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Executive Summary 

In this document we investigate and define traceability relations between the S&D modelling 

artefacts (described in A5.D2.1) that support the representation of S&D Solutions, i.e. S&D 

Properties, S&D Patterns, S&D Implementations, and S&D Configuration. We do not consider 

S&D classes as they are abstractions of a set of S&D Patterns and/or Integration Schemes and are 

mainly used by the SERENITY development tools. Our viewpoint is strongly oriented towards 

traceability relations which can be of use for runtime monitoring. We illustrate the usefulness of 

these traceability relations with respect to monitoring by applying them to an example (a solution 

described as an S&D Pattern for part of the smart items scenario). The document assumes that 

readers are familiar with the initial draft of the S&D Patterns specification schema that has been 

described in the A5.D2.1 deliverable of the project, including the EC-Assertion language, i.e. the 

formal language for specifying monitoring rules and assumptions within patterns. 
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1. Introduction  

In this document, we define and discuss traceability relations between the S&D modelling artefacts 

of SERENITY that support the representation of S&D Solutions, i.e. S&D Properties, S&D 

Patterns, S&D Implementations and S&D Configuration (described in A5.D2.1). These traceability 

relations complement the security and dependability modelling of systems in ways which are 

necessary to support the runtime S&D monitoring of such systems. Thus, our viewpoint is strongly 

oriented towards traceability relations which can be of use for run-time monitoring and is not 

concerned with other traceability relations which, although might be of help to other stages of the 

specification of systems and S&D solutions for them (e.g., at design time) are not relevant to 

monitoring. The usefulness of the traceability relations that we introduce in this report with respect 

to monitoring is illustrated through examples. 

It should be noted that the traceability relations that we discuss in this report are inevitably 

preliminary, since some of these relations should exist between artefacts which are either not yet 

fully defined in the project (e.g., S&D Properties) or which may be revised and/or refined in 

subsequent phases of the project (e.g., S&D Patterns). In some cases, we refer to particular aspects 

which we believe should be supported by the specifications of different artefacts for traceability. To 

this end, we propose some extensions of the languages used to describe S&D Solutions, notably the 

S&D Pattern language and the S&D Property language. Some of these aspects refer to parts of these 

languages which have not yet been defined yet. In such cases our discussion points out what we 

believe should be included in the languages in order to support runtime S&D monitoring. 

It should also be noted that in this report we do not consider S&D classes. This is because S&D 

classes are abstractions of a set of S&D Patterns and/or Integration Schemes and are mainly used by 

the SERENITY development tools, not the SERENITY monitors. Also, we do not consider 

traceability relations for S&D Integration Schemes. These relations will be considered in the next 

deliverable on traceability (i.e. A4.D2.3). 

Our discussion of traceability assumes the definition of software traceability provided by 

Spanoudakis & Zisman in [7]: 

“Software traceability – that is the ability to relate artefacts created during the development of a 

software system to describe the system from different perspectives and levels of abstraction with 

each other, the stakeholders that have contributed to the creation of the artefacts, and the rationale 

that explains the form of the artefacts”.  

Figure 1 illustrates the type of traceability relations between the basic modelling artefacts that 

support the representation of S&D Solutions. The figure distinguishes these relations according to 

the two types of traceability relations which have been defined in [2], namely: 

 Vertical relations: traceability relations defined between elements in the same model. 

 Horizontal relations: traceability relations defined between elements belonging to different 

models. 

Figure 2 illustrates the relations with respect to monitoring rules between the basic modelling 

artefacts in the SERENITY framework that we need to investigate for traceability. We discuss the 

traceability relations with respect to monitoring rules as these, together with events, are the key 

elements for monitoring and run-time support for security and dependability. 
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The traceability relations between the modelling artefacts which appear in Figures 1 and 2 are 

discussed in more detail in Chapters 2-5. In each of these chapters, we identify which artefacts or 

parts in them are being traced, the cardinality (or granularity) of the traceability relation, and how 

tracing is performed during all aspects of the lifecycle of S&D Solutions which, as defined in [4], 

include: 

 The creation of new solutions and their description as S&D Patterns, each one fulfilling a 

number of S&D Properties. 

 The implementation of the S&D Patterns and their descriptions as S&D Implementations. 

 The SERENITY framework supports the development process of applications (or systems), 

by helping developers to select and adopt the most appropriate S&D Patterns for their 

requirements. 

 The SERENITY framework supports the dynamic selection of S&D Implementations 

according to the requirements and context conditions, and provides a mechanism for 

monitoring the correctness of the execution of these implementations. 

   

 

S&D Patterns 

Horizontal 

S&D Properties 

Horizontal 

Vertical 

S&D Implementations 

Horizontal 

Vertical 

S&D Configuration 

 

Figure 1 – Relations between the basic modelling artefacts 
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Figure 2 –Traceability relations between monitoring rules and other modelling artefacts 

Moreover, we classify traceability relations (where possible) according to the classification scheme 

that is defined in [7] which identifies the following types of relations:  

 Dependency: “Element e1 depends on element e2, if the existence of e1 relies on the 

existence of e2, or if changes in e2 have to be reflected in e1.” [7] 

 Generalisation/refinement: This type of relations are used to identify how complex system 

elements can be broken down, how they can be combined to form other elements, and how 

they can be refined.   

 Evolution: This type of relation is defined as: “Element e1 evolves_to an element e2, if e1 

has been replaced by e2 during the development, maintenance or evolution of the 

system.”[7] 

 Satisfaction: “Element e1 satisfies an element e2, if e1 meets the expectations, needs and 

desires of e2 or e1 complies with a condition represented by e2.” [7]    

 Overlap: “Element e1 overlaps with an element e2, if e1 and e2 refer to common features of 

a system or its domain.” [7]  

 Conflicting: This type of relations convey the case when two elements e1 and e2 are in 

conflict with each other, for example, two conflicting events.  

  Rationalisation: These types of relations are used to “represent and maintain the rationale 

behind the creation and evolution of elements and the decisions about the system at different 

levels of detail.”  [7] 

 Contribution: These relations describe the associations between software artefacts and the 

stakeholders that have contributed to their construction. 
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Except for the contribution relation, all of the other traceability relations describe associations 

between different software artefacts, such as specifications, software analysis, design, test models 

and code.  

Finally, the definition of each traceability relation that we give in the following is structured 

according to the following aspects that need to be defined for each relation:   

 Type: The type of traceability relation is given, for example, dependency.  

 Definition: A definition of the traceability relation is given.  

 Attributes: Any attributes will be described, such as, for example, how the artefacts will be 

obtained.  

 Cardinality: The cardinality between the artefacts that are correlated in the traceability 

relation, for example, one A to many Bs, if A and B are the artefacts being correlated. 

 Constraints: Definition of constraints on traceability relations that can be checked if 

necessary. For example, if there is a dependency traceability relation between A and B, then 

there cannot be a traceability relation of type satisfaction between A and B.   

 Directionality: The direction of the traceability relation is given.  

 Place of definition: The place where these traceability relations will be defined, for 

example, they could be defined in an extension of the S&D Pattern language. 

 

Before discussing the traceability relations which are necessary for S&D monitoring in more 

detailed, however, we give a summary of the definitions of the various artefacts that we will be 

referring to and their features in the form of a glossary. This glossary is necessary for making this 

document self-contained and allowing the reader to follow it without a need to refer to other project 

deliverables that discuss the relevant artefacts in more detailed. 

1.1. Glossary 

The S&D modelling artefacts which are related to traceability are: 

 System: A system is a software system that may have been either constructed using the 

SERENITY framework or that dynamically chooses patterns which are described in the 

SERENITY framework at runtime.   

 S&D Properties: “An S&D Property is a quality of a system that enhances its security or 

dependability in some way” [4].  The S&D Requirements of a system describe a need for 

which properties should hold on a system or part of it. Therefore, an S&D Property must 

contain a (sub) system description i.e. a description of its architecture and the abstract 

interfaces of its components. Even though the language for describing S&D Properties has 

not yet been defined, we believe that it will resemble the one currently developed for S&D 

Patterns, to allow those who specify S&D Properties to describe the systems which have 

these properties. We consider the idea of S&D Properties (and indeed S&D Patterns) to be 

similar to the idea of “architectural fragments” in [9], where components which have not 

been fully specified are used as architectural “placeholders”. 

 S&D Patterns: These describe self-contained S&D Solutions in an abstract way. S&D 

Solutions define mechanisms for realising the S&D Requirements and provide one or more 
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S&D Properties. S&D Patterns describe monitoring rules, preconditions (that must be true in 

order to apply the pattern), a solution description, any parameters, a reference to S&D 

Properties and an interface definition. S&D Integration Schemes are special types of S&D 

Patterns that are used to represent ways of combining other S&D Patterns. We do not 

discuss these in this report.   

 S&D Implementations: These implement the solutions described by the S&D Patterns. For 

example, the S&D Pattern for a fair exchange protocol can be implemented in Java, or in 

C++. Each of these implementations is a separate S&D Implementation of the relevant S&D 

Pattern. All S&D Implementations of an S&D Pattern must conform directly to the 

monitoring capabilities, interfaces and all other characteristics described in the S&D Pattern.   

S&D Implementations are also responsible for observing and capturing the (high level) 

events that appear in the definition of the monitoring rules described in the S&D Pattern. 

They use event collection mechanisms to catch the different events as they occur at run-time 

and these are broadcast to the monitor. Therefore, S&D Implementations consist not only of 

executable code implementing an S&D Pattern, but also of a specific set of event collectors 

for observing and emitting the events of interest. 

 Executable Implementation: The executable implementation consists of the code for a 

particular S&D Implementation, and also the code for the event collectors required for 

monitoring this particular S&D Implementation.  

 S&D Configuration: The S&D Configuration should instantiate the system components 

(environment/parameters of an S&D Pattern) and their interfaces. Monitoring rules use this 

information to check the interactions.  

 Event Collectors: These are mechanisms for capturing events from the system or particular 

components in a system at runtime.   

 Events: An event is either an operation call or response, or a communication of data (e.g. 

signals) which occurs during runtime. Events are distinguished into high-level events that 

are used in the monitoring rules of S&D Patterns and low-level events that are obtained from 

the event collectors of &D Implementations. The main difference between high- and low-

level events is that many low-level events can be mapped to one high-level event. For 

example, a high-level event of reading a file (read_file(agent, filename)) may be mapped 

(and constructed) onto a sequence of three low-level POSIX events: fp = open(pid, 

filename), read(fp), and close(fp). Both high level and low level events are described using 

the same XML schema; indeed, low-level information present in the low-level events (e.g., 

pid, IP addresses of machines, etc.) is fused into the description of the high-level events. 

 

Elements used to describe an S&D Pattern: 

 ComponentDescription: The components that are referred to in an S&D Pattern are the 

components that are used by the solution described in the pattern and express the 

specification of the S&D Implementation components which are needed to provide the 

particular solution at run-time [4]. These components are therefore a subset of all the 

components that make up the architecture of the system that deploys the solution and are 

introduced specifically for fulfilling S&D Properties. For monitoring, components that 

constitute the environment (i.e. all the components in the system architecture which are 

making use of some S&D Pattern and are abstractly described in these as parameters – see 
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below) should also be identified and described somewhere which is accessible from the 

S&D Pattern.   

 Parameters: Parameters are given in order to provide some additional information about the 

system, i.e. description of the environment components, or constraints on existing 

components. They are used to make a solution more generic. The S&D Pattern language 

should provide detailed information about system components that are described as 

parameters, including their interface definition, which are required for monitoring.    

 Interface Definition: Interface definitions describe the interface of an S&D Pattern, i.e. the 

interface of the components described in the pattern. However, for monitoring it might also 

be necessary to extend the notion of interface definitions in order to include definitions of 

the interfaces of pattern parameters as well. This is because calls and responses of the 

operations of these parameters may need to be monitored at run-time. 

 Monitoring Rules:  Monitoring rules are event calculus (EC) formulas that need to be 

checked at runtime. EC formulas are composed of (high-level) events and fluents. 

Monitoring rules can be either compulsory or recommended. Compulsory rules cannot be 

deactivated when an S&D Pattern is active, while recommended rules can be deactivated.    

 Context: Context is described in S&D Patterns and consists of: a set of preconditions and a 

set of invariants. Preconditions are conditions regarding the applicability of an S&D pattern 

that must be true before a S&D Pattern can be selected. There are two types of 

preconditions: (i) preconditions that apply to the parameters of a pattern and (ii) 

preconditions that apply to the solution of a pattern. Invariants are conditions which must 

always be true, i.e. before the selection of the S&D Pattern and during the execution of the 

S&D Implementation that implements the S&D Pattern. Invariants have not been described 

as part of the language in A5.D2.1 [4]. 

 Solution description: This is a specification of the behaviour provided by the S&D Pattern 

including the behaviour of the components of the pattern. Although it is not currently, clear 

on whether a solution description is currently part of the first version of the S&D Pattern 

language, from a monitoring perspective this description should be given since deviations 

from the behaviour described in it which will need to be monitored at run-time.  
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2. Traceability between Monitoring Rules and S&D 

Properties    

In this section we investigate the horizontal traceability relations between Monitoring Rules, S&D 

Properties and S&D Patterns. We require traceability in order to be able to determine which S&D 

Property is no longer true, when particular monitoring rule(s) are violated. Also, traceability can 

provide an explanation as to why a particular S&D Pattern was chosen, i.e. to satisfy particular 

S&D Properties.   

