlie’s console identifies the requirement (a confidential channel) and looks
for the best solution. At design time, the developers of the game identified the need
to securely connect players, but because at that stage they could not foresee the pos-
sible types of counterparts and the different circumstances under which the commu-
nication would take place, they decided not to restrict the range of possible solutions
to use. One of the SERENITY artefacts called S&D Class represents security and
dependability services and is especially designed to support system developers in
these situations. S&D Classes represent abstractions of a set of S&D Patterns char-
acterized for providing the same S&D Properties and complying with a common

5 Representation of Security and Dependability Solutions 75

interface. In particular S&D Classes allow developers to delay the decision about
the most appropriate solution to runtime, when the information required to select a
specific solution (the context, type and capabilities of the other party, etc.) is avail-
able. Thus, they selected and used the S&D Class named “TransmisionConfiden-
tiality.etsi.org”, which represents confidentiality services and includes a predefined
high-level interface. In this way, the game developers were able to use the confi-
dentiality services without knowing which solution will be used to provide them at
runtime.

Going back to our scenario, Charlie’s console must now select one specific so-
lution to provide the confidentiality services to the game application. At this point
the console uses the second of the SERENITY artefacts called S&D Pattern, used
to represent abstract solutions. The main purpose of this artefact is to guarantee the
interoperability of different solutions. A number of different S&D Patterns belong
to the selected S&D Class. After analyzing them, only two are found to be adequate
given the current context: Charlie’s using an open wireless network susceptible to
possible eavesdropping as well as passive and active attacks. The suitable patterns
are: “SSL 3.0 Channel” and “TLS Channel”. At this point Charlie’s device nego-
tiates with the other parties and eventually, the SSL option is selected as the most
appropriate.

Once the abstract solution has been selected, which ensures the interoperability
between the different systems, Charlie’s console needs to find an implementation
(i.e. an instance) of the “SSL 3.0 Channel” S&D Pattern. The third artefact provided
by SERENITY comes into play. This artefact is the S&D Implementation, used to
represent working solutions.

Given Charlie’s console context (underlying O.S., running software, other ac-
tive S&D Solutions, user preferences, etc.), only three S&D Implementations are
available for that S&D Pattern and that context: mod ssl module from Apache
2.0, Cisco’s OpenSSL, and Java SSL using JSSE. Java implementation of SSL
is selected and activated to provide confidentiality for the game-connection. Charlie
is informed of the successful establishment of the confidential connection and he
finally joins the game.

It goes without saying that our main characters are all but security experts. Con-
sequently, it is important to remark that the provision of a solution for a concrete
context should be as transparent as possible for the user. That is, S&D Patterns must
be designed for automated processing, so that Charlie’s awareness of technical de-
tails should be reduced to the minimum.

5.3.2 S&D Artefacts Definition

Components, frameworks, middleware, and patterns have been proposed as alter-
natives to simplify the design of complex systems and to capture the specialized
expertise of security engineers, making it available for non-expert developers. How-
ever, all approaches already reviewed in section 5.2 have important drawbacks and

76 Francisco Sánchez-Cid et al.

limitations that hamper their practical use, especially when it comes to runtime sce-
narios. Our approach aims at integrating the best of these approaches in order to
overcome the problems that have prevented them to succeed individually.

The main pillar to build sound solutions is the development of artefacts to cap-
ture security expertise allowing its automated processing. Note that for this purpose
we do not need to describe the internal functioning of the solution but its semantics
(i.e. properties provided, limitations, etc.). This is an essential difference between
our S&D Patterns and the widespread concept of security pattern. These semantic
descriptions allow solutions to be automatically selected, adapted, used and moni-
tored at runtime. Nevertheless, the approach presented here not only covers runtime
aspects but adopts an integral methodology covering the complete system life cycle.
Thus, an additional goal for S&D artefacts is to support system developers in the
development process. Furthermore, because secure interoperability is an essential
requisite for the widespread adoption of our model, trust mechanisms are provided
for them. With these two purposes in mind, we have developed the following arte-
facts to capture the different aspects of the S&D Solutions that are necessary at
different stages of the system life cycle.

5.3.2.1 S&D Patterns

We define S&D Solutions as well-defined mechanisms (i.e. security protocols, en-
cryption algorithms, etc.) that provide one or more S&D Properties (i.e. confiden-
tiality, integrity, availability, etc.). Based on this definition, S&D Patterns are se-
mantic descriptions of S&D Solutions. These semantic descriptions contain all the
information necessary for the selection, instantiation and adaptation, and dynamic
application of the solution represented. In other words, given a well-known security
solution (e.g. IDEA encryption algorithm), S&D Patterns allow you to isolate and
capture its fundamental characteristics (e.g. block encryption, 128-bit key...) so that
you can: (i) consult these characteristics by automated means at runtime and (ii)
apply the solution when such characteristics match the requirements of the actual
environment.

One important aspect of the solutions represented as S&D Patterns is that they
can contain a description of the results of any static analysis performed on them.
Such descriptions provide a precise foundation for the informed use of the solution
and enhance the trust in the model. Despite of that, the limitations of the current
static analysis tools introduce the need to support the dynamic validation of the
behavior of the described solutions by means of monitoring mechanisms. S&D Pat-
terns are meant for runtime scenarios, and more specifically, for evolving scenarios
as those foreseen in AmI. In such scenarios, it is natural for the requirements of
the environment to change from time to time so the soundness of the running so-
lutions must be checked somehow. That is what the monitoring mechanisms stand
for. When a running S&D Pattern is found to be inaccurate or inappropriate, the
corresponding solution must be stopped, the system informed and then, if found
convenient, the solution replaced by a new one.

5 Representation of Security and Dependability Solutions 77

S&D Patterns represent not only simple solutions, but also complex ones. In fact,
a special type of S&D Patterns, called Integration Schemes, is used to represent
solutions that are built by combining other S&D Patterns. While S&D Patterns are
independent or atomic descriptions of S&D Solutions, Integration Schemes describe
solutions for complex S&D Requirements achieved by the combination of some
smaller S&D Solutions.

5.3.2.2 S&D Classes

S&D Classes represent abstractions of a set of S&D Patterns characterized for: (i)
providing the same S&D Properties and (ii) complying with a common interface.
According to this, S&D Patterns that belong to an S&D Class can have different in-
terfaces but, in such circumstances, they must describe how these specific interfaces
map into the S&D Class interface. We could describe this artefact as an extension
of the interface concept, augmented with semantic information, in a similar way as
proposed in [24].

