

A4.D2.1 – Basic traceability model for run-time S&D
monitoring

K. Androutsopoulos, C. Kloukinas, G. Spanoudakis

Document Number A4.D2.1

Document Title Basic traceability model for run-time S&D monitoring

Version 1.0

Status Final

Work Package WP 4.2

Deliverable Type Report

Contractual Date of Delivery 30 November 2006

Actual Date of Delivery 20 December 2006

Responsible Unit CUL

Contributors K. Androutsopoulos (CUL), C. Kloukinas (CUL), G.
Spanoudakis (CUL)

Keyword List Traceability, S&D monitoring

Dissemination level PU

A4.D2.1 – Basic traceability model for run-time S&D

Monitoring

SERENITY - 027587 Version 1.0 Page 2� of 61�

Change History

Version Date Status Author (Unit) Description

0.1 Draft Christos Kloukinas Table of contents, indicative

section contents

0.2 20/11/2006 Draft Kelly Androutsopoulos Contribution to all chapters.

0.3 24/11/2006 Draft Christos Kloukinas Feedback and made corrections

on all chapters.

0.4 28/11/2006 Draft George Spanoudakis Feedback on all chapters.

0.5 8/12/2006 Draft Kelly Androutsopoulos Made changes to all chapters

0.6-0.9 16/12/2006 Drafts Christos Kloukinas,

George Spanoudakis

Editing, formalisation of

example properties

1.0 21/12/2006 Final

submission

to

consortium

Christos Kloukinas Deliverable submitted for

quality review

A4.D2.1 – Basic traceability model for run-time S&D

Monitoring

SERENITY - 027587 Version 1.0 Page 3� of 61�

Executive Summary

In this document we investigate and define traceability relations between the S&D modelling

artefacts (described in A5.D2.1) that support the representation of S&D Solutions, i.e. S&D

Properties, S&D Patterns, S&D Implementations, and S&D Configuration. We do not consider

S&D classes as they are abstractions of a set of S&D Patterns and/or Integration Schemes and are

mainly used by the SERENITY development tools. Our viewpoint is strongly oriented towards

traceability relations which can be of use for runtime monitoring. We illustrate the usefulness of

these traceability relations with respect to monitoring by applying them to an example (a solution

described as an S&D Pattern for part of the smart items scenario). The document assumes that

readers are familiar with the initial draft of the S&D Patterns specification schema that has been

described in the A5.D2.1 deliverable of the project, including the EC-Assertion language, i.e. the

formal language for specifying monitoring rules and assumptions within patterns.