The traceability relations are described at two levels of granularity. The traceability relation with a 

higher level of granularity is defined between S&D Properties and S&D Patterns. An S&D Pattern 

provides one or more S&D Properties. Moreover, each S&D Property can have many S&D 

Solutions defined by different S&D Patterns. It would be useful to be able to trace the S&D 

Properties that an S&D Pattern provides a solution for in order to have an explanation as to why a 

particular pattern was chosen. 

A traceability relation with a finer level of granularity is defined between S&D Properties and 

monitoring rules. Each S&D Property has a set of monitoring rules that need to be checked. Some 

of these rules are compulsory and other are recommended. It would be beneficial if the SERENITY 

framework could automatically determine which S&D property failed as a result of a monitoring 

rule(s) being violated, for diagnosis and recovery actions. As such, a relation among the rules and 

the properties will need to be established. 

 

S&D Pattern: A 

 

Provided Properties Ref: 

P1 and P2 

 

Monitoring Rules for P1 

Monitoring Rules for P2 

S&D Pattern: B 

 

Provided Properties Ref: 

P1, P3 and P4 

 

Monitoring Rules for P1 

Monitoring Rules for P3 

Monitoring Rules for P4 

S&D Property: P3 

Traceability relation (directed) 

S&D Property: P1 

 

Figure 3 – Example of use of traceability between S&D Properties and S&D Patterns 
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Let us consider an example. Figure 3 illustrates two S&D Patterns, A and B, that are chosen by the 

designer of an application App1 because they provide the S&D Properties P1 and P3, respectively. 

These S&D Patterns also provide some additional properties which the designer is not interested in. 

More specifically, the S&D Pattern A provides a solution for property P2 as well, and the S&D 

Pattern B provides a solution for properties P1 and P4 as well. Note that property P1 for S&D 

Pattern A and B is the same; however, the designer has chosen the solution provided for this 

property by the S&D Pattern A for some reason (e.g., its lower cost). By defining the traceability 

relation with the higher level of granularity between the S&D Properties and S&D Patterns, the 

SERENITY framework would be able to give an explanation as to why S&D Pattern A and B were 

used by App1, i.e. because S&D Pattern A provides a solution for S&D Property P1 and S&D 

Pattern B provides a solution for S&D Pattern P3. Note that an explanation cannot be provided as to 

why S&D Pattern A was chosen over S&D Pattern B for providing a solution for P1, unless it has 

been defined explicitly (e.g. as a string in natural language) by the developer. By defining the 

traceability relation with the finer level of granularity between the S&D Properties and monitoring 

rules, if a monitoring rule was violated, e.g. any of the monitoring rules for P3, the SERENITY 

framework could determine which S&D Property no longer holds, e.g. S&D Property P3. Also, if 

an S&D Pattern is chosen because of a particular S&D Property (we know because of the 

traceability relation with higher level of granularity), then  all the recommended monitoring rules of 

other S&D properties can be deactivated  by the framework. For example, in the S&D Pattern B, 

any recommended monitoring rules for P1 and P4 can be deactivated, which consequently improves 

the efficiency of the monitoring service because fewer rules will need to be checked.        

The traceability relations between: 

(i) S&D Properties and S&D Patterns, and 

(ii) Monitoring Rules and S&D Properties 

are investigated in more detail in the following and for each of these we discuss how the tracing is 

performed during all aspects of the lifecycle of S&D Solutions.  

2.1. Traceability between S&D Properties and S&D Patterns  

 

S&D patterns in SERENITY are assumed to be specified in order to represent solutions that 

deliver/realise certain S&D properties. To capture this relation we introduce a traceability relation, 

called “provides” between patterns and properties which is defined as follows:  

 

Definition of Provides Relation 

Name: Provides 

Type: Dependency 

Definition
(1)

: Patterns → 2 
Properties 

 

                                                 

1
 “2

Properties
” signifies the powerset of the set of S&D properties which are know in an instantiation of the SERENITY 

framework. 
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Attributes: N/A 

Cardinality: One S&D Pattern to many S&D Properties 

Constraints: N/A 

Directionality: From Patterns to Properties 

Place of definition: Traceability is defined by a reference in the S&D Pattern (under an XML 

element called Provided Property) to one or more Properties. 

 

The Provides traceability relation means that a specific pattern realises a specific S&D property. 

Relations of this type should be defined during the creation of new solutions as S&D Patterns. In 

other words, the S&D Pattern is defined as offering one or more S&D Properties and a reference to 

these properties is explicitly defined in the S&D Pattern description under the XML clause 

Provided Properties. Therefore, the SERENITY framework is able to determine which S&D 

Patterns have been defined for which S&D Properties, which is useful during the development 

process of an application, as it helps the developers to select the most appropriate patterns for their 

requirements.   

The Provides traceability relation between an S&D Pattern and S&D Properties is that of 

dependency, because an S&D Pattern relies on the existence of a specific S&D Property and if the 

S&D Property changes (e.g. because an error has been discovered in its description or because of 

changing legal requirements), these changes have to be reflected in the S&D Pattern. Because of 

this dependency, any changes in an S&D Property, must also be reflected in the monitoring rules as 

well (fine-grain traceability). For example, if an S&D Property specifies that a resource should be 

available in a any time range of 10 seconds, then the monitoring rule will check that the resource is 

available (e.g. can respond) in consecutive time intervals of 10 seconds. If the time value within 

which the resource should be available is changed in the S&D Property (e.g. 20 seconds), then the 

monitoring rule must be modified as well in order to check the new time value. As noted earlier, 

these changes can occur when legal requirements or standards change.  

We have mentioned that each S&D Pattern has an explicit reference to the S&D Properties that it 

provides a solution for.  However, by following this reference we are not always able to identify 

why the developers chose a particular S&D Pattern, as illustrated in the example of Figure 3. 

Therefore, for traceability between S&D Patterns and S&D Properties, the explicit reference to 

properties that is encoded through the Provides relation is not sufficient. 

To represent the reason why an S&D Pattern has been selected in a specific case, we need to 

establish a second type of traceability relation between patterns and properties. This relation is 

called “SelectedFor” and is defined as shown below. 
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Definition of SelectedFor Relation 

Name: SelectedFor 

Type: Rationalisation 

Definition: Patterns → 2 
Properties

 

Attributes: Explanation of intent (e.g. in text) 

Cardinality: One S&D Pattern to many Properties 

Constraints: The properties must be a subset of the properties provided by the 

pattern. 

Directionality: From S&D Patterns to Properties 

Place of definition: In the S&D Configuration - When a Pattern is selected, a traceability 

relation is defined that links it to some of its Properties, thus indicating 

the intent of the selection. 

 

SelectedFor traceability relations are established, when an S&D Pattern is selected, and provide the 

link between the S&D Pattern and the S&D Property that the pattern realises in a specific 

application. Thus, SelectedFor relations are a kind of rationalisation relations. In the case of the 

example described in Figure 3, the SelectedFor relations for App1 are those illustrated in Table 1. 

 

S&D Pattern S&D Property 

A P1 

B P3 

 Table 1 – SelectedFor relations for App1 of the example of Figure 3  

 

SelectedFor relations can be located in S&D Configurations by providing an association between an 

S&D pattern and the S&D Property that the pattern was chosen for. Such relations will be 

directional from the pattern to the S&D Property and will be updated dynamically when changes in 

the selected patterns of specific applications occur. Alternatively, a table, similar to Table 1, could 

be constructed for each application and kept up-to-date during the development process or during 

dynamic selection of S&D Patterns at run-time by the SERENITY framework. Thus, when 

SelectedFor relations are required by the Serenity Framework, such tables can be looked-up to 

establish the reason as to why a particular S&D Pattern was chosen. 
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2.2. Traceability between Monitoring Rules  and S&D Properties  

Fine grain traceability relations should also be established between the monitoring rules of a 

specific pattern and the S&D properties realised by the pattern in order to indicate which of these 

rules is necessary to be checked for the property to be satisfied. We call relations of this type as 

“Satisfies” relations and we define them as shown below.  

 

Definition of Satisfies Relation 

Name: Satisfies 

Type: Satisfaction 

Definition: Satisfies ⊆ Rules × { Compulsory, Recommended } × Properties 

Attributes: { Compulsory, Recommended } 

Cardinality: Many Rules to Many Properties 

Constraints: (i) ∀r ∈ Rules, ∃ p ∈ Properties, ∃ a ∈ Attributes . (r, a, p) ∈ Satisfies 

(ii) ∀r ∈ Rules, ∀ p ∈ Properties, ∀ a, a’ ∈ Attributes . (r, a, p) ∈ 

Satisfies ∧ (r, a’, p) ∈ Satisfies’  ⇒    a = a’ 

Directionality: Bidirectional 

Place of definition: In the S&D Patterns - This traceability relation is defined by the 

additional XML elements required in the S&D Pattern language for 

monitoring rules. Monitoring rules must be distinguished into compulsory 

and recommended and also must refer to the S&D Property that it 

ensures. 

 

The main reason for defining Satisfies relations is to enable the SERENITY framework to 

automatically determine which monitoring rules should be checked and which rules can be 

deactivated at runtime. 

In the case of the example described in Figure 3, for instance, if the S&D Pattern A is chosen 

because the S&D Property P1 is required, then only the monitoring rules (both compulsory and  

recommended rules, unless the user has explicitly deactivated the recommended rules) for P1 

should be checked. The monitoring rules for P2, on the other hand, can be deactivated by the 

framework, hence reducing the number of rules to be monitored and improving the efficiency of 

execution of rule checks. Note, however, that if there are other rules which depend on the active 

rules for P2, then these rules will have to be checked by the monitor (i.e. activated) as well, even 

though they might not provide the S&D Properties that the pattern was chosen for. 

Satisfies traceability relations must be defined during the creation of S&D Patterns. More 

specifically, for each S&D Property that is provided by an S&D pattern, a set of monitoring rules 

may be defined and each of the rules in this set must be classified as either recommended or 
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compulsory. Satisfies traceability relations can be defined in the S&D Pattern with the addition of 

XML elements under the “Monitoring Rules” clause, which also has a reference to the S&D 

Property that it ensures. Alternatively, they can be described in a table that is accessible by the 

SERENITY framework via the S&D Pattern.  The definition of Satisfies relations above includes 

also two constraints. The first of these constraints states that each rule in an S&D pattern must be 

associated to some property either as compulsory or recommended rule. The second constraint 

states that if a monitoring rule is associated with a property as a recommended or compulsory rule 

by a Satisfies relation then there cannot be another Satisfies relation between the same rule and 

property that is of a different type. Note that there can still be properties which are not associated 

with any rules via a Satisfies relation (e.g., because they are too expensive, impossible or not 

necessary to monitor). 

Table 2 describes in a tabular form an example of possible monitoring rules assigned to S&D 

properties and their division into compulsory or recommended. For example, as shown in the table, 

Rule 1 is compulsory for property Pm and Rule 2 is recommended for properties P1 and P2. Note 

that in cases where the S&D Pattern with the rules described in Table 2 is chosen for providing 

property Pm, then Rule 1 and Rule N will be activated by default. Recommended rules, however, 

may be deactivated upon a request from an authorised user of the framework. Note also that if there 

are rules that depend on Rule 1 or Rule N which are activated by default, then these rules will also 

be activated, as they are also required as a building block for offering the property Pm. 

 

           Properties: 

Rules: 

P1 P2 … Pm 

Rule 1    Compulsory 

Rule 2 Recommended Recommended   

…     

Rule N  Recommended  Recommended 

Table 2 – Satisfies relation: an example of compulsory and recommended rules.  

 

It should be noted that Satisfies traceability relations are also beneficial when a monitoring rule gets 

violated. In this case, relations of this type can be used for determining the S&D Properties that are 

no longer true for that S&D Pattern. For example, if Rule 1 in Table 2 has been violated, then Pm is 

no longer true for the S&D Pattern. If a recommended monitoring rule, such as Rule 2 in Table 2, 

however has been violated, then it is not necessarily true that the S&D Properties which the rule  

refers to (via a Satisfies relation), i.e. P1 or P2, are not true. This is because by virtue of our 

definition only a failure of a compulsory rule will lead to the failure of the S&D Property it refers 

to.  
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3. Traceability between Monitoring Rules and other 

elements in S&D Patterns 

In this section we investigate the vertical traceability relations between monitoring rules and other 

elements within S&D Patterns. The benefits of these traceability relations are that they help with 

runtime monitoring of the S&D Patterns and enhance the understanding of the solution described. 

The S&D Pattern language is still under development, but the key elements, described in [4], are: 

components, parameters, interface, pre-conditions for parameters and solution (provides the 

context), monitoring rules.  Monitoring rules are expressed in event calculus (EC) [5] (a first-order 

temporal formal language) in terms of events and fluents. Events signify the emission or reception 

of messages by different components of a system, and they are obtained or observed at runtime. 