Although S&D Classes are mainly used at development time, when system de-
velopers are defining the guidelines and general functionality of their models, the
main purpose of introducing this artefact is to facilitate the dynamic substitution of
the running S&D mechanisms at runtime. This is a basic pillar behind the whole
idea of S&D Artefacts: first, select at development time a Class with an abstract
definition of the intended functionality (i.e. abstract methods from Classes); second,
find the Patterns complying to (i) this definition and (ii) the foreseen application
environment; and third, at runtime, Patterns will be selectable and interchangeable
because (though having different interfaces) they all comply with the same abstract
one.

Fig. 5.1 In the representation, the Class Adaptor specifies how to map from
sendConfidential() call at Class level to the sequence getKey(), encrypt(),
send() at Pattern level

Actually, interoperability is a key issue addressed via these concepts. Given that
this artefact defines the high-level interface (i.e. the set of functions, calls, or meth-
ods that form the functionality offered by an artefact), with this approach it is pos-
sible to create an application bound to an S&D Class. Then, given that artefacts in

78 Francisco Sánchez-Cid et al.

an S&D Library have a reference to the higher level artefact they belong to, it is
always possible to track back from an Executable Component to its S&D Class in
three backward steps maximum. In conclusion, all S&D Patterns (and their respec-
tive S&D Implementations) belonging to an S&D Class will be selectable by the
framework at runtime.

For this approach to be applicable, there must exist a mechanism to map from
the original high level interface — described in the S&D Class, to the medium-
level interface – used in the S&D Pattern. Figure 5.1 shows how this mapping is
expressed. The pattern captures the correspondence from its own Pattern operations
and the corresponding Class calls.

It is easy to see that the translation between one interface to the other is direct
but not one-to-one, since it is possible for a single operation at S&D Class level,
to be mapped into a sequence of operations at S&D Pattern level. Thus, the Class
Adaptor must provide some statements for the flow of control that expresses the
actual mapping. Moreover, as it is feasible for an S&D Pattern to belong to more
than one S&D Class, it is possible to find several Class Adaptors for the same S&D
Patterns Interface (each adaptor linked to the S&D Class that adapts).

5.3.2.3 S&D Implementations

S&D Implementations represent the components that realize the S&D Solutions
and, given that S&D Patterns represent S&D Solutions, S&D Implementations re-
alize S&D Patterns. Figure 5.2 represents a partial set of solutions, starting from a
Class that provides confidentiality for simple transmissions, and ending in several
Implementations of the solution (and their corresponding Executable Components).

All S&D Implementations of an S&D Pattern must conform directly to the inter-
face, monitoring capabilities, and any other characteristic described in the S&D Pat-
tern. A specific component providing encryption services or a web service providing
time stamping services are susceptible to be described using an S&D Implementa-
tion. We must emphasize that S&D Implementations are not the actual components
but their representation. The actual components are made accessible to applications
thanks to the SERENITY Runtime Framework (presented in Chapter 11), who maps
from the S&D Implementations to the actual Executable Components.

An S&D Implementation is not just an implementation of the S&D Solution, but
an implementation of an S&D Pattern. This means that all S&D Implementations
of an S&D Pattern must conform directly to the interface, monitoring capabilities,
and any other characteristic described in the S&D Pattern. However, they may have
differences, such as the specific context conditions to meet before deployment, their
performance, target platform, programming language or any other feature not fixed
yet at Pattern level.

An S&D Implementation represents a working solution and therefore it contains
a reference to the corresponding Executable Component that realizes it. While an
S&D Implementation is only a description of an implementation, the Executable
Component is the actual implementation as an executable code or entity. There exist

5 Representation of Security and Dependability Solutions 79

Fig. 5.2 In the representation, Apache SSL implements Confidentiality By SSL 3.0
and points to mod ssl component, while two Patterns are shown that provide Simple
Transmission Confidentiality, namely: SSL 3.0 and TLS

a one to one relation between S&D Implementations (the descriptions of the work-
ing solutions) and Executable Components (the actual working solutions), so that
no S&D Implementation is effective without an Executable Component associated.

5.3.3 Rationale for Classes, Patterns and Implementations

There are several reasons that justify the introduction of these artefacts and their
separation at different levels of abstraction. First, from the point of view of the type
of information they contain, only S&D Patterns can be verified using a handful of
S&D engineering tools and techniques (for instance, static analysis using formal
methods). This is possible for S&D Patterns because all information referring to
the provided properties and the result of the verifications only concerns to the ab-
stract solution, which is defined at pattern level. In contrast, S&D Classes can not be
verified because they only provide the minimum amount of information required at
development time (i.e. the properties provided and the interface used to access the
services). The same applies to S&D Implementations, since software implemen-
tations are not feasible to verify for the most part. Therefore it is wise to separate
their definitions since: (i) all information referring to the provided properties and the
available proofs concern only the abstract solution (that is, the S&D Pattern) and not
the interface or the specific implementation; and (ii) S&D Patterns are verified by
S&D experts (usually by means of formal methods) while the S&D Implementations
are tested by their producers.

80 Francisco Sánchez-Cid et al.

From the point of view of their role, S&D Classes are mainly interface definitions
introduced in order to facilitate the development phase in the software life-cycle. On
the other hand, S&D Patterns are used by S&D experts as a mechanism to capture
their knowledge about one S&D solution in such a way that ensures the correct usage
of the solution at runtime. S&D Implementations are used to capture information
about the components that realize the S&D Patterns, so their role is analogous to
that of the patterns. However, the knowledge for S&D Patterns is extracted by means
of formal methods or any other analytic process, while S&D Implementations take
advantage of certification processes or proof-carrying code schemes [46] to study
each specific component.

Finally, the consideration of the producers of the different specifications makes it
advisable to separate their definitions. For instance, S&D Classes will be defined by
entities mainly interested in interoperability (e.g. industry associations, standardiza-
tion bodies). Independent entities such as IT consulting companies and S&D experts
will take these definitions to produce S&D Patterns, although it will be possible for
standardization bodies to create S&D Patterns as well. Using this artefact, they will
not only enhance security and dependability, but will also contribute to interoper-
ability, as all implementations of an S&D Pattern will be required to conform to
the pattern specification. Finally S&D Implementations will be produced by entities
interested in the creation of working solutions (commercial solution providers, open
source communities, etc).