A4.D2.1 – Basic traceability model for run-time S&D

Monitoring

SERENITY - 027587 Version 1.0 Page 4� of 61�

Table of Contents

Change History ..2

Executive Summary ...3

Table of Contents ...4

1. Introduction...6

1.1. Glossary...9

2. Traceability between Monitoring Rules and S&D Properties ..12

2.1. Traceability between S&D Properties and S&D Patterns ...13

2.2. Traceability between Monitoring Rules and S&D Properties..16

3. Traceability between Monitoring Rules and other elements in S&D Patterns18

3.1. Traceability between Monitoring Rules and Events ...18

3.2. Traceability between Events and Components/Parameters...19

3.3. Traceability between Context and Monitoring Rules..22

3.4. Traceability between Monitoring Rules ..23

4. Traceability between Monitoring Rules and S&D Implementations ...27

4.1. Mapping of low-level events-to-high-level events..27

4.2. Traceability between event collectors and S&D Implementations31

4.3. Traceability relation between events and event collectors..32

5. Traceability between Monitoring Rules and S&D Configuration..34

6. Use of Traceability Relations at Runtime...37

6.1. Activation of monitoring rules ..37

6.2. Attaching event collectors to system components ..38

6.3. Checking of monitoring rules..39

6.4. Deactivation of monitoring rules...40

6.5. Detaching event collectors from system components ...40

7. Example ..41

7.1. Smart Items scenario – A Solution..41

7.2. S&D Properties..45

7.3. S&D Pattern ..48

7.4. System S&D Configuration...52

7.5. Traceability between S&D Properties and S&D Patterns ...53

7.6. Traceability between S&D Properties and Monitoring Rules...54

A4.D2.1 – Basic traceability model for run-time S&D

Monitoring

SERENITY - 027587 Version 1.0 Page 5� of 61�

7.7. Traceability between monitoring rules and events..54

7.8. Traceability between events and Components/Parameters ...55

7.9. Traceability between Context and Monitoring Rules..55

7.10. Traceability between Monitoring Rules ..55

7.11. Traceability between Monitoring Rules and S&D Implementations56

7.12. Traceability between Monitoring Rules and S&D Configuration...................................57

8. Conclusion and Future Work..58

8.1. Summary of Required Extensions...59

References ..61

A4.D2.1 – Basic traceability model for run-time S&D

Monitoring

SERENITY - 027587 Version 1.0 Page 6 of 61

1. Introduction

In this document, we define and discuss traceability relations between the S&D modelling artefacts

of SERENITY that support the representation of S&D Solutions, i.e. S&D Properties, S&D

Patterns, S&D Implementations and S&D Configuration (described in A5.D2.1). These traceability

relations complement the security and dependability modelling of systems in ways which are

necessary to support the runtime S&D monitoring of such systems. Thus, our viewpoint is strongly

oriented towards traceability relations which can be of use for run-time monitoring and is not

concerned with other traceability relations which, although might be of help to other stages of the

specification of systems and S&D solutions for them (e.g., at design time) are not relevant to

monitoring. The usefulness of the traceability relations that we introduce in this report with respect

to monitoring is illustrated through examples.

It should be noted that the traceability relations that we discuss in this report are inevitably

preliminary, since some of these relations should exist between artefacts which are either not yet

fully defined in the project (e.g., S&D Properties) or which may be revised and/or refined in

subsequent phases of the project (e.g., S&D Patterns). In some cases, we refer to particular aspects

which we believe should be supported by the specifications of different artefacts for traceability. To

this end, we propose some extensions of the languages used to describe S&D Solutions, notably the

S&D Pattern language and the S&D Property language. Some of these aspects refer to parts of these

languages which have not yet been defined yet. In such cases our discussion points out what we

believe should be included in the languages in order to support runtime S&D monitoring.

It should also be noted that in this report we do not consider S&D classes. This is because S&D

classes are abstractions of a set of S&D Patterns and/or Integration Schemes and are mainly used by

the SERENITY development tools, not the SERENITY monitors. Also, we do not consider

traceability relations for S&D Integration Schemes. These relations will be considered in the next

deliverable on traceability (i.e. A4.D2.3).

Our discussion of traceability assumes the definition of software traceability provided by

Spanoudakis & Zisman in [7]:

“Software traceability – that is the ability to relate artefacts created during the development of a

software system to describe the system from different perspectives and levels of abstraction with

each other, the stakeholders that have contributed to the creation of the artefacts, and the rationale

that explains the form of the artefacts”.

Figure 1 illustrates the type of traceability relations between the basic modelling artefacts that

support the representation of S&D Solutions. The figure distinguishes these relations according to

the two types of traceability relations which have been defined in [2], namely:

 Vertical relations: traceability relations defined between elements in the same model.

 Horizontal relations: traceability relations defined between elements belonging to different

models.

Figure 2 illustrates the relations with respect to monitoring rules between the basic modelling

artefacts in the SERENITY framework that we need to investigate for traceability. We discuss the

traceability relations with respect to monitoring rules as these, together with events, are the key

elements for monitoring and run-time support for security and dependability.

A4.D2.1 – Basic traceability model for run-time S&D

Monitoring

SERENITY - 027587 Version 1.0 Page 7 of 61

The traceability relations between the modelling artefacts which appear in Figures 1 and 2 are

discussed in more detail in Chapters 2-5. In each of these chapters, we identify which artefacts or

parts in them are being traced, the cardinality (or granularity) of the traceability relation, and how

tracing is performed during all aspects of the lifecycle of S&D Solutions which, as defined in [4],

include:

 The creation of new solutions and their description as S&D Patterns, each one fulfilling a

number of S&D Properties.

 The implementation of the S&D Patterns and their descriptions as S&D Implementations.