High-level events are those that are described in the monitoring rules and low-level events are those 

that are captured from the system at runtime. Fluents represent changes in the (modelled) state of a 

system which are triggered by events. Fluents are not explicitly obtained or observed at runtime; 

they are derived by the monitoring engine using assumptions.  Since events are obtained at runtime 

and also determine the values of fluents, we define traceability as the correlation of events between 

the monitoring rules and the key elements in S&D Patterns.   Therefore, we investigate traceability 

relations between: 

1. Monitoring rules and (high-level) events; 

2. Monitoring Rules (events) and Components/Parameters (we include parameters here as well 

as they simply some under-specified components); 

3. Context and Monitoring Rules, and,  

4. Monitoring Rules. 

3.1. Traceability between Monitoring Rules and Events 

Monitoring rules and events are related by a traceability relation, called “Contains”. This 

traceability relation is required when monitoring rules refer to events which are not at a higher level 

than the events which can be obtained by the event captors associated with the implementation APIs 

contained in the pattern. In such cases, it is necessary to specify how the high level events which are 

referred to by the rules can be obtained from events that signify occurrences of API calls and 

responses to such calls. In such cases, the transformation from the events at the API level to the 

events at the rule level must be specified. The specification of this transformation is specified by 

virtue of an event calculus “theory” (i.e. a set of event calculus transformation rules). The presence 

of this theory is necessary so that: (i) the implementation developers know which “high” level 

events the “low”  events of an implementation will need to be transformed to and how this 

transformation should be performed, and (ii) the monitor can derive the events through the API-

level events. 

 

The traceability relation Contains is defined as follows: 
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Definition of Contains Relation 

Name: Contains 

Type: Dependency 

Definition: Contains ⊆ Rules × Events 

Attributes: Transformation theory (i.e. a set of event calculus rules that specify 

transformations of implementation events to rule events). 

Cardinality: One monitoring rule to many events  

Constraints: N/A 

Directionality: Bidirectional  

Place of definition: In the definition of monitoring rules in the S&D Patterns. 

 

In addition to the reasons identified above regarding the need for Contains relations, relations of 

this type are also beneficial for determining:  

(i) Which event collector to use in order to obtain the events required for a specific rule (this 

also requires the use of traceability relations between events and components or 

parameters which are described in Section 3.2).  

(ii) Whether the events that are related by Contains relations with a monitoring rule will still 

need to be captured if the rule is deactivated (i.e. it is no longer checked by the 

monitoring service). The SERENITY framework will need to determine this by checking 

not only the Contains relations of the specific rule that is deactivated but also whether the 

same events are contained in other monitoring rules which are still active. Determining 

which events are required leads subsequently to determining (by using some additional 

traceability relations) whether specific event collectors are still needed at runtime. 

3.2. Traceability between Events and Components/Parameters 

Events are captured at runtime by event capturing mechanisms that are placed at the system 

components of interest. The components of interest are determined by which events need to be 

captured for checking the monitoring rules. Therefore, a traceability relation between events 

expressed in monitoring rules and components is required in order to determine which component 

an event expressed in a monitoring rule belongs to and therefore should have an event captor that 

would be able to detect and report the event at runtime. This information consequently helps with 

diagnosis and recovery because when a monitoring rule is violated, we can determine which 

components were involved. 

To support the identification of the components in the implementation of the system which need to 

provide the events which are required for monitoring, we introduce a special type of traceability 

relations, called “SourceOf”.  SourceOf relations can be defined between events and S&D pattern 

component and parameters. Components and parameters constitute parts of the architecture that 
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realises the solution specified in an S&D Pattern and, according to A5.D2.1 [4], the main difference 

between them is that components are considered as complex types of parameters that are part of the 

solution described by an S&D patterns whose behaviour and other special characteristics are 

described within the pattern. Parameters on the other hand do not have detailed descriptions within 

an S&D pattern.  

For the purposes of this document, we will use the term “component” to refer to both S&D pattern 

parameters and S&D pattern components. Given this assumption, the traceability relation SourceOf 

is defined as follows. 

 

Definition of SourceOf Relation 

Name: SourceOf 

Type: Dependency 

Definition: SourceOf ⊆ Components × Events 

Attributes: N/A 

Cardinality: One component to many events  

Constraints: (i) ∀e∈Events ∃c∈Components . (c, e) ∈ SourceOf 

∧¬∃c’∈Components . c’≠c ∧ (c’, e) ∈ SourceOf  

Directionality: Bidirectional 

Place of definition: In the definition of an event that has a reference to its source, i.e. to the 

component or parameter where it’s produced. Events are described within 

the section of monitoring rules, within S&D Patterns. 

 

It should be noted that although the SourceOf relations between components and events as well as 

between parameters and events can be described in a similar way and therefore it is possible to 

provide a common definition, the difference between components and parameters could be 

important when considering where the event capturing mechanisms that will provide the events will 

be placed. More specifically, the main difference here is that, in our view, event capturing 

mechanisms can always be placed on components if the mechanism to do so is available, because 

the components are introduced as part of the solution for the pattern. On the other hand, some of the 

parameters may be bound to existing components of the application architecture (i.e. during 

configuration the parameters will be unified with the real application components) and therefore it 

is not entirely clear if event capturing mechanisms could always be attached to these components. 

And in cases where it is not possible to attach event capturing mechanisms to parameters  then the 

monitoring service will not be able check rules that contain events from such parameters and, as a 

consequence, the particular S&D Pattern should not be chosen. This has important repercussions for 

the dynamic selection of patterns at run-time by the SERENITY framework, since it must constrain 

the selection to only these patterns which demand events from the application components which 
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are indeed obtainable.  As such, the definition of S&D Classes will need to take this aspect into 

consideration as well. 

The traceability relation between events and components/parameters is defined during the 

construction of an S&D Pattern. The events expressed in the monitoring rules have the following 

generic form: 

e(_ID, _sender, _receiver, _status, _o, _source)  

where:  

• _ID is a unique identifier for the event 

• _sender is the name of the entity that sends the message _o. 

• _receiver is the name of the entity that receives the message. 

• _status represents the processing status of an event. The status of the event can be: (i) REQ-

B, that is a request for the invocation of an operation that has been received but whose 

processing has not started yet; (ii) REQ-A, that is a request for the invocation of an 

operation that has been received and whose processing has already started; (iii) RES-B, that 

is a response generated upon the completion of an operation that has not been dispatched 

yet; or (iv) RES-A, that is a response generated upon the completion of an operation that has 

been dispatched.  

• _o is a list of arguments and their types that the operation/event takes. 

• _source is the name of the component where this event has been captured at.  

Given this event structure, it is clear that an event holds information about its _source which should 

correspond to either a component or a parameter in an S&D Pattern. Note that parameters could 

represent other items besides components, such as key length, which a source of an event would 

never map to. 

The cardinality of the SourceOf relation is one-to-many, since one component may provide many 

events. Table 3 illustrates examples of sourceOf relations between components and events. 

 

Component A Component B ... Parameter C 

ev(1, …, A) ev(3, …, B) … ev(5, …, C) 

ev(2, …, A) ev(4, …, B) … ev(6, …, C) 

… … … … 

Table 3 – Examples of SourceOf relations between components and events 

 

Furthermore, it should be appreciated that the traceability relation SourceOf can also be used to 

check whether an event collector has failed. Thus, if, for example, the monitoring service has not 

received any events from an event collector at component X for a specific time period, such as 10 

hours, then it can deduce that the event collector at X has failed.  
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3.3. Traceability between Context and Monitoring Rules 

 

The context of an S&D Pattern consists of preconditions and invariants. Preconditions are 

differentiated between those that apply to parameters and those that apply to the solution, and they 

are currently described as a condition in natural language in A5.D2.1 [4]. Preconditions are 

properties that must be true before an S&D Pattern is selected. Thus, the validity of preconditions 

should be checked by the SERENITY framework before an S&D Pattern is adopted and, therefore, 

there is no need for monitoring them after a pattern is selected. Consequently, a traceability relation 

between preconditions and monitoring rules is of no interest for monitoring.  

Contextual invariants are properties that should be true throughout the execution of the 

implementation of the solution provided by an S&D Pattern. For example, an invariant of an S&D 

Pattern could be that the pattern should not be used with WI-FI networks. Therefore, the monitoring 

service could check if at any time during the execution of an implementation of an S&D Pattern the 

solution uses WI-FI and if it does, the monitoring service should raise a signal to the SERENITY 

framework to request the deactivation of the pattern and possibly its substitution by a different S&D 

Pattern. Thus, it is necessary to establish traceability relations between invariants and monitoring 

rules.  

For invariants, however, which are fully defined within a pattern a traceability relation to the 

monitoring rules that will be used to check it at runtime will need to be specified. These relations 

will be called “CheckedBy” relations and are defined as follows:  

 

Definition of CheckedBy  Relation 

Name: CheckedBy 

Type: Generalisation 

Definition: Invariants → 2 
Rules

  

Attributes: N/A 

Cardinality: Many invariants to many monitoring rules 

Constraints: N/A 

Directionality: Unidirectional, from invariants to rules. 

Place of definition: In the definition of monitoring rules in S&D Patterns.   

 

Furthermore, for an invariant I, a monitoring rule can be described in the form of: f_I ⇒ C, where C 

is the action/condition required and f_I is a fluent that is true when the invariant is true. The 

monitoring service can receive events emitted from the SERENITY framework that is responsible 

for checking the invariants, which inform the monitor about the value of the invariant’s fluent. 
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Examples of events that it will receive are: Initiates(f_I) and Terminates(f_I). In this way, the 

monitor can the framework respond to invariants which are violated.    

 

We should also note that, as invariants are not as yet described in the S&D Pattern language in 

A5.D2.1 [4], the definition of CheckedBy relations might need to be amended when the 

specification language for invariants becomes fully defined. 

 

3.4. Traceability between Monitoring Rules  

 

Traceability relations need also to be expressed between the different monitoring rules which are 

specified in an S&D Pattern. 

Dependency can be used by the monitoring service for detecting inconsistencies caused not only by 

the recorded but also by the expected behaviour of a system [6]. When checking whether a 

monitoring rule f:C⇒A is inconsistent with the expected behaviour of a system, the monitor takes 

into account not only the events that have been observed at runtime but also events that can be 

generated by other formulas and can affect the satisfiability of f. The definition of when a formula f 

is inconsistent with the expected behaviour of a system relies on a dependency relation between 

rules. This relation is defined in [11], as follows. Suppose that dep(f) is the set of formulas g:B⇒H 

that f depends on. A formula g:B⇒H belongs to dep(f), if its head H has a literal L that unifies with: 

(i) some literal K in the body C or the head A of f, or (ii) some literal K in the body B’ or head H’ of 

another formula g’ that belongs to dep(f) [11]. 

An example of dependency relations may be given in reference to a monitoring rule for checking 

the integrity of the e-healthcare system that we have given in [10]. In the e-healthcare scenario that 

is described in [8], patients who have been discharged from hospitals with potentially threatening 

medical conditions can use an e-health terminal (EHT) − that is an e-health application installed on 

their PDAs − to contact an emergency response centre (ERC) for assistance and fast ordering of 

medication. In one scenario of this case study, a patient who had suffered from a cardiac arrest, 

feels unwell and sends through his EHT a request for assistance to ERC. To establish the cause of 

the problem, ERC retrieves the patient’s medical record through the EHT. From this record, ERC 

establishes that the patient’s doctor is on vacation and broadcasts a message to a group of doctors 

known to be able to substitute the patient’s doctor. A doctor D receives this message on his own 

EHT and replies immediately. ERC verifies D’s ability to substitute for the patient’s doctor for the 

specific assistance request. Following this, D’s EHT interrogates ERC to receive the patient’s 

medical data. D analyses all these data, identifies the most appropriate treatment, and writes the 

electronic prescription on his/her EHT which subsequently sends the prescription to ERC which 

forwards it to the patient’s EHT after registering it.  

In the above scenario, the following integrity requirement has been identified: 

“Electronic prescriptions shall be issued only by doctors by means of an e-health terminal.” 

(i.e., Req. 2.2.1.15 in [8]) 
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As we have indicated in [10], this requirement can be monitored by a rule stating that if an ERC 

receives an electronic prescription by a doctor then this doctor must be authorised to issue the 

prescription. The rule can be created by assuming that: 

(i) ERC provides the operation createPrescription(docID:String, request:String, presc: 

Prescription ) to create new electronic prescriptions (presc) for a medical assistance request 

(request), and 

(ii) Doctors are authorised through the execution of an operation of ERC with the following 

signature: verifyDoctor(docID:String, request:String, verified:Boolean). This operation verifies 

if a doctor (docID) can deal with a given request (request). 