5.3.4 The Structure of S&D Artefacts

Each of the artefacts has a predefined structure, specified as an XML Schema, so
there is a different XML Schema for S&D Classes, S&D Patterns and S&D Imple-
mentations. The definition of an S&D Artefact is in fact an XML document written
according to the corresponding XML Schema. Understanding XML itself is rather
simple, allowing data and meta-data sharing, and enabling interoperability; proper-
ties that are all inherited by S&D Artefact. However, given that S&D Artefact are
conceived for their automatic use, the main reason behind the selection of XML as
the standard for S&D Artefacts definition is its machine-readability.

There is one element that S&D Classes, S&D Patterns and S&D Implementation
have in common: the distinction between informational and operational data. The
former groups the information mainly devoted to development time, while the latter
integrates the information used at runtime, when artefacts must be selected, the trust
mechanisms verified and the functionality monitored. Next sections present the main
elements and structure for each of the artefacts, and it provides several examples
based on an authentication scenario.

The authentication scenario is composed by the following set of S&D Artefacts
(see Figure 5.3). There are two S&D Classes, one of them representing authen-
tication S&D Solutions (“UserAuthetication”), and the other devoted to represent
“Observers”. “Observers” S&D Solutions do not provide a S&D mechanisms but

5 Representation of Security and Dependability Solutions 81

checking particular context conditions. For instance, the S&D Pattern “smartCard-
Connected” checks if there is an available smart card connected to the platform.
There are two S&D Artefacts belonging to the “UserAuthentication”: the “Smart-
CardAuthentication” S&D Pattern and the “SmartCardAuthenticationIS” Integra-
tion Scheme. The “SmartCardAuthentication” S&D Pattern represents an user au-
thentication based on an smart card S&D Solution. the “SmartCardAuthenticatio-
nIS” Integration Scheme is a S&D Solution made by combining the aforementioned
two patterns, consequently this S&D Solution includes the functionalities for both
the authentication user and the check of the smart card connection. The rest of the
S&D Artefacts in Figure 5.3 are S&D Implementations and Executable Compo-
nents. Note, that the “SmartCardAuthenticationIS” Executable Component is the
source of two “use” associations. This means that is this element (the Executable
Component) the one implementing the composition of S&D Patterns. That is to say,
once that this Executable Component has been instantiated it requires the function-
alities from S&D Patterns under composition.

Fig. 5.3 S&D Artefacts involved in the proposed scenario.

5.3.4.1 Structure of S&D Classes

S&D Classes are introduced to relieve system developers from the need of specify-
ing at development time the full interface for components that they include in their
applications. Consequently, to make it manageable to search for classes, they must
provide: (i) an exhaustive but simple description of their purpose, making it easy

82 Francisco Sánchez-Cid et al.

for developers to identify the desired class; and (ii) a reduced, high-level interface,
making it easy for designers to incorporate in the programming code the calls to the
operations defined in the class’ interface.

Listing 5.1 Example of S&D Class definition in XML.

1 <?xml version="1.0" e n c o d i n g ="utf-8"?>
2 <SandDClass x m l n s : x s i ="http://www.w3.org/2001/XMLSchema-instance"

xs i :noNamespaceSchemaLoca t ion ="file:///D:/serranito/trabajo/SERENITY/
a5/version1/S&DClass_v1.xsd" name="UserAuthentication" domain="uma
.es" version="1.0">

3 <i n f o r m a t i o n a l P a r t>
4 <c r e a t o r>
5 <name>uma .es</ name>
6 <d a t e>1214750275</ d a t e>
7 </ c r e a t o r>
8 <l a b e l>Autentication</ l a b e l>
9 <comments>This class represents a security solution providing user

autentication .</ comments>
10 <p r o v i d e d P r o p e r t i e s>
11 <p r o p e r t y>
12 <name>authenticationProperty</ name>
13 <domain>>uma .es</ domain>
14 <version>1 . 1</version>
15 <t imes t amp>1214750275</ t imes t amp>
16 </ p r o p e r t y>
17 </ p r o v i d e d P r o p e r t i e s>
18 <s o l u t i o n F e a t u r e s>
19 <f e a t u r e>secure authentication</ f e a t u r e>
20 </ s o l u t i o n F e a t u r e s>
21 <r o l e s>
22 <r o l e>
23 <roleName>authenticator</ roleName>
24 <d e s c r i p t i o n>the application that performs the authetication</

d e s c r i p t i o n>
25 < i n t e r f a c e>
26 <c a l l s>
27 <c a l l>
28 <cal lName>authentication</ ca l lName>
29 <d e s c r i p t i o n>ask for the authentication data to the user</

d e s c r i p t i o n>
30 <s i g n a t u r e>bool authentication (void) ;</ s i g n a t u r e>
31 </ c a l l>
32 </ c a l l s>
33 <s e q u e n c e>
34 <s t e p>
35 <o r d e r>1</ o r d e r>
36 <cal lName>authentication</ ca l lName>
37 </ s t e p>
38 </ s e q u e n c e>
39 </ i n t e r f a c e>
40 </ r o l e>
41 </ r o l e s>
42 </ i n f o r m a t i o n a l P a r t>
43 <o p e r a t i o n a l P a r t>
44 <t r u s t M e c h a n i s m s> −−− </ t r u s t M e c h a n i s m s>
45 <v a l i d i t y>
46 <va l idF rom>1214750275</ va l i dF rom>
47 <v a l i d U n t i l>1449550800</ v a l i d U n t i l>
48 </ v a l i d i t y>
49 </ o p e r a t i o n a l P a r t>
50 </ SandDClass>

Thanks to the mapping mechanisms that automatically translate class’ interfaces
to pattern’s and then implementation’s interfaces, the selection of an S&D Class

5 Representation of Security and Dependability Solutions 83

(instead of an S&D Pattern or Implementation) maximizes the flexibility and the
number of possible S&D Solutions that can be later applied at runtime.

The description of S&D Classes is divided into two groups. Listing 5.1 introduce
an example of an S&D Class following the presented structure. The S&D Class
presented represents authentication S&D Solutions (“UserAuthetication”). Firstly,
the informational part containing:

• Creator: this element is composed by the name of the creator and the date of
creation of the artefact.

• Label and Comments: these two fields allow to included some information
useful for developers using this artefact.

• ProvidedProperties: this element points to the descriptions of the S&D
Properties fulfilled by S&D Patterns belonging to this S&D Class. Note that it is
not the class but its patterns who really provide S&D Properties. One S&D Class
can point to one or more properties (see Chapter 4 for further details on S&D
Properties definition).