 The SERENITY framework supports the development process of applications (or systems),

by helping developers to select and adopt the most appropriate S&D Patterns for their

requirements.

 The SERENITY framework supports the dynamic selection of S&D Implementations

according to the requirements and context conditions, and provides a mechanism for

monitoring the correctness of the execution of these implementations.

S&D Patterns

Horizontal

S&D Properties

Horizontal

Vertical

S&D Implementations

Horizontal

Vertical

S&D Configuration

Figure 1 – Relations between the basic modelling artefacts

A4.D2.1 – Basic traceability model for run-time S&D

Monitoring

SERENITY - 027587 Version 1.0 Page 8 of 61

S&D Property

Events

S&D

Configuration

S&D Implementation

Event Collectors

S&D Pattern

Monitoring

Rules

Components

Parameters

Context

(preconditions and

invariants)

Interface Definition

*

*

*

* *

*

*

*

*
*

*

*

Figure 2 –Traceability relations between monitoring rules and other modelling artefacts

Moreover, we classify traceability relations (where possible) according to the classification scheme

that is defined in [7] which identifies the following types of relations:

 Dependency: “Element e1 depends on element e2, if the existence of e1 relies on the

existence of e2, or if changes in e2 have to be reflected in e1.” [7]

 Generalisation/refinement: This type of relations are used to identify how complex system

elements can be broken down, how they can be combined to form other elements, and how

they can be refined.

 Evolution: This type of relation is defined as: “Element e1 evolves_to an element e2, if e1

has been replaced by e2 during the development, maintenance or evolution of the

system.”[7]

 Satisfaction: “Element e1 satisfies an element e2, if e1 meets the expectations, needs and

desires of e2 or e1 complies with a condition represented by e2.” [7]

 Overlap: “Element e1 overlaps with an element e2, if e1 and e2 refer to common features of

a system or its domain.” [7]

 Conflicting: This type of relations convey the case when two elements e1 and e2 are in

conflict with each other, for example, two conflicting events.

 Rationalisation: These types of relations are used to “represent and maintain the rationale

behind the creation and evolution of elements and the decisions about the system at different

levels of detail.” [7]

 Contribution: These relations describe the associations between software artefacts and the

stakeholders that have contributed to their construction.

A4.D2.1 – Basic traceability model for run-time S&D

Monitoring

SERENITY - 027587 Version 1.0 Page 9 of 61

Except for the contribution relation, all of the other traceability relations describe associations

between different software artefacts, such as specifications, software analysis, design, test models

and code.

Finally, the definition of each traceability relation that we give in the following is structured

according to the following aspects that need to be defined for each relation:

 Type: The type of traceability relation is given, for example, dependency.

 Definition: A definition of the traceability relation is given.

 Attributes: Any attributes will be described, such as, for example, how the artefacts will be

obtained.

 Cardinality: The cardinality between the artefacts that are correlated in the traceability

relation, for example, one A to many Bs, if A and B are the artefacts being correlated.

 Constraints: Definition of constraints on traceability relations that can be checked if

necessary. For example, if there is a dependency traceability relation between A and B, then

there cannot be a traceability relation of type satisfaction between A and B.

 Directionality: The direction of the traceability relation is given.

 Place of definition: The place where these traceability relations will be defined, for

example, they could be defined in an extension of the S&D Pattern language.

Before discussing the traceability relations which are necessary for S&D monitoring in more

detailed, however, we give a summary of the definitions of the various artefacts that we will be

referring to and their features in the form of a glossary. This glossary is necessary for making this

document self-contained and allowing the reader to follow it without a need to refer to other project

deliverables that discuss the relevant artefacts in more detailed.

1.1. Glossary

The S&D modelling artefacts which are related to traceability are:

 System: A system is a software system that may have been either constructed using the

SERENITY framework or that dynamically chooses patterns which are described in the

SERENITY framework at runtime.