 

Assuming the above operations, the following rule can be specified to monitor the integrity 

requirement Req. 2.2.1.15 (this rule is derived from a monitoring pattern as described in [8]): 

 

Rule IR1: 

∀  _eID1,_ercID,_docEhtID:String; t:Time 

Happens( e(_eID1,_docEhtID,_ercID,REQ-B, 

createPrescription(_docID,_request,_presc), _ercID), t, ℜ(t,t)) ∧ 

HoldsAt(transforms( createPrescription(_docID,_ request,_presc), _ercID), t) 

⇒ 

HoldsAt(authorised(_ercID, _docID, e(_eID1,_docEhtID, _ercID,REQ-B, 

createPrescription(_docID,_ request,_presc), _ercID)), t) 

 

The rule IR1 checks whether the doctor (_docID) who invokes the operation createPrescription in 

ERC (_ercID) is authorised to do so. IR1 effectively describes a delegation of the doctor’s right to 

create prescriptions to his/her EHT, since it is the EHT which is the sender in this interaction 

(_docEhtID), while it is the doctor who is being authorised (_docID) for the action in reality. 

Following the pattern for monitoring integrity that we introduced in [10], the following assumption 

needs also to be specified in order to generate at runtime the information that is needed for 

checking the rule IR1: 

 

Assumption IA2: 

∀ _eID2,_ercID,_docEhtID:String; t:Time; _request: String, _verified: 

Boolean  

Happens(e(_eID2,_ercID,_ercID, RES-A, verifyDoctor(_docID, 

_request,_verified), _ercID), t,ℜ(t,t)) ∧ 

HoldsAt(valueOf(_verified, True),t) ⇒ 

Initiates( e(_eID2,_ercID,_ercID, RES-A, 

verifyDoctor(_docID,_request,_verified), _ercID), authorised(_ercID, 

_docEhtID, e(_eID1,_docEhtID, _ercID,REQ-B, createPrescription(_docID,_ 

request,_presc), _ercID)), t) 
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This assumption states that a doctor is authorised to call the operation createPrescription in ERC 

only if this is verified by the operation verifyDoctor. In this case, an appropriate authorisation fluent 

will be generated by IA2 and by virtue of the EC axiom 

 

HoldsAt(f,tB) ⇐ (∃e,t) Happens(e,t,ℜ(tA,tB)) ∧ Initiates(e,f,t) ∧ 

¬Clipped(t,f,tB) 

 

we can derive that the HoldsAt predicate in the head of the rule IR1 is satisfied. 

 

In this example, the rule IR1 depends on the assumption IA2 or, equivalently, IA2 belongs to the set 

dep(IR1). This is because the predicate 

 

HoldsAt(authorised(_ercID, _docID, e(_eID1,_docEhtID, _ercID,REQ-B, 

createPrescription(_docID,_ request,_presc), _ercID)), t) 

 

of IR1 can be unified with the predicate HoldsAt(f,t) in the above EC axiom. Thus the axiom 

belongs to dep(IR1). Following this unification, however, the axiom takes the following from: 

  

HoldsAt(authorised(_ercID, _docID, e(_eID1,_docEhtID, _ercID,REQ-B, 

createPrescription(_docID,_ request,_presc), _ercID)), t) ⇐ 

(∃e,t) Happens(e,t,ℜ(tA,tB)) ∧ 

Initiates(e,authorised(_ercID, _docID, e(_eID1,_docEhtID, _ercID,REQ-B, 

createPrescription(_docID,_ request,_presc), _ercID)), t) ∧ 

¬Clipped(t, authorised(_ercID, _docID, e(_eID1,_docEhtID, _ercID,REQ-B, 

createPrescription(_docID,_ request,_presc), _ercID)), t,tB) 

 

The predicate 

 

Initiates(e,authorised(_ercID, _docID, e(_eID1,_docEhtID, _ercID,REQ-B, 

createPrescription(_docID,_ request,_presc), _ercID)), t) 

 

in this new form of the axiom, however, can be unified with the predicate  

 

Initiates( e(_eID2,_ercID,_ercID, RES-A, 

verifyDoctor(_docID,_request,_verified), _ercID), authorised(_ercID, 

_docEhtID, e(_eID1,_docEhtID, _ercID,REQ-B, createPrescription(_docID,_ 

request,_presc), _ercID)), t) 

 

of IA2. Thus, according to the definition of dependent formulas above, IA2 also belongs to 

dep(IR1). 
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The dependency relations between monitoring rules will be called “DependsOn” relations and are 

defined as follows: 

 

Definition of DependsOn  Relation 

Name: DependsOn 

Type: Dependency 

Definition: Rules →2 
Rules ∪ Assumptions

 

Attributes: N/A 

Cardinality: One-to-many 

Constraints: If a monitoring rule MR1 is activated because it provides an S&D 

Property P1 of interest, then all monitoring rules on which MR1 depends 

on must also be activated. 

Directionality: Unidirectional 

Place of definition: In the definition of monitoring rules in S&D Patterns by a reference to 

other dependent rules. For example, if MR1 and MR2 are rules that 

depend on MR3, then they should have a reference to MR3 (a “depends 

on” XML reference is defined). 

 

The same definition of dependency can be used for determining dependencies not only between 

monitoring rules and assumptions defined in S&D Patterns but also between monitoring rules 

themselves. Such dependency relations between the monitoring rules in an S&D Pattern are 

important to identify because they can be used for triggering the activation of rules and for 

recovery. If a monitoring rule MR1 is activated as it provides an S&D Property P1 of interest, for 

instance, then all the other monitoring rules that MR1 depends on will also be activated and 

checked. For recovery, the dependencies between the monitoring rules help to determine which 

rules have failed (i.e. a rule MR1 and all the rules which depend on it). Finally, it should be noted 

that DependsOn relations can be automatically generated using the definition of the set dep(f) that 

was given above.  By identifying these dependencies statically and expressing them as DependsOn 

relations, the monitoring service can use them at runtime to identify the derived events that may 

affect the satisfiability of monitoring rules as described in [11]. 
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4. Traceability between Monitoring Rules and S&D 

Implementations 

In this section we describe the horizontal traceability relations between monitoring rules and S&D 

Implementations.  Traceability in this case is fine-grain and focuses on the correlation of events 

between rules and S&D Implementations.  

An S&D Implementation consists of an implementation of the solution described in an S&D Pattern 

and a set of event-capturing mechanisms (event collectors) for capturing and emitting low-level 

events from the implementation of the solution at runtime.  In this section, we consider traceability 

relations between: (a) low-level events captured by the event collectors in S&D Implementations 

with high-level events which ate described in the monitoring rules and (b) implementations with 

event collectors.    

4.1. Mapping of low-level events-to-high-level events  

The S&D Patterns describe the monitoring rules using high-level events. These monitoring rules 

will be given as input to the monitoring service in order to perform the checking. However, the 

events observed by the event collectors at runtime may be low-level events that need to be mapped 

onto the high-level events required by the monitoring service. Low-level events can be mapped into 

high-level events by using a theory of transformation formulas. For example, if a sequence of three 

low-level events (E1, E2 and E3) should be mapped to a single high-level event E4, the 

transformation could be expressed by a formula f: E1 ∧ E2 ∧ E3 ⇒ E4. Following such 

transformation the high level events are sent to the monitoring service. 

It should be noted that there are three possible options for performing the mapping of low-level 

events to high-level events:  

1. The mapping occurs in the monitor and requires an Event Calculus theory. This theory can 

be expressed in the S&D Implementation and is sent to the monitoring service. 

Subsequently, the mapping is performed within the monitoring service according to the 

theory. The theory must be written by the developer who knows how the mapping should be 

done. Figure 4 shows the flow of events and their transformation in the various components 

of the SERENITY framework in the case of this option. 
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Figure 4 – Part of SERENITY runtime framework that interacts with the monitoring service 

 

2. The mapping occurs in the SERENITY framework (for example, in the event manager) and 

it requires a theory that is described in the S&D Implementation. The language in which this 

theory will be described must be defined by A6. Figure 5 illustrates how the active patterns 

and executable implementation instances interact with the monitoring service. More 

specifically, according to this figure the executable implementation instances send the low 

level events and the transformation theory to the SERENITY framework which 

subsequently transforms them into the high level events expected by the monitor and 

forwards the latter to the monitoring service.   
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Event Manager  
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Figure 5 – Part of SERENITY runtime framework that interacts with the monitoring service 
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3. The mapping occurs in the S&D Implementation, which also contains a description of the 

theory required for it (see Figure 6). The implementation directly maps the low-level events 

to high-level events and sends the latter to the monitoring service. In this option, the S&D 

implementation can express the event transformation theory in the language of its choice. 
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mechanisms & event 

transformation theory) 

Monitoring 

Rules 

High-level 
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Figure 6 – Part of SERENITY runtime framework that interacts with the monitoring service 

 

By defining the mapping between the low-level and high-level events, we are also able to trace a 

particular high-level event defined in a monitoring rule to its corresponding low-level event(s) and 

vice versa. This is of particular interest when a monitoring rule is found by the monitor to have been 

violated so that fine-grain diagnosis can be performed. 

The traceability relation between high level and low level events is called “Mapped” and is defined 

as follows: 

 

Definition of Mapped  Relation 

Name: Mapped 

Type: Refinement 

Definition: Mapped ⊆ High-level events × Low-level events 

This traceability relation is defined by a correlation of low-level events to 

high-level events. 

Attributes: Transformation: Theory of how of high-level events are produced from 

low-level events. 
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low-level events. 

Cardinality: Many high-level events to many low-level events 

Constraints: Formulas that connect high-level and low-level events can be used to 

check if the transformations are correct. 

Directionality: Bidirectional 

Place of definition: In the monitor or the S&D Implementation. 

 

The advantages and disadvantages of each of the three mapping approaches are summarised in 

Table 4. 

 

 Location of Mapping  Advantages Disadvantages 

1) In the monitor Good for fine-grain diagnosis.  Burdens the monitor.  

2) In the SERENITY 

framework 

Clear separation of functionality, i.e. 

monitor responsible for checking rules  

only, S&D Implementation for 

implementing solution and framework 

for any translations, mappings etc.  

Burdens the Framework. 

3) In the S&D 

Implementation 

 

Not burdening the monitor or 

framework. The implementation is not 

burdened either. In fact, it might 

improve performance because there 

will be less communication with the 

SERENITY framework.  

Diagnosis is coarse-grain, 

since the traceability relation is 

effectively missing. 

Table 4 – Advantages and disadvantages of different architectures 

 

Regardless of which of the above three options is chosen, it should be noted that when it comes to 

the diagnosis of detected rule violations is required, the Mapped relation from high-level to low-

level events must be defined, and for each high-level event this relation must provide a theory in 

event calculus specifying how the transformation occurs. Such a theory can be specified as the 

value of the attribute Transformation of each of the elements of the Mapped relation. Along with 

this relation, the set of low-level events which have occurred so far will be needed. This set should 

either be held at the runtime framework, through which the monitor can retrieve it, or the S&D 

Implementations should support requests from the monitor for retrieving these events. 
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4.2. Traceability between event collectors and S&D Implementations   

 

The second type of traceability relations that we consider is a relation between event collectors and 

S&D implementations. 

An S&D Pattern may have many executable implementations of the solution it describes. Each of 

these implementations is expected to have a set of event collectors that will be attached to 

components & parameters of the S&D Pattern. An implementation can use the same event-collector 

as another implementation. Assuming that during runtime certain S&D Implementations are 

adopted, sometimes in place of other implementations; it would be beneficial if there was some 

mechanism in the SERENITY framework responsible for managing event collectors
2
. For example, 

if an event collector EC1 is used by two Java implementations, when none of these implementations 

is any longer applied in the application, the event collector EC1 should also stop executing.  In this 

way, the performance of the system’s execution will be improved as the use of event collectors 

delays the system’s performance. Apparently, we cannot stop this event collector when only one of 

the implementations which are using it is replaced. 

To be able to identify the event collectors which are required during the operation of the 

SERENITY framework, we can use a traceability relation between S&D Implementations and event 

collectors, which we call “Uses”. This relation is defined as follows: 

 

Definition of Uses  Relation 

Name: Uses 

Type: Dependency 

Definition: Uses ⊆ Implementations × Event Collectors 

Attributes: N/A 

Cardinality: Many implementations to many event collectors 

Constraints: N/A 

Directionality: Bidirectional 

Place of definition: In the S&D Implementation we provide a list of event collectors used 

 

The traceability relations Uses between event collectors and S&D Implementations are defined 

during the construction of an S&D Implementation by enumerating the event collectors used by the 

implementation. Using this information, the SERENITY framework can determine which event 

                                                 

2
 The event collector manager can be compared to garbage collection, i.e. its aim is to stop unused event collectors 

from executing. 
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collectors to deactivate (or clean up) based on whether they are currently being used by active S&D 

implementations. Table 5 illustrates an example of the Uses traceability relation between event 

collectors and active implementations. The relationship between implementations and event 

collectors is many-to-many (one implementation can use many event-collectors and one event-

collector can be used by many implementations).  In this example, if the S&D implementation 

ImpC, for instance, becomes inactive, the event collector EC2 can also be deactivated. Unlike it, the 

event collector EC1 cannot be deactivated if the S&D implementation ImpA becomes inactive since 

it would still be needed by ImpB. 