• SolutionFeatures: information about the specific characteristics of the so-
lutions provided. They are meant to help developers discriminate among classes
that point the same S&D Property.

• Roles: The use of the solution interface strongly depends on the role played
by the solution user. In a secure transmission, they agree on the use of the same
solution, but they use it in a different way. For instance, while the first encrypts
and sends the data, the latter receives and decrypts it. The Role element covers
this paradigm by specifying as many interface definitions as roles are. The Role
elements contains the role name, its description and the interface offered.

Secondly, the operational part of S&D Classes contains:

• validity: this element express a period of time in which the artefact is appli-
cable.

• TrustMechanisms: this element contains an enveloped XML Signature that,
along with the trust infrastructure provided by SERENITY, allows the target sys-
tem to check whether: (i) the document corresponds to the claimed artefact; (ii)
it has been really produced by the creator; and (iii) it has not been modified or
tampered with.

5.3.4.2 Structure of S&D Patterns

S&D Patterns are descriptions of reusable and validated S&D solutions that include
a precise specification, along with applicability conditions. In the same fashion as
S&D Classes, S&D Patterns are split into an informational part and an operational
one. The informational part shares with S&D Classes a precise definition of the
artefact, references to the S&D Properties provided, a list of features that helps to
characterize the solution, and the description of the envisaged roles. In addition, it
includes:

84 Francisco Sánchez-Cid et al.

• Static test performed: every S&D Pattern can be proven, validated,
best practice, recommendations by standards. Therefore, security engineers will
be responsible for the static testing of the solution represented by the pattern and
will use this element to specify the proofs that have been applied in order to claim
that this solution is sound.

• Models: an S&D Pattern may have an associated model to conceptually de-
scribe the solution that the pattern represents. This element allows the inclusion
of UML models, BPEL models, etc.

• Roles: the informational part of the roles, which is a declaration of the pattern
roles. The declaration of each role includes the definition of its interface.

Since S&D Patterns are mainly devoted to runtime use, the operational side of
S&D Patterns is richer than that of S&D Classes. In addition to the trust mecha-
nisms, patterns include: an accurate behavioral description; a list of constraints on
the context required for deployment; and information describing how to adapt and
monitor the applied solution. More specifically:

• monitors: this element presents the declaration, by means of a list, of the mon-
itors to be used by this pattern. These monitors are composed by an identifier, a
location, the type of monitor and some initialization data.

• Roles: the operational part of the roles includes the following information:

– RolesName: this element is specifies the name of the role.
– RequiredRoles: this element is used to describe the complementary roles

that need the application of this specific role.
– Parameters: this element allows us to build more generic solutions. Pa-

rameters (for instance, the length of the keys in an encryption algorithm) can
change without affecting the general behavior of the solution. they can always
be represented by a 2-tuple with a name and a value.

– Preconditions: Every S&D Pattern represents a specific S&D Solu-
tion. For this reason, we assume that they are not universally applicable.
Preconditions element collects the restrictions concerning the applica-
bility context of the pattern, and it is task of the SERENITY Runtime Frame-
work to check whether these preconditions hold before deploying it.

– Monitoring Information: because S&D Patterns are not expected to
represent perfect solutions, and because the solutions will frequently depend
on the behaviour of external components that will not be under our control, the
solution must be monitored during its execution in order to guarantee that it
works smoothly. This element contains instructions for an external monitoring
mechanism to perform this activity. Section 5.4 in this chapter presents an in-
depth description of this element.

– ClassAdaptor: already presented in section 5.3.2.2, this element describes
how to map from the native interface of the S&D Pattern to the interface of
an S&D Class. It is important to mention that, the ClassAdaptor element
includes a number of references to the S&D Classes the S&D Pattern be-
longs to. Doing this, the mapping between S&D Classes and S&D Pattern
is done through their roles. ClassAdaptors are expressing using Java syntax.

5 Representation of Security and Dependability Solutions 85

In order to facilitate the ClassAdaptor automated processing, the structure of
the “adaptor” element is split into “name”, “imports”, “headerClass”, “glob-
alVariables”, “classes” ... following the usual Java classes structure.

Listing 5.2 presents an example of an S&D Pattern following the proposed struc-
ture. It is an S&D Pattern representing an user authentication S&D Solution based
on the usage of an smart card. This S&D Pattern belongs to the S&D Class presented
in Listing 5.1.

Listing 5.2 Example of S&D Pattern definition in XML.

1 <?xml version="1.0" e n c o d i n g ="utf-8"?>
2 <!-- Created with Liquid XML Studio 1.0.8.0 (http://www.liquid-technologies

.com) -->
3 <S a n d D P a t t e r n x m l n s : t n s ="http://tempuri.org/ec/formula" x m l n s : t n s a ="http://

www.omg.org/XMI" x m l n s : x s i ="http://www.w3.org/2001/XMLSchema-instance"
xs i :noNamespaceSchemaLoca t ion ="file:///D:/serranito/trabajo/SERENITY/

a5/version1/S&DPattern_v1.xsd" name="smartCardAuthentication"
domain="uma.es" version="1.0">

4 <i n f o r m a t i o n a l P a r t>
5 <c r e a t o r>
6 <name>uma .es</ name>
7 <d a t e>1214750275</ d a t e>
8 </ c r e a t o r>
9 <l a b e l>authentication smartcard</ l a b e l>

10 <comments>User Authentication based on Smart Card</ comments>
11 <p r o v i d e d P r o p e r t i e s>
12 <p r o p e r t y>
13 <name>authenticationProperty</ name>
14 <domain>uma .es</ domain>
15 <version>string</version>
16 <t imes t amp>1214750275</ t imes t amp>
17 </ p r o p e r t y>
18 </ p r o v i d e d P r o p e r t i e s>
19 <s t a t i c T e s t s P e r f o r m e d>
20 < t e s t name="name of the test">
21 <d e s c r i p t i o n> −− </ d e s c r i p t i o n>
22 <a t t a c k M o d e l s> −− </ a t t a c k M o d e l s>
23 <r e s u l t> −− </ r e s u l t>
24 <comments> −− </ comments>
25 <d a t e> −− </ d a t e>
26 </ t e s t>
27 </ s t a t i c T e s t s P e r f o r m e d>
28 <f e a t u r e s>
29 <f e a t u r e>secure authentication smartcard</ f e a t u r e>
30 </ f e a t u r e s>
31 <r o l e s>
32 <r o l e>
33 <roleName>authenticator</ roleName>
34 <d e s c r i p t i o n>the application performing the authentication</

d e s c r i p t i o n>
35 < i n t e r f a c e>
36 <c a l l s>
37 <c a l l>
38 <cal lName>authentication</ ca l lName>
39 <d e s c r i p t i o n>this function is used in order to ask the

smartcard PIN to the user</ d e s c r i p t i o n>
40 <s i g n a t u r e>bool authentication (void) ;</ s i g n a t u r e>
41 </ c a l l>
42 </ c a l l s>
43 <s e q u e n c e>
44 <s t e p>
45 <o r d e r>1</ o r d e r>
46 <cal lName>authentication</ ca l lName>