 S&D Properties: “An S&D Property is a quality of a system that enhances its security or

dependability in some way” [4]. The S&D Requirements of a system describe a need for

which properties should hold on a system or part of it. Therefore, an S&D Property must

contain a (sub) system description i.e. a description of its architecture and the abstract

interfaces of its components. Even though the language for describing S&D Properties has

not yet been defined, we believe that it will resemble the one currently developed for S&D

Patterns, to allow those who specify S&D Properties to describe the systems which have

these properties. We consider the idea of S&D Properties (and indeed S&D Patterns) to be

similar to the idea of “architectural fragments” in [9], where components which have not

been fully specified are used as architectural “placeholders”.

 S&D Patterns: These describe self-contained S&D Solutions in an abstract way. S&D

Solutions define mechanisms for realising the S&D Requirements and provide one or more

A4.D2.1 – Basic traceability model for run-time S&D

Monitoring

SERENITY - 027587 Version 1.0 Page 10 of 61

S&D Properties. S&D Patterns describe monitoring rules, preconditions (that must be true in

order to apply the pattern), a solution description, any parameters, a reference to S&D

Properties and an interface definition. S&D Integration Schemes are special types of S&D

Patterns that are used to represent ways of combining other S&D Patterns. We do not

discuss these in this report.

 S&D Implementations: These implement the solutions described by the S&D Patterns. For

example, the S&D Pattern for a fair exchange protocol can be implemented in Java, or in

C++. Each of these implementations is a separate S&D Implementation of the relevant S&D

Pattern. All S&D Implementations of an S&D Pattern must conform directly to the

monitoring capabilities, interfaces and all other characteristics described in the S&D Pattern.

S&D Implementations are also responsible for observing and capturing the (high level)

events that appear in the definition of the monitoring rules described in the S&D Pattern.

They use event collection mechanisms to catch the different events as they occur at run-time

and these are broadcast to the monitor. Therefore, S&D Implementations consist not only of

executable code implementing an S&D Pattern, but also of a specific set of event collectors

for observing and emitting the events of interest.

 Executable Implementation: The executable implementation consists of the code for a

particular S&D Implementation, and also the code for the event collectors required for

monitoring this particular S&D Implementation.

 S&D Configuration: The S&D Configuration should instantiate the system components

(environment/parameters of an S&D Pattern) and their interfaces. Monitoring rules use this

information to check the interactions.

 Event Collectors: These are mechanisms for capturing events from the system or particular

components in a system at runtime.

 Events: An event is either an operation call or response, or a communication of data (e.g.

signals) which occurs during runtime. Events are distinguished into high-level events that

are used in the monitoring rules of S&D Patterns and low-level events that are obtained from

the event collectors of &D Implementations. The main difference between high- and low-

level events is that many low-level events can be mapped to one high-level event. For

example, a high-level event of reading a file (read_file(agent, filename)) may be mapped

(and constructed) onto a sequence of three low-level POSIX events: fp = open(pid,

filename), read(fp), and close(fp). Both high level and low level events are described using

the same XML schema; indeed, low-level information present in the low-level events (e.g.,

pid, IP addresses of machines, etc.) is fused into the description of the high-level events.

Elements used to describe an S&D Pattern:

 ComponentDescription: The components that are referred to in an S&D Pattern are the

components that are used by the solution described in the pattern and express the

specification of the S&D Implementation components which are needed to provide the

particular solution at run-time [4]. These components are therefore a subset of all the

components that make up the architecture of the system that deploys the solution and are

introduced specifically for fulfilling S&D Properties. For monitoring, components that

constitute the environment (i.e. all the components in the system architecture which are

making use of some S&D Pattern and are abstractly described in these as parameters – see

A4.D2.1 – Basic traceability model for run-time S&D

Monitoring

SERENITY - 027587 Version 1.0 Page 11 of 61

below) should also be identified and described somewhere which is accessible from the

S&D Pattern.

 Parameters: Parameters are given in order to provide some additional information about the

system, i.e. description of the environment components, or constraints on existing

components. They are used to make a solution more generic. The S&D Pattern language

should provide detailed information about system components that are described as

parameters, including their interface definition, which are required for monitoring.

 Interface Definition: Interface definitions describe the interface of an S&D Pattern, i.e. the

interface of the components described in the pattern. However, for monitoring it might also

be necessary to extend the notion of interface definitions in order to include definitions of

the interfaces of pattern parameters as well. This is because calls and responses of the

operations of these parameters may need to be monitored at run-time.