   

Event Collector Implementations 

EC1 ImpA 

EC1 ImpB 

EC2 ImpC 

ECn ImpF 

ECn ImpD  

ECn ImpA  

Table 5 – Relation between event collectors and active implementations 

 

4.3. Traceability relation between events and event collectors 

Each event collector should describe the set of events that it can capture. Capture relations of this 

form are represented by a traceability relation called “CollectedBy” that is defined as follows:  

 

Definition of CollectedBy  Relation 

Name: CollectedBy 

Type: Dependency 

Definition: Event → Event Collector ∪ {nil} 

Attributes: N/A 

Cardinality: One event  to one event collector 

Constraints: N/A 

Directionality: Unidirectional – from event to event collector 
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Place of definition: In the S&D Implementation, for each event collector we provide a list of 

events that can be captured. 

 

Given the presence of such relations, when the time comes to attach an event collector to a 

component in order to capture the events of interest (i.e. the events that are described in the rules) it 

will be possible to determine which event collector should be used for an event. According to its 

definition above the cardinality of CollectedBy is one-to-one. This reflects our assumption that an 

event can be captured only by one event collector in a single S&D Implementation.   

Note that high-level events do not have any event collectors associated with them, since they are 

formed by a theory over the low-level events that the collectors collect. 
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5. Traceability between Monitoring Rules and S&D 

Configuration 

Each system has a single S&D Configuration (referred to as the “System S&D Configuration”) 

which unifies the parameters of the different S&D Patterns to system and/or other S&D Pattern 

components. At the same time, each S&D Pattern needs its own S&D Configuration, which unifies 

the parameters of the S&D Properties provided by the pattern to the S&D Pattern 

components/parameters. The S&D Configuration also must describe the concrete interfaces of the 

parameters, that is, say which of the real components’ operations are mapped to the abstract 

operations of the parameters. These are not described anywhere else but they are required by the 

monitoring service, since the monitoring rules use this information to check the interactions 

between components and parameters in order to ensure the S&D Properties.  

For the purposes of monitoring, the operations of pattern parameters which are described in the 

events which are referenced by the monitoring rules must be traced to the actual operations of the 

components that have substituted for pattern parameters. To enable this tracing defined To enable 

this tracing, we introduce two types of traceability relations in the S&D Configurations. The first of 

these relations is called “UnifiesWithComponent”, associates pattern parameters with the actual 

system components that are bound to them at runtime and is defined as specified below: 

 

Definition of UnifiesWithComponent  Relation 

Name: UnifiesWithComponent 

Type: Refinement 

Definition: (Patterns × Parameters) → Components 

Attributes: N/A 

Cardinality: One pattern, parameter pair to one component  

Constraints: N/A 

Directionality: Unidirectional 

Place of definition: S&D Configuration  

 

The second relation is called “UnifiesWithOperation”, associates abstract operations of monitoring 

rules with the concrete component operations which are bound to them at runtime and is defined as 

specified below: 
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Definition of UnifiesWithOperation Relation 

Name: UnifiesWithOperation 

Type: Refinement 

Definition: UnifiesWithOperation ⊆ (Patterns × Abstract Operations) × Concrete 

Operations 

Attributes: N/A 

Cardinality: Many abstract operations to many concrete operations.  

Constraints: N/A 

Directionality: Bidirectional  

Place of definition: S&D Configuration  

 

Let us consider a simple example. Suppose that the following monitoring rule MR1 is expressed in 

an S&D Pattern P: 

Rule MR1 

(∀ t1,t2:Time) Happens(e(A,B,op1(p1),A),t1) ⇒     

   Happens(e(B,C,op2(p2,p3),B),t2) & t2 ≥ t1 

This rule states that if A invokes an operation op1(p1) which is received by B at time t1,  then B 

must invoke the operation op2(p2,p3) which is received by C at some time t2 after t1. In this rule, 

A, B and C signify dispatchers and/or receivers of the invocations of the operations op1(p1) and 

op2(p2,p3). More specifically, A dispatches the invocation of op1(p1), B received the invocation of 

op1(p1) and dispatches the invocation of op2(p2,p3) and C receives the invocation of op2(p2,p3). 

Suppose also that A and B have been defined as parameters in the S&D Pattern that incorporates 

MR1, and C has been defined as a component in the same pattern. The operations op1(p1) and 

op2(p2,p3) belong to B and C, respectively.   

When this S&D Pattern is selected (activated) by the SERENITY framework for a specific system, 

the S&D Configuration of this system will unify the elements in the S&D Pattern with the “actual” 

components of the involved system and/or the implementation of the S&D solution described by the 

selected pattern. Thus, for example, the parameters A and B may be unified with the components c1 

and c2 using the UnifiesWithComponent relation as follows: UnifiesWithComponent((P,A), c1), 

UnifiesWithComponent((P,B),c2). The interface of the components should also be described in the 

configuration part of the pattern, i.e. all the operations that c1 can invoke as op1 and c2 can invoke 

as op2. Then op1 and op2 must be unified with the actual operations using the 

UnifiesWithOperation relation, e.g. op1(p1), could be send(data) & receive(data), and op2(p2,p3) 

could be add(d1, d2). 

It should be noted that a concrete operation can be unified with many abstract operations and an 

abstract operation can be unified with many concrete operations. An abstract operation signifying 
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the disclosure of an information parameter i in an S&D pattern, called leaks(i) for instance, can be 

unified with concrete operations that result in information disclosure such as write(f) and print(r). 

Similarly, one concrete operation can also be unified with many abstract operations. The concrete 

operation write(f), for example, can be unified with the abstract operation leaks(d) above and 

another abstract operation signifying the transmission of information called transmit(m). 
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6. Use of Traceability Relations at Runtime 

Having defined the different types of traceability relations in the previous sections, we can now 

describe how these relations can be used by the SERENITY framework at runtime. Generally, these 

relations can be used at runtime to enable:  

 the selection (activation) of monitoring rules when an S&D Pattern is selected   

 the attachment of event collectors to system components 

 the checking of the monitoring rules by the monitor 

 the deactivation of monitoring rules 

 the detachment of event collectors to system components   

Note that the assumptions of monitoring rules are treated in the same way as monitoring rules. 

However, an assumption is always associated to a monitoring rule. 

6.1. Activation of monitoring rules 

Monitoring rules are activated when an S&D Pattern is selected from the library to provide a 

solution that ensures particular S&D Properties. The user who chooses the S&D Patterns/Classes 

during the development of the system must also provide the information required for the 

SelectedFor traceability relation, i.e. which S&D Properties this S&D Pattern has been chosen for. 

Note also that the SERENITY framework can dynamically change the SelectedFor relation for a 

particular software system.  

The steps which must be performed in order to activate the monitoring rules are as follows: 

1. The user/framework selects an S&D Pattern pat from the library. This selection can take 

place either during the development of a system by the user (not at runtime) or at runtime by 

the framework when an S&D Pattern is no longer capable of providing a particular solution 

and another S&D Pattern has to be chosen instead. 

2. The SelectedFor traceability relation between S&D Patterns and S&D Properties must be 

updated by the framework with the required information that is found in the S&D 

Configuration to indicate which S&D Properties the S&D Pattern was chosen for. At this 

point a check to ensure that the set of the properties that the pattern was selected for is a 

subset of the properties that the pattern provides (as expressed by the Provides relation) 

must be performed. Subsequently, the initial set of compulsory and recommended 

monitoring rules for the selected S&D Property can also be determined. The identification 

of these monitoring rules will be based on the SelectedFor relations and the Satisfies 

relations between rules and S&D Properties. More specifically, for each S&D Property that 

is referenced by the SelectedFor relation, its compulsory and recommended monitoring 

rules are identified and activated using the Satisfies relations which refer to the property. 

When activated a rule is sent to the monitoring service to be checked. It should be noted that 

the recommended rules of a SelectedFor S&D Property can be deactivated. This, however, 

must be done explicitly, as the default is to activate both the compulsory and recommended 

rules of a desired S&D Property. Formally, the initial set of activated rules is defined as 

follows: 

InitRulespat = {r | ∃ q∈ SelectedFor(pat) ∧ ∃ a∈ Attributes . (r,a,q)∈ Satisfiespat } 
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where Attributes is the set {Compulsory, Recommended}.  

3. Then, by using the DependsOn traceability relation between monitoring rules, all the 

monitoring rules that are dependent on to initial set of rules that have been activated for the 

S&D Pattern can also be determined and activated. Formally, the set of rules that will be 

activated at this step is defined as follows: 

FinalRulespat = InitRulespat      ∪ U
patInitRules

)(
∈r

pat rDependsOn  

4. Subsequently, all the parameters in the event references which are made within the 

monitoring rules must be instantiated with the actual values that are described in the S&D 

Configuration of the system. This is done by using the traceability relations 

UnifiesWithComponent and UnifiesWithOperation which as we discussed in Section 5 are 

defined in the system S&D Configuration. In this way, we can obtain instances of 

monitoring rules which refer to actual system components and operations, instead of abstract 

pattern parameters/components and operations. The resulting set of fully instantiated 

monitoring rules is called InstantiatedFinalRulespat. 

5. Finally, the instantiated rules in InstantiatedFinalRulespat are activated, i.e. they are sent to 

the monitor to be checked. 

 

6.2. Attaching event collectors to system components  

S&D Implementations have sets of event collectors that can be used to provide the events required 

for the monitoring of the solutions that they realise. When an S&D Pattern is chosen, along with a 

corresponding S&D Implementation, the appropriate event collectors will need to be attached to or 

activated in the system components which runtime events need to be captured from. The process of 

determining the event collectors that will be required and activating/attaching them to system 

components is driven by the instantiated rule set for the specific system and takes place through the 

following steps:: 

 

1. For each rule the set InstantiatedFinalRulespat of the activated pattern pat, the events of 

interest that need to be captured by the event collectors are determined through the Contains 

traceability relation. This set of events is formally defined as follows: 

EventsOfInterestpat = {e : ∃ r ∈ InstantiatedFinalRulespat . (r,e) ∈ Containspat }   

where Containspat is the Contains traceability relation between rules and events in S&D 

Pattern pat.    

 

2. Then, by using the SourceOf traceability relation for each event of interest e, we determine 

the component that e needs to be obtained from. In this way we can determine the set of all 

the components which are the sources of the events of interest and attach the corresponding 

event collectors to them. This set of components is defined as follows: 
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ComponentOfInterest = {c : (c,e) ∈ SourceOfpat}  
3
 

 

3. Also by using the CollectedBy traceability relation we can determine the event collector for 

each event of interest e. 

EventCollector = CollectedByimp(e) 

 

4. Finally, the SERENITY framework will attach the identified event collector to the identified 

component, if the former is not nil, since not all events have a corresponding event-

collector.  

 

6.3. Checking of monitoring rules 

In order to check monitoring rules, the monitoring service requires the set of active monitoring rules 

and assumptions and the set of events which occur at runtime, i.e. those captured by the event 

collectors. Note that monitoring rules contain high-level events, while the events which are captured 

by the event collectors are low-level. Therefore, the steps that must be performed in order to check 

the monitoring rules are: 

1. The active monitoring rules in the S&D Pattern are sent to the monitoring service. 

2. The low-level events are mapped to high-level events and sent to the monitoring service. 

The Mapped traceability relation will allow for low-level events to be traced to high-level 

events and vice versa. The mapping can occur at different locations and this depends on the 

type of architecture that the SERENITY framework will adopt.  

3. The DependsOn traceability relation will determine the dependencies between the 

monitoring rules (or assumptions) which will enable the detection of different types of 

inconsistencies as defined in [6]. 

By checking each monitoring rule, the monitor determines whether the rule holds or is violated 

when the system is executed (during runtime). The following steps outline what happens when a 

rule is violated:    

1. If a compulsory rule is violated, then the S&D Property that the monitoring rule is related to 

will no longer hold for the selected S&D Pattern. The identification of the properties which 

are affected by violations of monitoring rules is based on the Satisfies traceability relation. 

Then, the SelectedFor traceability relation is used to determine which properties of interest 

have been violated, so as to report this to the S&D Framework. 

2. If a recommended rule is violated then the monitoring service raises a violation signal to the 

SERENITY framework but continues to monitor the other active rules without affecting the 

activation of the S&D pattern necessarily.   

                                                 

3
 This set has a single element. 
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6.4. Deactivation of monitoring rules 

As we discussed earlier, recommended monitoring rules can be deactivated but compulsory rules 

cannot. The recommended rules for an S&D Property can be determined by using the Satisfies 

traceability relation between S&D Properties and monitoring rules. A rule can only be deactivated 

explicitly by a user, the SERENITY framework or an action of another rule. The deactivation of a 

rule means that it will not be checked by the monitoring service.   

 

6.5. Detaching event collectors from system components 

When particular S&D Implementations are deactivated, i.e. they are no longer selected, their event 

collectors may be detached from the components of these implementations. This should, however, 

happen only if these collectors are not also being used by other S&D Implementations. Event 

collectors can be detached in cases where they are found to be unreliable, e.g. in the case where 

they do not capture the required events in a bounded length of time. 

In the first case, the deactivation of an event collector from a system component takes place as 

follows. First by using the Uses traceability relation between event collectors and S&D 

Implementations, the set of active S&D Implementations that are using a particular event collector 

is determined. Then, if an S&D Implementation is deactivated, the SERENITY framework can 

check whether there are other implementations that are still using the specific event collector and, if 

not, the event collector can be detached from its component.   