86 Francisco Sánchez-Cid et al.

47 </ s t e p>
48 </ s e q u e n c e>
49 </ i n t e r f a c e>
50 </ r o l e>
51 </ r o l e s>
52 <models>
53 <model>
54 <ModelType>UML</ ModelType>
55 <d e s c r i p t i o n>in XMI format</ d e s c r i p t i o n>
56 <modelData> −−− </ modelData>
57 </ model>
58 </ models>
59 </ i n f o r m a t i o n a l P a r t>
60 <o p e r a t i o n a l P a r t>
61 <t r u s t M e c h a n i s m s> −−− </ t r u s t M e c h a n i s m s>
62 <v a l i d i t y>
63 <va l idF rom>1214750275</ va l i dF rom>
64 <v a l i d U n t i l>1214780653</ v a l i d U n t i l>
65 </ v a l i d i t y>
66 <m o n i t o r s>
67 <m o n i t o r>
68 <i d>1</ i d>
69 < l o c a l i z a t i o n>localhost:3301</ l o c a l i z a t i o n>
70 <t y p e>syncronous</ t y p e>
71 < i n i t i a l i z a t i o n>user:authenticatorPattern</ i n i t i a l i z a t i o n>
72 </ m o n i t o r>
73 <r o l e s>
74 <r o l e>
75 <roleName>authenticator</ roleName>
76 <r e q u i r e d R o l e s />
77 <p a r a m e t e r s />
78 <p r e c o n d i t i o n s />
79 <s y s t e m C o n f i g u r a t i o n />
80 <m o n i t o r i n g />
81 <c l a s s A d a p t o r s>
82 <c l a s s>
83 <c l a s s R e f e r e n c e>UserAuthentication</ c l a s s R e f e r e n c e>
84 <c l a s s R o l e>authenticator</ c l a s s R o l e>
85 <a d a p t o r>
86 <name>classToPattern</ name>
87 <i m p o r t s></ i m p o r t s>
88 <h e a d e r C l a s s></ h e a d e r C l a s s>
89 <g l o b a l V a r i a b l e s></ g l o b a l V a r i a b l e s>
90 <c l a s s e s>
91 <c l a s s>
92 <h e a d e r>bool authentication (void) / / class call</ h e a d e r>
93 <c o d e L i n e s>return authentication () ; / / pattern call</

c o d e L i n e s>
94 </ c l a s s>
95 </ c l a s s e s>
96 </ a d a p t o r>
97 </ c l a s s>
98 </ c l a s s A d a p t o r s>
99 </ r o l e>

100 </ r o l e s>
101 </ o p e r a t i o n a l P a r t>
102 </ S a n d D P a t t e r n>

From S&D solution developer point of view, the development of an Integration
Scheme follows the same process as the development of S&D Patterns. This so is
since both artefacts use the same structure. At the implementation level of Integra-
tion Schemes (and consequently, in the executable component implementing it) is
where the composition of solutions S&D is performed. From the point of view of
the Serenity runtime Framework, an executable component implementing an inte-

5 Representation of Security and Dependability Solutions 87

gration Scheme operates like an application. This is to say that, once the Integration
Scheme has been activated and deployed, it acts as an application, requesting to the
SRF for the S&D Patterns needed. These executable components implement both
the requests to the SRF and the use of the corresponding S&D Patterns. On one
hand, they offer to applications the integration Scheme interface, and in the other
hand, they make use of the interfaces provided by the S&D Patterns that they are
composing. It is important to remark that an integration scheme may combine S&D
Patterns, S&D Classes and even Integration Schemes.

5.3.4.3 Structure of S&D Implementations

S&D Implementations are the necessary link from the abstract solution, represented
as an S&D Pattern, and the actual Executable Components that realize and im-
plement that solution. In the same manner as two artefacts, implementations in-
clude: a precise definition; information about the creator of the artefact; a list of
features; the compliance proofs applied to its Executable Component; and the es-
sential trust mechanisms. Also devoted to runtime use, it includes a set of precon-
ditions that are checked in the same way as S&D Patterns preconditions. Regard-
ing the Executable Component pointed by the artefact, there is a element called
implementationReference containing the following information:

• URL: this elements identifies where to find the executable component.
• Type: it describes the type of Executable Component (i.e. a web service, a soft-

ware component, etc.).
• Signature: this is a security mechanisms to ensure that the executable com-

ponent code is valid.

We must highlight that there is no specification of the S&D Implementation inter-
face because all S&D Implementations share the same interface of the S&D Pattern
they belong to.

5.4 S&D Artefacts for Monitoring

As aforementioned, S&D Patterns do not represent perfect solutions and therefore
require the runtime monitoring of certain conditions to ensure that they are valid for
the current executing context. Even perfect solutions depend on some conditions.
These conditions are expressed as part of the description of an S&D Pattern and
they refer to events which occur at the roles of the S&D Pattern. The Executable
Components, which realise an implementation for the S&D Pattern, produce these
events and emit them to the SRF. The SRF forwards the events to the monitor(s)
that are responsible for the particular application and receives back the results of the
evaluation of the monitoring conditions, which have been already been sent by the
SRF to the monitor when the S&D Pattern had been instantiated.

88 Francisco Sánchez-Cid et al.

The monitoring conditions are effectively a variant of Event Calculus [43] and the
events appearing in them represent procedure/method calls or messages exchanged
among the S&D Pattern roles. An example of such a condition is 5.1, shown in XML
form in Listing 5.3, both taken from [42]. This condition is from an S&D Pattern
for Optimistic Fair Exchange based on a Trusted Third Party (TTP). The condition
is effectively derived from the requirement for the availability of the TTP. It states
that when Bob sends a “solve” message to the TTP, then the TTP should respond
with a “send item” message withing time tu.