 Monitoring Rules: Monitoring rules are event calculus (EC) formulas that need to be

checked at runtime. EC formulas are composed of (high-level) events and fluents.

Monitoring rules can be either compulsory or recommended. Compulsory rules cannot be

deactivated when an S&D Pattern is active, while recommended rules can be deactivated.

 Context: Context is described in S&D Patterns and consists of: a set of preconditions and a

set of invariants. Preconditions are conditions regarding the applicability of an S&D pattern

that must be true before a S&D Pattern can be selected. There are two types of

preconditions: (i) preconditions that apply to the parameters of a pattern and (ii)

preconditions that apply to the solution of a pattern. Invariants are conditions which must

always be true, i.e. before the selection of the S&D Pattern and during the execution of the

S&D Implementation that implements the S&D Pattern. Invariants have not been described

as part of the language in A5.D2.1 [4].

 Solution description: This is a specification of the behaviour provided by the S&D Pattern

including the behaviour of the components of the pattern. Although it is not currently, clear

on whether a solution description is currently part of the first version of the S&D Pattern

language, from a monitoring perspective this description should be given since deviations

from the behaviour described in it which will need to be monitored at run-time.

A4.D2.1 – Basic traceability model for run-time S&D

Monitoring

SERENITY - 027587 Version 1.0 Page 12 of 61

2. Traceability between Monitoring Rules and S&D

Properties

In this section we investigate the horizontal traceability relations between Monitoring Rules, S&D

Properties and S&D Patterns. We require traceability in order to be able to determine which S&D

Property is no longer true, when particular monitoring rule(s) are violated. Also, traceability can

provide an explanation as to why a particular S&D Pattern was chosen, i.e. to satisfy particular

S&D Properties.

The traceability relations are described at two levels of granularity. The traceability relation with a

higher level of granularity is defined between S&D Properties and S&D Patterns. An S&D Pattern

provides one or more S&D Properties. Moreover, each S&D Property can have many S&D

Solutions defined by different S&D Patterns. It would be useful to be able to trace the S&D

Properties that an S&D Pattern provides a solution for in order to have an explanation as to why a

particular pattern was chosen.

A traceability relation with a finer level of granularity is defined between S&D Properties and

monitoring rules. Each S&D Property has a set of monitoring rules that need to be checked. Some

of these rules are compulsory and other are recommended. It would be beneficial if the SERENITY

framework could automatically determine which S&D property failed as a result of a monitoring

rule(s) being violated, for diagnosis and recovery actions. As such, a relation among the rules and

the properties will need to be established.

S&D Pattern: A

Provided Properties Ref:

P1 and P2

Monitoring Rules for P1

Monitoring Rules for P2

S&D Pattern: B

Provided Properties Ref:

P1, P3 and P4

Monitoring Rules for P1

Monitoring Rules for P3

Monitoring Rules for P4

S&D Property: P3

Traceability relation (directed)

S&D Property: P1

Figure 3 – Example of use of traceability between S&D Properties and S&D Patterns

A4.D2.1 – Basic traceability model for run-time S&D

Monitoring

SERENITY - 027587 Version 1.0 Page 13 of 61

Let us consider an example. Figure 3 illustrates two S&D Patterns, A and B, that are chosen by the

designer of an application App1 because they provide the S&D Properties P1 and P3, respectively.

These S&D Patterns also provide some additional properties which the designer is not interested in.

More specifically, the S&D Pattern A provides a solution for property P2 as well, and the S&D

Pattern B provides a solution for properties P1 and P4 as well. Note that property P1 for S&D

Pattern A and B is the same; however, the designer has chosen the solution provided for this

property by the S&D Pattern A for some reason (e.g., its lower cost). By defining the traceability

relation with the higher level of granularity between the S&D Properties and S&D Patterns, the

SERENITY framework would be able to give an explanation as to why S&D Pattern A and B were

used by App1, i.e. because S&D Pattern A provides a solution for S&D Property P1 and S&D