In the second case, the deactivation of an event collector from a system component takes place 

through the following steps: 

1. The SERENITY framework checks whether events are captured by an event collector within 

a bounded amount of time (the time can be determined by performing some analysis on the 

system). Other checks can be performed as well for determining the reliability/availability of 

the event collector. 

2. By using the SourceOf traceability relation, for each component which has an event 

collector, a list of expected events can be determined. 

3. Then if none of these events in the list have been observed in the given length of time, it can 

be deduced that the event collector is unavailable. If an event is observed by the event 

collector, then it is mapped to a high-level event by using the Mapping traceability relation 

and then the SourceOf relation is used to determine whether the event is in the set of the 

expected events
4
. 

 

   

 

                                                 

4
 More generally, there might be other factors that could affect the trustworthiness of events (or how confident we are 

that their absence is genuine and not the effect of some attack). In the initial version of the runtime monitoring 

components of SERENITY, we assume that all the captured events can be trusted and that the absence of events 

should also be trusted. In subsequent stages of the project, we will investigate possible trust models for event 

collectors and may need to provide more elaborate mechanisms for assessing event trust. 
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7. Example 

In this section we illustrate the use of traceability relations in reference to a part of the smart items 

scenario that has been described in A7.D2.1 (see Section 2 in [8]). To enable this illustration, in the 

following we describe an S&D Pattern that describes a partial solution for a selected part of this 

scenario.   

7.1. Smart Items scenario – A Solution 

The solution that we describe in the following refers to the following requirements in A7.D2.1 [8]:  

“Each communication between the patient’s e-health terminal and the ERC shall 

guarantee message delivery, integrity and confidentiality of the data exchanged, 

and mutual authentication.” (Req. 2.2.1.2) 

“Each communication between the ERC and the e-health terminal of the selected 

doctor shall guarantee integrity and confidentiality of the data exchanged, and 

mutual authentication.” (Req. 2.2.1.14) 

The initial draft of our solution guarantees authorisation and confidentiality of the data exchanged 

between the ERC and the e-health terminals of patients and doctors but does not guarantee message 

delivery or authentication. This limitation is due to the fact that our objective here is to demonstrate 

the use of traceability relations rather than providing a complete solution to the above requirements. 

Also it should be noted that the description of our solution is based on the following assumptions: 

 The patient’s and the doctor’s e-health terminals cannot communicate with each other 

directly during emergencies. All communications must go through the ERC (Emergency 

Response Centre). Therefore, in the case when a patient contacts the ERC with an 

emergency requiring a prescription, it is the ERC’s responsibility to ensure that only an 

authorised doctor can assign a prescription to this patient.   

 Both the patient and doctor trust the ERC. 

 Authorisation is provided by the ERC. 

 There is a public key known to both the doctor and the ERC, and another public key known 

to both the ERC and the patient. 

Furthermore, it should be noted that at this stage we do not focus on defining an executable 

implementation for this solution. Our focus is on defining a general S&D Pattern that could be used 

for the development of executable implementations. Thus, we consider only the general 

architecture of the solution and the interactions between the components in this architecture.  
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Figure 4 – Architecture of the solution 
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Figure 5 – Decomposed architecture of the solution  

 

Figure 4 illustrates the architecture of the solution described using abstract components that could 

be unified with other components in different types of applications, i.e. not only in the smart items 

application. This architecture describes an indirect communication between two abstract 

components C and D that must take place through another intermediary abstract component F 

which also has responsibility for the authorisation of C and D in the communications. This 

authorisation is carried out by another abstract component called Auth that F communicates with. 

The architecture also describes the security realms in which the different parameters and 

components belong to, i.e., the fact that C’ and E1 are in the same realm, just like the F’, D1, E2 & 

Auth are in their own. For the smart items scenario, C would be unified with the doctor’s e-health 
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terminal, F would be unified with the ERC, D would be unified with the patient’s e-health terminal, 

and Auth would be unified with an authorisation function that is executed on the same machine as 

ERC. 

The architecture of the solution can be further decomposed as illustrated in Figure 5, where the 

exact components that are responsible for performing certain functions are identified. For example, 

to ensure confidentiality, data encryption and decryption functions need to be introduced between 

the components C and F, and between F and D. Thus, the component C is refined into a 

decomposition that incorporates: (i) a component C’ which provides the operations that are 

concerned with the normal system behaviour for C, and (ii) a component E1 which provides the 

operations required for encryption/decryption. Similarly, the component D in Figure 4 is 

decomposed into a component D’ that provides the normal operations of D and a component D2 

that provides the encryption/decryption operations for D and the component F is decomposed into 

the components F1 that provides the normal operations of F and the components D1 and E2 that 

provide decryption and encryption functions for F. Note that encryption and decryption operations 

are not required for the communication between F and Auth since these two components are 

assumed to be running on the same machine and they may be event internal components of the 

same application.  Thus, Auth does not have any encryption/decryption components.    

The objective of this solution is to ensure that when a component C invokes an operation of D with 

some data, the data must be encrypted for ensuring confidentiality by using E1 and together with 

the operation it is first sent to F, which decrypts it using D1, and checks that C is authorised 

according to F to invoke that operation. Once F checks that C is authorised by communicating 

internally with Auth, it forwards the original operation call from C (with the encrypted data) to D 

(before doing this F encrypts the data using E2 with the public key of D). Subsequently, D decrypts 

the data using D2 and executes the operation. In this solution, F functions as a proxy to D, filtering 

the calls made to it and allowing only the authorised ones. 

The sequence diagram in Figure 6 illustrates some of the actions that can occur between the 

components illustrated in Figure 4. In the case where C is not authorised by F to invoke an 

operation of D, then nothing is sent to or invoked in D. Figure 7 illustrates the sequence of actions 

in this case. 
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C Auth F D 

ev(id2,C, F, REQ-B, op1(encrypted(p1)),C) 

ev(id4,F, Auth, REQ-A,checkAuth(C,F,op1(p1)),F) 

ev(id3,F,F,REQ-A,decrypt(encrypted(p1)),F) 

ev(id5,Auth,F, REQ-A,reply(authorised(C,F,op1(p1))),Auth) 

ev(id6, F, F, REQ-A,encrypt(p1,KeyFB),F) 

ev(id1,C,C,REQ-A,encrypt(p1),KeyCF),C) 

ev(id7,F,D, REQ-B,op1(encrypted(p1)),D) 

ev(id8,D,D,REQ-A,decrypt(encrypted(p1)),D) 

 

Figure 6 – Sequence diagram where F authorises C to invoke operation op1 of D 

 

In the smart items scenario, when a doctor sends a prescription to a patient the prescription goes to 

the ERC initially and the ERC, which plays the role of F in this case, needs to check that the doctor 

is authorised to assign the prescription. The prescription is sent by the doctor in an encrypted form 

(using the public key of ERC) that can be decrypted by the ERC (by using its private key). Once 

ERC has checked that the doctor is authorised to assign the prescription, it encrypts the prescription 

with the public key of the patient and sends the encrypted prescription to the patient, who can then 

decrypt it with his/her private key.    
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C Auth F D 

ev(id2,C, F, REQ-B, op1(encrypted(p1)),C) 

ev(id4,F, REQ-A,Auth, checkAuth(C,F,op1(p1)),F) 

ev(id3,F,F,REQ-A,decrypt(encrypted(p1)),F) 

ev(id5,Auth,F, REQ-A,reply(authorised(C,F,op1(p1))),Auth) 

 

ev(id1,C,C,REQ-Aencrypt(p1,KeyCF),C) 

 

Figure 7 – Sequence diagram where F authorises C to invoke operation op1 

7.2. S&D Properties 

The language for an S&D Property has not yet been defined. In this section, we envision what this 

language might be and how we can use it to describe the properties that the solution ensures, and 

discuss any language requirements that we feel are necessary.    

Each “type” of security requirement can correspond to more than one different S&D Properties. In 

the case of integrity, for example, a number of S&D Properties could be described depending on 

which system architecture integrity is applied to. Thus, we can have integrity of data sent between 

two components, integrity of data ensured by a third party, integrity of data stored on a single 

machine etc. Therefore, the language of an S&D property should allow for a description of the 

general system architecture that the property is applied to.  

The language of the properties should allow for its description in English and also in a formal 

notation (to ensure that it is described precisely and unambiguously). The level of formality 

depends on the types of static and run-time analysis that we wish to perform – for example, in 

SERENITY we do not expect to see formulae describing the computational complexity of breaking 

a particular encryption method, since this type of analysis is out of the project’s scope. 

 

In the following, we give examples of two S&D properties: a property expressing the need for 

authorisation (P1) and a property expressing the need for confidentiality. For both of these 

properties, we give a description of the property in English and a formalisation in event calculus. 

Our examples are given to demonstrate the need for incorporating some abstract description of the 

system architecture which the property refers to and the formal specification of the property. It 
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should be noted that although our examples use Event Calculus to demonstrate the formal 

specification of properties, the development of the final property specification language will be 

determined in the A5 activity in the next phase of SERENITY. 

  

S&D Property : P1 

Description (in English): If an operation of B is invoked by agent A, then A must be authorised to 

invoke that operation in B. (Authorisation)  

Formal Description (in event calculus): 

(∀ t:Time; Happens(ev(ID,A,B,RES-*,op(d),B),t, ℜ(t,t)) ⇒ 

  HoldsAt(authorised(A, B, op(d)),t) 

 

A B 

 

Figure 8 – Architecture of property P1 
 

 

S&D Property : P2 

Description (in English): The data which are transmitted between two components, G and H, 

through a network N remain confidential.  

 

Formal Description (in event calculus): 

Rule: 

P2.R1: 

Happens(e(id2, N, H, REQ-*, send(G, H, op1(d1), KH), H), t2, ℜ(t1,t2)) ⇒ 

¬HoldsAt(exposes(e(id2, N, H, REQ-*, send(G, H, op1(d1), KH), H), op1(d1) ) 

 

Assumptions: 

P2.A1: 

Happens( e(id1, G, N, REQ-*, send(G, H, op1(d1), KH), G), t1, ℜ(t1,t1)) ∧ 

Happens( e(id2, N, H, REQ-*, send(G, H, op1(d1), KH), H), t2, ℜ(t1,t2))  ⇒ 

Happens( e(id3, N, I, REQ-*, send(G, H, op1(d1), KH), I), t2, ℜ(t2,t2)) 

 

P2.A2: 

Happens( e(id4, N, I, REQ-*, send(G, H, op1(d1), KH), I), t, ℜ(t,t)) ∧ 

length(KH) < 100 ⇒ 
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Initiates(e(id4, N, I, REQ-*, send(G, H, op1(d1), KH), I), 

exposes(e(id2, N, H, REQ-*, send(G, H, op1(d1), KH), H), op1(d1) ) 

G  H 

Intruder 

N 

 

Figure 9 – Architecture of property P2 
 

 

The specification of P1 makes reference to a simple architecture referring to two communicating 

agents (A and B) that is necessary in order to express the need for authorisation of one of them in 

the other. The formal specification of the property in EC states that when an event signifying the 

invocation of an operation op(d) by A in B occurs, A must have the appropriate form of 

authorisation by B. 

The specification of P2 demonstrates a more complex example. In the architecture for this property, 

it is necessary to refer to the network N that exists between two agents G and H and the presence of 

an intruder (I) against which the confidentiality of the data should be preserved. The formal 

specification of the property is based on the following reasoning. When G wants to call an operation 

op1(d1) in H, it calls operation send(G, H, op1(d1), KH) in N. N calls the operation send(G, H, 

op1(d1), KH) in H. At the same time, we may assume that N also calls the same operation on an 

intruder I (since intruders can read messages which pass through the network). The assumption here 

is that H knows KH but the intruder I doesn’t – we do not care whether G knows KH since we wish 

our property to describe both the case of a shared key and the case of a public/private key pair. The 

Intruder’s capabilities are modelled by the fact that a message is revealed to it only if the length of 

the key KH is less than a particular number, let’s say 100. 

The formalisation of the attack model already signals a possible monitoring rule for any pattern 

which will try to offer this property for this attack model, that is, that the keys used for the excange 

of messages have a length which is equal to or greater than 100. 

In EC, the property is specified by the rule P2.R1 which states that when G sends a message to H, 

the message is not exposed to any third party. The assumptions specified for this rule indicate the 

circumstances under which the property can be violated. P2.A1 expresses the fact that N will 

always send the encrypted message to an intruder (this is equivalent to assuming an intruder that 

always has the capacity to catch the encrypted message as discussed earlier). The second 

assumption (P2.A2) states that the contents of the message are exposed if the encryption key has a 

length that is less than the assumed threshold.  
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In this way we can easily model situations where the capabilities of the Intruder range from private 

persons, able to crack messages with short keys, to big companies, able to crack messages with 

medium keys, and even to countries, which can break messages with even longer key lengths. 

The specifications of these properties including their descriptions in English and Event Calculus as 

well as the simple architecture models which are required are shown in Figure 9. 