∀ id1, id2,bob,T T P : String; t1, t2 : Time
Happens(e(id1,Bob,T T P,REQ-B,solve((Item A)Ka1, Item B)),
Bob), t1,R(t1, t1))

⇒
Happens(e(id2,T T P,Bob,RES-A,send item(((Item A)Ka1)Ka2),
T T P), t2,R(t1, t1 + tu)

(5.1)

Listing 5.3 XML representation of condition 5.1

1 <?xml version="1.0" e n c o d i n g ="UTF-8"?>
2 <f o r m u l a e xmlns="http://tempuri.org/ec/formula"
3 x m l n s : x s i ="http://www.w3.org/2001/XMLSchema-instance"
4 x s i : s c h e m a L o c a t i o n ="http://tempuri.org/ec/formula
5 file:/Z:/Serenity/A5%20contribution%20-%20September06/EC-Assertion6.xsd"
6 f o r m u l a I d ="">
7 <q u a n t i f i c a t i o n>
8 <q u a n t i f i e r>universal</ q u a n t i f i e r>
9 <r e g u l a r V a r i a b l e>

10 <varName>Bob_ID</ varName>
11 <varType>String</ varType>
12 </ r e g u l a r V a r i a b l e>
13 <r e g u l a r V a r i a b l e>
14 <varName>TTP_ID</ varName>
15 <varType>String</ varType>
16 <r e g u l a r V a r i a b l e>
17 <varName>_eID1</ varName>
18 <varType>String</ varType>
19 </ r e g u l a r V a r i a b l e>
20 <r e g u l a r V a r i a b l e>
21 <varName>_eID2</ varName>
22 <varType>String</ varType>
23 </ r e g u l a r V a r i a b l e>
24 <t i m e V a r i a b l e>
25 <varName>t1</ varName>
26 <varType>Time</ varType>
27 </ t i m e V a r i a b l e>
28 <t i m e V a r i a b l e>
29 <varName>t2</ varName>
30 <varType>Time</ varType>
31 </ t i m e V a r i a b l e>
32 </ q u a n t i f i c a t i o n>
33 <body>
34 <p r e d i c a t e>
35 <happens>
36 <e v e n t>
37 <even t ID>_eID2</ even t ID>
38 <s e n d e r>
39 <varName>TTP_ID</ varName>
40 <varType>String</ varType>

5 Representation of Security and Dependability Solutions 89

41 </ s e n d e r>
42 <r e c e i v e r>
43 <varName>Bob_ID</ varName>
44 <varType>String</ varType>
45 </ r e c e i v e r>
46 <s t a t u s>RES−A</ s t a t u s>
47 <ope r>
48 <opName>send_item</ opName>
49 <o p a r g s>
50 <varName> (((Item_A)Ka1)Ka2)</ varName>
51 <varType>String</ varType>
52 </ o p a r g s>
53 </ ope r>
54 <s o u r c e>TTP_ID</ s o u r c e>
55 </ e v e n t>
56 <t imeVar>
57 <varName>t2</ varName>
58 <varType>Time</ varType>
59 </ t imeVar>
60 <fromTime>
61 <t ime>
62 <varName>t1</ varName>
63 <varType>Time</ varType>
64 </ t ime>
65 </ fromTime>
66 <toTime>
67 <t ime>
68 <varName>t1</ varName>
69 <varType>Time</ varType>
70 </ t ime>
71 <plusTime>
72 <varName>tu</ varName>
73 <varType>Time</ varType>
74 </ p lusTime>
75 </ toTime>
76 </ happens>
77 </ p r e d i c a t e>
78 </ body>
79 <head>
80 <p r e d i c a t e>
81 <happens>
82 <e v e n t>
83 <even t ID>_eID1</ even t ID>
84 <s e n d e r>
85 <varName>Bob_ID</ varName>
86 <varType>String</ varType>
87 </ s e n d e r>
88 <r e c e i v e r>
89 <varName>TTP_ID</ varName>
90 <varType>String</ varType>
91 </ r e c e i v e r>
92 <s t a t u s>REQ−B</ s t a t u s>
93 <ope r>
94 <opName>Solve</ opName>
95 <o p a r g s>
96 <varName>((Item_A)Ka1 ,Item_B))</ varName>
97 <varType>String</ varType>
98 </ o p a r g s>
99 </ ope r>

100 <s o u r c e>Bob_ID</ s o u r c e>
101 </ e v e n t>
102 <t imeVar>
103 <varName>t1</ varName>
104 <varType>Time</ varType>
105 </ t imeVar>
106 <fromTime>
107 <t ime>

90 Francisco Sánchez-Cid et al.

108 <varName>t1</ varName>
109 <varType>Time</ varType>
110 </ t ime>
111 </ fromTime>
112 <toTime>
113 <t ime>
114 <varName>t1</ varName>
115 <varType>Time</ varType>
116 </ t ime>
117 </ toTime>
118 </ happens>
119 </ p r e d i c a t e>
120 </ head>
121 </ f o r m u l a e>
122

Monitoring conditions have quantification elements for their variables, zero or
one body elements (the RHS of the implication) and one head element (the LHS
of the implication). Both the body and head elements are of type bodyHeadType,
which effectively describe predicates. The XML schema for the monitoring con-
ditions which is described in full details in section 3.2 of [42], has been extended
in [44] to support further information for diagnosis and threat risk evaluation, since
it is also used for reporting the monitoring results back to the SRF. Appendix C
of [44] contains the full XML schema with the parts for diagnosis/threat risk evalu-
ation highlighted - it is unfortunately too long to reproduce here. Figures 5.4 and 5.5
show the two entities which have been extended in order to support diagnosis and
threat risk estimation. These are the resultType and the predicateType elements,
which now include a minimum and maximum threat likelihood. Through these and
the new confirmed attribute of predicateType, the monitor can inform the SRF of
the threat level estimation for a rule, as well as for the diagnostic information that it
has produced, as explained in detail in [44].

5.4.1 Reactions to Rule Violations

When a rule can be fully evaluated, the monitor reports the result of this evaluation
to the SRF. The SRF then needs to decide how to react to the current situation. There
are various reactions that the SRF could take - from simply logging a message, to
deactivating the S&D Pattern itself. Of course, the choice of the reaction cannot
be made by the SRF. Instead, the S&D Pattern developers need to associate a set of
actions with each monitoring rule, so that the SRF knows how it should react in each
case. The possible reactions that are available to a developer of an S&D Pattern are
the following:

• DeactivatePattern() - The result of taking this action is to deactivate the
pattern instance that the violation is related to. DeactivatePattern() takes
no arguments since the SRF knows which pattern, pattern instance and rule the
monitoring result which has triggered the execution of the action is related to.