Pattern B provides a solution for S&D Pattern P3. Note that an explanation cannot be provided as to

why S&D Pattern A was chosen over S&D Pattern B for providing a solution for P1, unless it has

been defined explicitly (e.g. as a string in natural language) by the developer. By defining the

traceability relation with the finer level of granularity between the S&D Properties and monitoring

rules, if a monitoring rule was violated, e.g. any of the monitoring rules for P3, the SERENITY

framework could determine which S&D Property no longer holds, e.g. S&D Property P3. Also, if

an S&D Pattern is chosen because of a particular S&D Property (we know because of the

traceability relation with higher level of granularity), then all the recommended monitoring rules of

other S&D properties can be deactivated by the framework. For example, in the S&D Pattern B,

any recommended monitoring rules for P1 and P4 can be deactivated, which consequently improves

the efficiency of the monitoring service because fewer rules will need to be checked.

The traceability relations between:

(i) S&D Properties and S&D Patterns, and

(ii) Monitoring Rules and S&D Properties

are investigated in more detail in the following and for each of these we discuss how the tracing is

performed during all aspects of the lifecycle of S&D Solutions.

2.1. Traceability between S&D Properties and S&D Patterns

S&D patterns in SERENITY are assumed to be specified in order to represent solutions that

deliver/realise certain S&D properties. To capture this relation we introduce a traceability relation,

called “provides” between patterns and properties which is defined as follows:

Definition of Provides Relation

Name: Provides

Type: Dependency

Definition
(1)

: Patterns → 2
Properties

1
 “2

Properties
” signifies the powerset of the set of S&D properties which are know in an instantiation of the SERENITY

framework.

A4.D2.1 – Basic traceability model for run-time S&D

Monitoring

SERENITY - 027587 Version 1.0 Page 14 of 61

Attributes: N/A

Cardinality: One S&D Pattern to many S&D Properties

Constraints: N/A

Directionality: From Patterns to Properties

Place of definition: Traceability is defined by a reference in the S&D Pattern (under an XML

element called Provided Property) to one or more Properties.

The Provides traceability relation means that a specific pattern realises a specific S&D property.

Relations of this type should be defined during the creation of new solutions as S&D Patterns. In

other words, the S&D Pattern is defined as offering one or more S&D Properties and a reference to

these properties is explicitly defined in the S&D Pattern description under the XML clause

Provided Properties. Therefore, the SERENITY framework is able to determine which S&D

Patterns have been defined for which S&D Properties, which is useful during the development

process of an application, as it helps the developers to select the most appropriate patterns for their

requirements.

The Provides traceability relation between an S&D Pattern and S&D Properties is that of

dependency, because an S&D Pattern relies on the existence of a specific S&D Property and if the

S&D Property changes (e.g. because an error has been discovered in its description or because of

changing legal requirements), these changes have to be reflected in the S&D Pattern. Because of

this dependency, any changes in an S&D Property, must also be reflected in the monitoring rules as

well (fine-grain traceability). For example, if an S&D Property specifies that a resource should be

available in a any time range of 10 seconds, then the monitoring rule will check that the resource is

available (e.g. can respond) in consecutive time intervals of 10 seconds. If the time value within

which the resource should be available is changed in the S&D Property (e.g. 20 seconds), then the

monitoring rule must be modified as well in order to check the new time value. As noted earlier,

these changes can occur when legal requirements or standards change.

We have mentioned that each S&D Pattern has an explicit reference to the S&D Properties that it

provides a solution for. However, by following this reference we are not always able to identify

why the developers chose a particular S&D Pattern, as illustrated in the example of Figure 3.

Therefore, for traceability between S&D Patterns and S&D Properties, the explicit reference to

properties that is encoded through the Provides relation is not sufficient.

To represent the reason why an S&D Pattern has been selected in a specific case, we need to

establish a second type of traceability relation between patterns and properties. This relation is

called “SelectedFor” and is defined as shown below.

A4.D2.1 – Basic traceability model for run-time S&D

Monitoring

SERENITY - 027587 Version 1.0 Page 15 of 61

Definition of SelectedFor Relation

Name: SelectedFor

Type: Rationalisation

Definition: Patterns → 2
Properties

Attributes: Explanation of intent (e.g. in text)

Cardinality: One S&D Pattern to many Properties

Constraints: The properties must be a subset of the properties provided by the

pattern.