 

7.3. S&D Pattern 

In this section, we describe the S&D pattern for a solution of the smart items application using the 

schema specified in [4] extended with traceability relations that we have introduced in this 

deliverable.  
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S&D Pattern: AuthAndConfidentiality 

 Creator: CUL.com 

 Trust mechanism: signed by CUL 

 Provided Properties: 

     Property: 

        ID: P1 

        Timestamp: 200611161204 

     Property: 

        ID: P2 

        Timestamp: 200611201206 

 Interface (this is for the components only): 

        Calls: 

           reply(authorise(C,F,op1(p1)) 

           authorise(C, F,op1(p1),result) 

 Components: 

      Component: Auth 

      Component: F’ 

      Component: E1 

      Component: E2 

      Component: D1 

      Component: D2 

 Parameters: 

      Parameter: C’ 

      Parameter: D’ 

      Parameter: N1 

      Parameter: N2 
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      Parameter: p1 

      Parameter: KeyCF 

      Parameter: KeyFB 

      Parameter pre-condition: Public key KeyCF is agreed on and known by C and F before session 

starts. (C and F trust each other) 

– Knows(C, KeyCF) ∧ Knows(F, KeyCF) 

      Parameter pre-condition: Public key KeyFB is agreed on and known by F and B before the session 

starts. (F and B trust each other) 

– Knows(F, KeyFB) ∧ Knows(B, KeyFB) 

     Solution pre-condition: F and B have private keys that are not disclosed. 

– Knows(F, KeyF) ∧  Knows(B, KeyB) ∧ ¬(∃I. I≠F ∧ Knows(I, KeyF)) ∧ ¬(∃I. I≠B ∧ Knows(I, KeyB)) 

      Solution pre-condition: C and D cannot communicate with each other directly. 

   Solution description: Order of events for correct behaviour 

            ev(id1,C, C, REQ-A, encryptedC(p1,KeyCF),C); 

            ev(id2,C,F, REQ-B, op1(encryptedF(p1)),C); 

            ev(id3,F,F, REQ-A, decryptF(encrypted(p1)),F); 

            ev(id4,F, Auth, REQ-A, checkAuth(C,F,op1(p1)),F); 

            ev(id5,Auth,F, REQ-A, reply(authorise(C,F,op1(p1)),Auth); 

            ev(id6, F,F, REQ-A, encryptF(p1,KeyFB),F); 

            ev(id7,F,D, REQ-B, op1(encrypted(p1)),F); 

            ev(id8, D,D, REQ-A, decryptD(encrypted(p1)),D) 

 Static Tests Performed: 

      Test: … 

          Conditions of test: 

          Attack models considered: 



 

A4.D2.1 – Basic traceability model for run-time S&D 

Monitoring 

 

SERENITY - 027587 Version 1.0   Page 51 of 61 

 

 

 System Configuration: 

 UnifiesWithComponent  : 

Unification with the S&D Property P1 (note that → means unifies in this case):  

P1.A → C 

P1.B → D 

Unification with the S&D Property P2: 

P2[1].G → C 

P2[1].H → F 

P2[2].G → F 

P2[2].H → D 

(Note that there are two “instances” of P2 within the pattern – one concerns the communication link 

between C & F and the other concerns the link between F & D.) 

------------------------------------------------------------------------------------------------------------------------------- 

The decomposition of components C, F, and D are (where || represents parallel composition): 

C= C’ || E1 

F= F’ || D1 || E2 

D= D’ || D2  

 Monitoring:  

          Rule 1:  

 ∀ t1,t2:Time; 

  Happens(ev(id1,C,F,REQ-A,op1(encryptedC(p1)),F),t1,ℜ(t1,t1)) ∧ 

 Happens(ev(id2,F,D,REQ-B,op1(encryptedF(p1)),F),t2, ℜ(t1,t2)) ⇒                     

 HoldsAt(authorised(C,F,o1(encryptedC(p1))),t2) 

This rule checks whether C is authorised to invoke the operation op1(p1) in F. This rule is compulsory for 

P1 as we discuss in Section 7.6 below. 

 

          Rule 2:  

 ∀ t1,t2:Time; 

 Happens(ev(id3,F,Auth,REQ-B,checkAuth(C,F,op1(p1),res),F),t1,ℜ(t1,t1)) ⇒ 

 Happens(ev(id4,Auth,F,RES-B,checkAuth(C,F,op1(p1),res),F), 

 t2,ℜ(t1,t1+10)) 

If F sends a checkAuth message to Auth (to check if C is authorised for F), then Auth must reply within 10 

seconds. (This rule checks the availability of Auth based on events captured at F).  This rule is 

recommended for P1 as we discuss in Section 7.6 below. 
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The difference between compulsory and recommended monitoring rules is that if a compulsory rule 

is violated during runtime, then the S&D Property that it ensures is violated too. While, if a 

recommended rule is violated during runtime, the S&D Property that is refers to is not necessarily 

violated. Note that Assumption 1 is for enabling the monitoring of S&D Property P1 and P2.  

 

7.4. System S&D Configuration 

The System S&D Configuration describes the unification of abstract pattern components and 

parameters with system components and the interfaces of the abstract pattern parameters and 

components with the interfaces of system components. Once established, these unifications are 

represented by the traceability relations UnifiesWithComponent and UnifiesWithOperation, 

respectively.    

In the case of our example scenario and pattern, the unification of components and parameters for 

consist of the following relations: 

UnifiesWithComponent (C’,Doctor) 

UnifiesWithComponent(E1,Doctor) 

UnifiesWithComponent (D’,Patient) 

UnifiesWithComponent (D2, Patient) 

UnifiesWithComponent (F’,ERC) 

UnifiesWithComponent(D1,ERC) 

UnifiesWithComponent(E2,ERC) 

UnifiesWithComponent(Auth, ERC) 

UnifiesWithComponent(KeyCF, Public Key of ERC)
5
 

UnifiesWithComponent(KeyFB,Public, Key of Patient) 

 

                                                 
5
 Some parameters are components, while others are not. Keys, for instance, can be modelled as parameters in S&D 

patterns and, therefore, they should be unified to concrete artefacts. 

 

         Assumption 1 (for P1, P2):  

       ∀ t:Time; 

 Happens(ev(id9,Auth,F,RES-B,checkAuth(C,F,op1(p1),res),F),t,ℜ(t,t)) ∧  

 HoldsAt(equalTo(res,True), t) ⇒ 

 Initiates(ev(id9,Auth,F,RES-B,checkAuth(C,F,op1(p1),res),F),  

   authorised(C,F,o1(p1)), t) 

If Auth replies to F with the result of the check for authorisation and the result is true, then the value of 

fluent authorised(C,F,o1(p1)) is initiated. 
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Furthermore, 

(i) The unification of the interface of the component Doctor consists of the following 

relations: 

UnifiesWithOperation (encryptC(p1,KeyCF), encrypt(prescription,ERC_PublicKey)) 

UnifiesWithOperation(op1(encrypted(p1)), assignPrescription(encrypted(prescription))) 

 

(ii) The unification of the interface of the component Patient consists of the following 

relations: 

UnifiesWithOperation (decryptD(encrypted(p1)), decrypt(encrypted(prescription))) 

 

(iii) The unification of the interface of the component ERC consists of the following 

relations: 

UnifiesWithOperation (encryptF(p1,FB), encrypt(prescription, Patient_PublicKey)) 

UnifiesWithOperation (decryptF(encrypted(p1)), decrypt(encrypted(prescription))) 

UnifiesWithOperation(checkAuth(C,F,op1(p1)), 

checkAuth(Doctor,ERC,assignPrescription(prescription))) 

 

7.5. Traceability between S&D Properties and S&D Patterns 

The Provides relation between the S&D Pattern AuthAndConfidentiality and the S&D Properties P1 

and P2 is shown in Table 6. According to these relations AuthAndConfidentiality specifies a 

solution that achieves the properties P1 and P2 changes. Thus, if any of the definitions of these 

properties changes than AuthAndConfidentiality should be checked for conformance and vice versa. 

  

Provides Relations SelectedFor Relations 

S&D Pattern S&D Property S&D Pattern S&D Property 

AuthAndConfidentiality P1 AuthAndConfidentiality P1 

AuthAndConfidentiality P2 AuthAndConfidentiality P2 

Table 6 – Provides and SelectedFor relation between AuthAndConfidentiality and properties 

P1 and P2 

 

SelectedFor relations are also defined in S&D Configurations to indicate the S&D properties which 

an S&D pattern has been selected for. This relation in the case of the AuthAndConfidentiality S&D 

Pattern of our example is also shown in Table 6. According to this table, AuthAndConfidentiality 

was chosen for both the S&D properties P1 and P2 and hence the reference points to both of them.  
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7.6. Traceability between S&D Properties and Monitoring Rules  

As defined earlier, the Satisfies traceability relation is defined between S&D Properties and 

monitoring rules to show which property is ensured by the checking of each rule. In the 

AuthAndConfidentiality S&D Pattern, these traceability monitoring rules between monitoring rules 

and the S&D properties which are provided by the pattern are shown in Table 7.  

Properties: 

Rules: 

P1 P2 

Rule 1 Compulsory  

Rule 2 Recommended  

Table 7 – Satisfies relations between S&D Properties and monitoring rules 

As specified in this table, Rule 1 is compulsory for the property P1, since it ensures that no 

operation execution request that D receives from C through F has been forwarded to it, without F 

having checked the authorization rights of C first. Rule 2, on the other hand, has been only assigned 

to P1 as a recommended rule. This is because Rule 2 checks a bounded form of the availability of 

Auth (i.e. whether Auth responds to an authorization check request within 10 time units). In this 

case, whilst the absence of any response to an authorization check request from Auth would affect 

property P1, the absence of a response from Auth within the specific time period of 10 time units 

which is set by Rule 2 does not mean that Auth will not eventually respond. Thus, although Rule 2 

specifies a recommended check whose failure can indicate a possible future violation of P1, its 

violation does not mean that P1 has also been violated or that it will definitely be violated. 

7.7. Traceability between monitoring rules and events 

Contains traceability relations between monitoring rules/assumptions and events identify the events 

that are described in the rules/assumptions. The Contains relation for the rules and assumptions of 

the AuthAndConfidentiality S&D Pattern is illustrated in Table 8.  

  

Rule/Assumption Event 

Rule 1 ev(id1,C,F,REQ-A,op1(encryptedC(p1)),F) 

Rule 1 ev(id2,F,D,REQ-B,op1(encryptedF(p1)),F) 

Rule 2 ev(id3,F,Auth,REQ-B,checkAuth(C,F,op1(p1),res),F) 

Rule 2 ev(id4,Auth,F,RES-B,checkAuth(C,F,op1(p1),res),F) 

Assumption 1 ev(id9,Auth,F,RES-B,checkAuth(C,F,op1(p1),res),F) 

Table 8 – Contains relations between rules/assumptions and the events of 

AuthAndConfidentiality S&D Pattern 
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7.8. Traceability between events and Components/Parameters   

SourceOf traceability relations are defined between events and the components where these events 

will be captured from. In the case of the monitoring rule Rule 1 in our AuthAndConfidentiality 

pattern, both of the events which are referred to in the rule, i.e. ev(id1,C,F,REQ-

A,op1(encryptedC(p1)),F) and ev(id2,F,D,REQ-B,op1(encryptedF(p1)),F) are to be captured at the 

component F.  

Table 9 shows the SourceOf relations between all the monitoring rule/assumption events and the 

components/parameters of the AuthAndConfidentiality S&D Pattern. As indicated in this example 

events are not necessarily captured at the point where they were originally emitted. The event 

ev(id4,Auth,F,RES-B,checkAuth(C,F,op1(p1),res),F), for instance, is originally emitted from the 

component Auth in the pattern but is to be captured at the component F which is the component that 

receives the event. 

 

Auth C D F 

   ev(id1,C,F,REQ-A,op1(encryptedC(p1)),F) 

   ev(id2,F,D,REQ-B,op1(encryptedF(p1)),F) 

   ev(id3,F,Auth,REQ-B,checkAuth(C,F,op1(p1),res),F) 

   
ev(id4,Auth,F,RES-B,checkAuth(C,F,op1(p1),res),F) 

   
ev(id9,Auth,F,RES-B,checkAuth(C,F,op1(p1),res),F) 

Table 9 – SourceOf relation between events and components/parameters  

 

7.9. Traceability between Context and Monitoring Rules  

As defined earlier, the context of an S&D pattern is defined as the set of the pre-conditions and the 

invariants of the pattern and the CheckedBy relations that associate context with monitoring rules 

need to be defined between invariants and monitoring rules. In the case of the 

AuthAndConfidentiality S&D Pattern there are no invariants however. Thus, the CheckedBy 

traceability relation is not defined for this example. 