• RestartPattern() - The result of taking this reaction is to start a new in-
stance of the same pattern. The reaction does not need any arguments since the

5 Representation of Security and Dependability Solutions 91

Fig. 5.4 Additions to resultsType in the new schema for monitoring results

SRF knows which pattern the monitoring result that has triggered the execution
of the action is related to.

• NotifySRF(String external SRF ID, String message) - The re-
sult of taking this reaction is to notify an external SRF of the violation. The
external SRF is identified by the reaction parameter external SRF ID. The
information that will be sent to the external SRF is determined by the parameter
message.

• NotifyApplication(String message) - The result of taking this re-
action is to notify the application for which the implementation of the pattern is
deployed of the violation. The notification to be sent is determined by the param-
eter message. The application to be notified does not need to be identified since
the SRF knows it.

• StopMonitoringRules(String ruleID1, ...) - The result of tak-
ing this reaction is to request the monitor to stop monitoring a given set of rules.
These rules are identified by the parameters ruleIDi. All ruleIDi are re-
stricted to take as values IDs of the rules of the current S&D Pattern (i.e., the
one incorporating the specific reaction), and when sent to the monitor the SRF
should make sure that they are amended appropriately, so as to be unique (this
may, for example, be ensured by adding the ID of the current S&D Pattern in-
stance as a prefix to each ruleIDi.

• StartMonitoringRules(String ruleID1, ...) - The result of tak-
ing this reaction is to request the monitor to start monitoring a given set of rules.
These rules are identified by the parameters ruleIDi. Again, all ruleIDi are

92 Francisco Sánchez-Cid et al.

Fig. 5.5 Additions to predicateType in the new schema of monitoring results

restricted to take as values IDs of the rules of the S&D Pattern incorporating this
reaction, and the SRF will render their IDs to globally unique ones. If one of the
ruleIDi corresponds to a rule which is already being monitored, the monitor
will ignore the request for this particular rule and will not start monitoring a new
instance of it (as this would be redundant and would decrease the performance
of the monitor).

• Log() - The result of taking this reaction is to log the XML template which has
been returned by the monitor to indicate the violation of a specific rule instance
and the actions taken up to the point when Log() is executed for the particular
violation. Thus, this reaction needs to be listed at the end of the action list for
a particular rule and the SRF will need to keep a record of the actions that have
been taken up to Log() in order to perform the required logging.

The aforementioned actions can be used freely by S&D Pattern developers - they
can specify rules which have no actions associated to them or have more than one
actions associated to them. In fact, the current S&D Pattern language allows devel-
opers to also express conditions under which an action should be performed for a
specific rule result. So the specification of rules in the S&D Pattern will have the
following form:

5 Representation of Security and Dependability Solutions 93

Rule[(action1,condition1), · · · ,(actionn,conditionn)]

Thus, when the value of a new rule instance has been established, the SRF will
go through the rule’s action list and execute all the actions whose conditions are true
for that rule instance. These enabled actions will be executed in the order in which
they have been specified in the S&D Pattern.

It should be noted here that the SRF does not react only when a rule instance is vi-
olated. As it has been briefly mentioned in the introduction, a rule instance may also
have an associated threat risk level, which effectively estimates how probable it is
that that rule instance will be violated. In addition to threat risk levels, rule instances
can have associated diagnostic information (See Chapter 14). The conditions of the
actions can refer to these extra threat & diagnostic information and, therefore, the
SRF may very well take an action even when a rule instance has not been violated
yet. For example, an S&D Pattern could be deactivated if the diagnostic information
indicates that events received from its components are not genuine, even if there is
no rule violation per se. In fact, the SRF may react, even when a rule instance is
only partially evaluated, if for example its threat risk level is too high and an action
has been conditioned on this.

5.5 Conclusions

This chapter has presented the languages of S&D Artefacts developed in the Project
SERENITY. These artefacts are S&D Classes, S&D Patterns, S&D Implementa-
tions, and they have been developed in order to capture security expertise. The use
of the languages of S&D Artefacts helps security experts to describe S&D Solutions
in a standardized way.

It has started with a brief description of the artefacts and how they are related.
This description reviews the most important elements conforming the structure of
the S&D Artefacts, and it presents the rationale behind the chosen hierarchy. Next, it
presents the detailed structure of each S&D Artefact. For every S&D Artefact both
the language and an example is given. The examples are based on an AmI scenario.
Finally, it extends the information about monitoring and reaction mechanisms.

The current line of this work focuses on the refinement of the structure, and on
its extension in order to fulfil all issues resulting from the developed SERENITY
prototypes.

References

1. Reiter, M. (1996) Distributing trust with the Rampart toolkit, Communications of the ACM,
v.39 n.4, p.71-74.

2. BEA White Paper BEA WebLogic Security Framework Working with Your Security Eco-
System. http://www.bea.com. Cited 6 July 2008.

94 Francisco Sánchez-Cid et al.

3. Object Management Group. The Common Object Request Broker Architecture and Specifica-
tion. http://www.omg.org. Cited 6 July 2008.

4. Llewellyn-Jones, D., Merabti, M., Shi, Q., B. Askwith (2004) An Extensible Framework for
Practical Secure Component Composition in a Ubiquitous Computing Environment. In Pro-
ceedings of International Conference on Information Technology.

5. Fayad, M., Johnson, R., Schmidt, D.C. (1999) Building Application Frameworks Object-
Oriented Foundations of Framework Design. Wiley & Sons.

6. Schumacher, M., Mouratidis, H., Giorgini, P. (2003) Security Patterns for Agent Systems. In
Proc. of 8th European Conference on Pattern Languages of Programs.

7. Wooldridge, M., Jennings, N.R., Kinny., D. (2000) The Gaia methodology for agent-oriented
analysis and design. Journal of Autonomous Agents and Multi-Agent Systems, 3(3), p.285.

8. Boudaoud, K., McCathieNevile, C. (2002) An Intelligent Agent-based Model for Security
Management. In Proc. 7th International Symposium on Computers and Communications.

9. Nobukazu Y., Shinichi H., Anthony F. (2004) Security Patterns A Method for Constructing Se-
cure and Efficient Inter-Company Coordination Systems. Enterprise Distributed Object Com-
puting Conference.

10. Cigital Labs AOP An Aspect-Oriented Security Assurance Solution.
http://www.cigital.com/labs/projects/1027/. Cited 6 July 2008

11. Shah, V., Hill, F. (2003) An Aspect-Oriented Security Framework. DARPA Information Sur-
vivability Conference and Exposition - Volume II, p. 143.

12. Llewellyn-Jones, D., Merabti, M., Shi, Q., Askwith, B. (2004) Utilizing Component Compo-
sition for Secure ubiquitous Computing. In Proceedings of 2nd UK-UbiNet Workshop.

13. Shi, Q., Zhang, N. (1998) An effective model for composition of secure systems. Journal of
Systems and Software. 43(3), pp. 233-244.

14. Mantel, H. (2002) On the composition of secure systems. In Proc. of IEEE Symposium on
Security and Privacy.

15. Canal, C., Fuentes, L., Pimentel, E.,Troya, J.M., Vallecillo, A. (2003) Adding Roles to
CORBA Objects. IEEE Transactions on Software Engineering 29(3), pp. 242-260.

16. López, J., Maña, A., Ortega, J.J., Troya, J., Yague, M.I. (2003) Integrating PMI Services in
CORBA Applications. In Computer Standards & Interfaces, 25, 4, pp. 391-409. Elsevier.

17. Meling, R. (2000) Storing and Retrieving Software Components A Component Description
Manager. In Proc. of the Australian Software Engineering Conference. IEEE.

18. Becker, S. (2006) Coordination and Adaptation Techniques Bridging the Gap between Design
and Implementation. Report on the ECOOP’2006 Workshop on Coordination and Adaptation
Techniques for Software Entities. Springer.

19. Khan, K., Han, J. (2002) Composing Security-aware Software. IEEE Software, Vol. 19, Issue
1, pp 34- 41. IEEE.

20. Brogi, A., Cmara, J., Canal, C., Cubo, J., Pimentel, E. (2006) Dynamic Contextual Adapta-
tion. Workshop on the Foundations of Coordination Languages and Software Architectures.
Electronic Notes in Theoretical Computer Science. Elsevier.

21. McDermid, J.A, Shi, Q. (1992) Secure composition of systems. In Proc. of Eighth Annual
Computer Security Applications Conference, pp. 112-122.

22. Jaeger, T. (1998) Security Architecture for component-based Operating System. In ACM Spe-
cial Interest Group in Operating Systems (SIGOPS) European Workshop.

23. Ghosh, A.K., McGraw, G. An Approach for Certifying Security in Software Components.
24. Kienzle, D.M., Elder, M.C. Final Technical Report Security Patterns for Web Application

Development.
25. IBM’s Security Strategy team (2004) Introduction to Business Security Patterns. An IBM

White Paper. http //www-3.ibm.com/security/patterns/intro.pdf. Cited 6 July 2008.
26. Konrad, S., Cheng, B.H.C., Campbell, Laura, A., Wassermann, R. (2003) Using Security Pat-

terns to Model and Analyze Security Requirements. In Proc. Requirements for High Assur-
ance Systems Workshop.

27. Yoder, J., Barcalow, J. (2000) Architectural Patterns for Enabling Application Security. In
Pattern Languages of Program Design, pp. 301-336. Addison Wesley.

5 Representation of Security and Dependability Solutions 95

28. Romanosky, S. (2001) Security Design Patterns, Part 1, 1.4.
29. Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1994) Design patterns Elements of

Reusable Object-Oriented Software. Addison-Wesley.
30. Fernandez, E.B. (2006) Security patterns. In Procs. of the Eighth International Symposium on

System and Information Security.
31. Fernandez, E.B., Rouyi, P. (2001) A pattern language for security models. PLoP’01.
32. Fernandez, E.B. (2000) Metadata and authorization patterns. Technical report, Florida Atlantic

University.
33. Allenby, K., Kelly, T. (2001) Deriving Safety Requirements Using Scenarios. In Proc. of the

5th IEEE International Symposium on Requirements Engineering.
34. Mikkonen, T. (1998) Formalizing design patterns. In Proc. of 20th ICSE, pp. 115-124. IEEE

Computer Society Press.
35. Wassermann, R., Cheng, B.H.C. (2003) Security Patterns. Technical Report MSU-CSE-03-

23, Computer Science and Engineering.
36. Hallstrom, J. O., Soundarajan, N., Tyler, B. (2004) Monitoring Design Pattern Contracts. In

Proc. of the FSE-12 Workshop on Specification and Verification of Component-Based Sys-
tems, pp. 87-94.

37. Hallstrom, J. O., Soundarajan, N. (2006) Pattern-Based System Evolution A Case-Study. In
Proc of the 18th International Conference on Software Engineering and Knowledge Engineer-
ing.

38. Pernul, G., Essmayr, W., Tjoa, A.M. (1997) Access controls by object oriented concepts. In
Proc. of 11th IFIP WG 11.3 Working Conference on Database Security.

39. Fernandez, E. B. (2004) Two patterns for web services security. In Proc. International Sympo-
sium on Web Services and Applications.

40. Delessy-Gassant, N., Fernandez. E.B., Rajput. S, Larrondo-Petrie, M.M. (2004) Patterns for
Application Firewalls. PLoP’04 Conference.

41. Torsten, P, Fernandez, E.B., Mehlau, J.I., Pernul, G. (2004) A pattern system for access con-
trol. 18th IFIP WG 11.3 Conference on Data and Applications Security.

42. Androutsopoulos K, Ballas C, Kloukinas C, Mahbub K, Spanoudakis G (2007) Version 1
of the dynamic validation prototype. Deliverable A4.D3.1, SERENITY EU Research Project
027587, available from http //www.serenity-forum.org/Work-package-4-3.html

43. Shanahan MP (1999) The event calculus explained. In Wooldridge MJ, Veloso M (eds) Artifi-
cial Intelligence Today, vol 1600, pp 409-430.

44. Spanoudakis G, Tsigkritis T, Kloukinas C (2008) Second version of diagnosis proto-
type. Deliverable A4.D5.2, SERENITY EU Research Project 027587, available from http
//www.serenity-forum.org/Work-package-4-5.html

45. Tsigkritis T, Spanoudakis G, Kloukinas C, Lorenzoli D (2009) Security and Dependability for
Ambient Intelligence, Springer Verlag, chap Diagnosis and Threat Detection Capabilities of
the SERENITY Monitoring Framework. Information Security Series.

46. Barthe G, Grgoire B, Pavlova M. (2008) Preservation of Proof Obligations from Java to the
Java Virtual Machine. IJCAR 2008. 83-99.