7.10. Traceability between Monitoring Rules 

In the case of the AuthAndConfidentiality S&D Pattern, a DependOn traceability relation exists only 

between Assumption 1 and Rule 1. This dependency is not explicit; it arises implicitly through the 

following dependencies:  

 DependsOn(Rule 1, axiom EC4) (EC4 is one of the event calculus axioms which are defined 

in Table 10) 

 DependsOn(axiom EC4, Assumption 1) 
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(EC1) Clipped(t1,f,t2) ⇐ (∃e,t)Happens(e,t,ℜ(t1,t2)) ∧ Terminates(e,f,t) 

(EC2) Declipped(t1,f,t2) ⇐ (∃e,t) Happens(e,t,ℜ(t1,t2)) ∧ Initiates(e,f,t) 

(EC3) HoldsAt(f,t) ⇐ InitiallyP(f) ∧ ¬Clipped(0,f,t) 

(EC4) HoldsAt(f,t2) ⇐ (∃e,t) Happens(e,t,ℜ(t1,t2)) ∧ Initiates(e,f,t) ∧ ¬Clipped(t,f,t2) 

(EC5) ¬HoldsAt(f,t2)⇐(∃e,t)Happens(e,t,ℜ(t1,t2))∧ Terminates(e,f,t) ∧ ¬Declipped(t,f,t2) 

(EC6) ¬HoldsAt(f,t) ⇐ InitiallyN(f) ∧ ¬Declipped(0,f,t) 

(EC7) HoldsAt(f,t2) ⇐ HoldsAt(f, t1) ∧ t1 < t2 ∧ ¬Clipped(t1,f,t2) 

(EC8) ¬HoldsAt(f,t2) ⇐ ¬HoldsAt(f, t1) ∧ (t1 < t2) ∧ ¬Declipped(t1,f,t2) 

(EC9) Happens(e,t,ℜ(t1,t2)) ⇒ (t1 ≤ t2) ∧ (t1 ≤ t) ∧ (t ≤ t2) 

Table 10 – Standard axiomatic definition of event calculus 

7.11. Traceability between Monitoring Rules and S&D 

Implementations  

As in this document we have not defined the complete solution for the AuthAndConfidentiality 

S&D Pattern including its S&D Implementation, executable implementations and S&D 

Configuration, it is not possible to illustrate how these elements will be used in traceability 

relations. However, what would happen in this case is that low-level events will be mapped to high-

level events according to a theory. This mapping can occur at three different places and each has 

advantages and disadvantages. Where this mapping is to occur is a design decision for the 

SERENITY framework. 

We assume that this mapping allows the SERENITY framework to be able to trace back (using the 

Mapped traceability relation) from a high-level event to a low-level event and vice versa.  

The Uses traceability between event collectors and S&D Implementations for the 

AuthAndConfidentiality S&D Pattern is illustrated in Table 11. This relation is described in the 

S&D Configuration. According to events given in the monitoring rules, event collectors will be 

placed at all of the components, i.e. at the ERC, at the Patient and at the Doctor. For the sake of the 

example, we assume that two executable implementations exist, one implemented in Java 

(JavaIMP) and one in C++ (C++IMP). Moreover, only the Java implementation is active.  

 

Event collector Implementations 

EC1 at Patient  JavaIMP 

EC2 at ERC JavaIMP 

EC3 at Doctor JavaImp 

Table 11 – The Uses traceability relation between event collectors and implementations. 

 

The CollectedBy traceability relation between event collectors and events describes the set of events 

that can be captured by an event collector. Table 12 illustrates the CollectedBy traceability relation 

for the AuthAndConfidentiality S&D Pattern.  
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Event 

collector 

Events 

EC2 ev(id1,C,F,REQ-

A,op1(encryptedC(p1)),F) 

EC2 ev(id2,F,D,REQ-

B,op1(encryptedF(p1)),F) 

EC2 ev(id3,F,Auth,REQ-

B,checkAuth(C,F,op1(p1),res),F) 

EC2 ev(id4,Auth,F,RES-

B,checkAuth(C,F,op1(p1),res),F) 

EC2 ev(id9,Auth,F,RES-

B,checkAuth(C,F,op1(p1),res),F) 

EC1  

EC3  

Table 12 – The CollectedBy traceability relation between event collectors and events 

 

7.12. Traceability between Monitoring Rules and S&D Configuration  

The UnifiesWithComponent and UnifiesWithOperation traceability relations between monitoring 

rules and S&D Configuration are defined by the unification of components/parameters and 

operations with the actual system components and operations/interface. 

The parameters that appear in the monitoring rules are unified with the actual system component 

using the UnifiesWithComponent traceability relation, as described in Section 5. 

The monitoring rules for the AuthAndConfidentiality S&D Pattern consist of events with the 

following IDs: id2, id4, id5, id8, id9. Two of these events occur at the component Auth (part of the 

ERC). For all the events that occur at parameters, we have to trace with UnifiesWithOperations 

their operations to the actual operations defined in the parameter interface that is found in the S&D 

Configuration. Table 13 illustrates the traceability between operations in events and operations in 

the parameter interface for the AuthAndConfidentiality S&D Pattern.  

 

Event Operation in parameter interface  

ev(id2, F, D, REQ-B, op1(encryptedF(p1)),F) assignPrescription(encrypted(prescription)) 

ev(id4,F, Auth, REQ-A, checkAuth(C,F,op1(p1),res),F) checkAuth(Doctor,ERC,assignPrescription(prescription)) 

Table 13 – The UnifiesWithOperation traceability relation between operations in high-level 

events and operations in parameter interface 
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8. Conclusion and Future Work 

In this document we have defined a number of horizontal and vertical traceability relations between 

the S&D modelling artefacts that support the representation of S&D Solutions, i.e. S&D Properties, 

S&D Patterns, S&D Implementations and S&D Configuration. These traceability relations are of 

importance for runtime monitoring and we have illustrated how they can be used for activating and 

deactivating monitoring rules, checking rules and for attaching and detaching event collectors. We 

propose that the S&D modelling artefacts be extended in order to represent these traceability 

relations. The S&D modelling artefacts that need to be extended are: S&D Patterns, S&D 

Configurations and S&D Implementations. Table 14 summarises the traceability relations that we 

have defined and indicates whether the relation requires the current S&D modelling artefacts to be 

extended.  

 

Name  Type  Definition Place of 

definition 

Extension 

required 

Provides Dependency Patterns → 2 
Properties

 

S&D Patterns No 

SelectedFor Rationalisation Patterns → 2 
Properties

 

S&D 

Configuration 

No* 

Satisfies Satisfaction Rules × 

{Compulsory, 

Recommended} × 

Properties 

S&D Patterns Yes 

Contains Dependency Rules × Events S&D Patterns No 

SourceOf Dependency Components × 

Events 

S&D Patterns No 

CheckedBy Generalisation Invariants → 2 
Rules

 S&D Patterns No 

(because it 

can be 

represented 

by the 

extension 

for 

Satisfies) 

DependsOn Dependency Rules → 

2
Rules∪Assumptions

 

S&D Patterns Yes 
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Mapped Evolution High-level events 

× Low-level events 

Extra theory in the 

S&D 

Implementation or 

implicitly in the 

executable of the 

S&D 

Implementation. 

No* 

Uses Dependency Implementations × 

Event Collectors 

S&D 

Implementation 

 No* 

CollectedBy Dependency Event → Event 

collector  ∪ {nil} 

S&D 

Implementation 

No* 

UnifiesWithComponent Satisfaction (Patterns × 

Parameters) → 

Components 

S&D 

Configuration 

No* 

UnifiesWithOperation Satisfaction (Patterns ×Abstract 

Operations) × 

Concrete 

Operations 

S&D 

Configuration 

No* 

Table 14 – Summary of traceability relations 

Note that “No*” in Table 14 means that the S&D modelling artefact has not yet been developed and 

hence the traceability relation can be assumed to be part of the representation language. Therefore, 

the embodiment of the traceability relation does not require an extension of an existing language 

representing the S&D modelling artefact. 

 

8.1. Summary of Required Extensions 

As shown in Table 14, certain traceability relations either require extensions to current S&D 

artefacts or require particular information to be included in artefacts which have not yet been fully 

developed, e.g., S&D Properties. In this section we will summarise these extra requirements by 

examining each artefact in turn. 

• S&D Properties: These need to be described in a language similar to S&D Patterns, 

providing (abstract) interfaces for the components which participate in the description of the 

relevant property. 

• S&D Patterns: These need to be extended with an internal configuration, which unifies 

the components of the provided properties with parameters/components of the pattern. This 

unification is needed both for the static verification of the properties, as well as, by the run-

time monitoring of the assumptions and rules expressed in the S&D Properties that the S&D 

Pattern is providing. For the same reasons, the S&D Property operations must be unified as 

well to the operations used in the S&D Pattern. 
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S&D Patterns also need to include information for the Satisfies relation, i.e., which S&D 

Properties are satisfied by which rules and whether the latter are compulsory or 

recommended for each S&D Property. 

The description of the components/parameters may need to be extended to include the 

component’s realm, so as to help in the analysis of the S&D Pattern. Another possibility 

would be to allow composite components like C, which is the parallel composition of C’ 

and E1 in the S&D Pattern of Section 7.3, and assuming that a composite component also 

represents a particular realm. We consider this assumption a bit weak, since the two notions 

– realm and composition – are not the same, so overloading composition would probably 

cause confusion later on. We most probably need to support both. 

Finally, we believe that it would be greatly beneficial if S&D Patterns would include an 

architectural description of the system, i.e., how the different components/parameters are 

connected, through what connectors, etc. 

• S&D Implementations: These must include information for the Mapped relation, if the 

mapping of low-level to high-level events is to be performed by the monitor engine, as well 

as information for the Uses and CollectedBy relations. 

• S&D Configuration: Probably the most important extension is the requirement for 

introducing local configurations in the S&D Patterns (see corresponding item above) for 

unifying the S&D Pattern artefacts with those of the S&D Properties it provides. 

Along with this change, S&D Configurations need to include information for the 

SelectedFor relation, which is used to document the intent of the system designer and to 

make possible the selection of the run-time rules, and for the UnifiesWithComponent and 

UnifiesWithOperation relations, which are used to instantiate the S&D Pattern parameters 

to exact artefacts of the final system. 

 

Since the language for describing the S&D modelling artefacts is still under development we expect 

that changes will need to be introduced to the traceability relations discussed in this deliverable, 

once the language is finalised. Moreover, with increased experience of applying these traceability 

relations, we might find that some changes are required, that further traceability relations must be 

defined or that certain relations/relation information are not really needed, e.g., because they are 

encoded implicitly otherwise or because the goal for which they have been introduced can be 

reached through other mechanisms. Finally, we still need to investigate the traceability relations 

between the S&D modelling artefacts described in this deliverable with the S&D Integration 

Schemes. All these will be investigated and discussed in the next traceability deliverable. 

 



 

A4.D2.1 – Basic traceability model for run-time S&D 

Monitoring 

 

SERENITY - 027587 Version 1.0   Page 61 of 61 

 

References 

[1] Kloukinas C., Spanoudakis G., Ballas C., Presenza, D. (2006) A4.D2.2 - Basic set of Information 

Collection Mechanisms for Run-Time S&D Monitoring 

[2] Lindval M., Sandahl K., (1996) Practical Implications of Traceability, Software Practice and 

Experience, vol. 26, no. 10, pp 1161-1180 

[3] Mahbub K., Spanoudakis G. (2004) A Framework for Requirements Monitoring of Service Based 

Systems , 2nd International Conference on Service Oriented Computing, New York. . Also available 

from http://www.soi.city.ac.uk/~gespan/icsoc04.pdf 

[4] Mana A., Munoz A., Sanchez F., Serrano D. (2006) A5.D2.1 – Patterns and Integration Schemes 

Languages (First Version)  

[5] Shanahan M. P. (1999) The Event Calculus Explained, in Artificial Intelligence Today, ed. 

M.J.Wooldridge and M.Veloso, Springer Lecture Notes in Artificial Intelligence no. 1600, ), pages 

409-430, Springer. Also available from http://www.doc.ic.ac.uk/~mpsha/ECExplained.pdf 

[6] Spanoudakis G. Mahbub K, (2006) Non Intrusive Monitoring of Service Based Systems , International 

Journal of Cooperative Information Systems, Vol. 15, No. 3, 325-358. Also available from 

http://www.soi.city.ac.uk/~gespan/ijcis06.pdf 

[7] Spanoudakis G., Zisman A., (2005) Software Traceability: A Roadmap, in "Handbook of Software 

Engineering and Knowledge Engineering - Vol. 3 Recent Advances", Shi-Kuo Chang (ed.), p. 395-

428, World Scientific Publishing Co., ISBN 981-256-273-7. 

[8] Campadello S., Compagna L., Gidoin D., Giorgini P., Holtmanns S., Latanicki J., Meduri V., 

Pazzaglia J-C., Seguran M., Thomas R., Zanone N., (2006) A7.D2.1 – S&D Requirements 

specifiation. 

[9] Melton R. and Garlan D. (1997) Architectural Unification, in “CASCON '97: Proceedings of the 1997 

conference of the Centre for Advanced Studies on Collaborative research”, p. 18, Toronto, Ontario, 

Canada, IBM Press. Also available from http://citeseer.ist.psu.edu/melton97architectural.html 

[10] Spanoudakis G., Kloukinas C., Androutsopoulos K. (2007), Towards Security Monitoring Patterns, 

Proceedings of the 22
nd

  Annual ACM Symposium on Applied Computing, Technical Track on 

Software Verification (to appear) 

[11] Mahbub K. (2007), Requirements Monitoring of Service Based Systems, PhD Dissertation, 

Department of Computing, City University. 

 

 