Directionality: From S&D Patterns to Properties

Place of definition: In the S&D Configuration - When a Pattern is selected, a traceability

relation is defined that links it to some of its Properties, thus indicating

the intent of the selection.

SelectedFor traceability relations are established, when an S&D Pattern is selected, and provide the

link between the S&D Pattern and the S&D Property that the pattern realises in a specific

application. Thus, SelectedFor relations are a kind of rationalisation relations. In the case of the

example described in Figure 3, the SelectedFor relations for App1 are those illustrated in Table 1.

S&D Pattern S&D Property

A P1

B P3

 Table 1 – SelectedFor relations for App1 of the example of Figure 3

SelectedFor relations can be located in S&D Configurations by providing an association between an

S&D pattern and the S&D Property that the pattern was chosen for. Such relations will be

directional from the pattern to the S&D Property and will be updated dynamically when changes in

the selected patterns of specific applications occur. Alternatively, a table, similar to Table 1, could

be constructed for each application and kept up-to-date during the development process or during

dynamic selection of S&D Patterns at run-time by the SERENITY framework. Thus, when

SelectedFor relations are required by the Serenity Framework, such tables can be looked-up to

establish the reason as to why a particular S&D Pattern was chosen.

A4.D2.1 – Basic traceability model for run-time S&D

Monitoring

SERENITY - 027587 Version 1.0 Page 16 of 61

2.2. Traceability between Monitoring Rules and S&D Properties

Fine grain traceability relations should also be established between the monitoring rules of a

specific pattern and the S&D properties realised by the pattern in order to indicate which of these

rules is necessary to be checked for the property to be satisfied. We call relations of this type as

“Satisfies” relations and we define them as shown below.

Definition of Satisfies Relation

Name: Satisfies

Type: Satisfaction

Definition: Satisfies ⊆ Rules × { Compulsory, Recommended } × Properties

Attributes: { Compulsory, Recommended }

Cardinality: Many Rules to Many Properties

Constraints: (i) ∀r ∈ Rules, ∃ p ∈ Properties, ∃ a ∈ Attributes . (r, a, p) ∈ Satisfies

(ii) ∀r ∈ Rules, ∀ p ∈ Properties, ∀ a, a’ ∈ Attributes . (r, a, p) ∈

Satisfies ∧ (r, a’, p) ∈ Satisfies’ ⇒ a = a’

Directionality: Bidirectional

Place of definition: In the S&D Patterns - This traceability relation is defined by the

additional XML elements required in the S&D Pattern language for

monitoring rules. Monitoring rules must be distinguished into compulsory

and recommended and also must refer to the S&D Property that it

ensures.

The main reason for defining Satisfies relations is to enable the SERENITY framework to

automatically determine which monitoring rules should be checked and which rules can be

deactivated at runtime.

In the case of the example described in Figure 3, for instance, if the S&D Pattern A is chosen

because the S&D Property P1 is required, then only the monitoring rules (both compulsory and

recommended rules, unless the user has explicitly deactivated the recommended rules) for P1

should be checked. The monitoring rules for P2, on the other hand, can be deactivated by the

framework, hence reducing the number of rules to be monitored and improving the efficiency of

execution of rule checks. Note, however, that if there are other rules which depend on the active

rules for P2, then these rules will have to be checked by the monitor (i.e. activated) as well, even

though they might not provide the S&D Properties that the pattern was chosen for.

Satisfies traceability relations must be defined during the creation of S&D Patterns. More

specifically, for each S&D Property that is provided by an S&D pattern, a set of monitoring rules

may be defined and each of the rules in this set must be classified as either recommended or

A4.D2.1 – Basic traceability model for run-time S&D

Monitoring

SERENITY - 027587 Version 1.0 Page 17 of 61

compulsory. Satisfies traceability relations can be defined in the S&D Pattern with the addition of

XML elements under the “Monitoring Rules” clause, which also has a reference to the S&D

Property that it ensures. Alternatively, they can be described in a table that is accessible by the

SERENITY framework via the S&D Pattern. The definition of Satisfies relations above includes

also two constraints. The first of these constraints states that each rule in an S&D pattern must be

associated to some property either as compulsory or recommended rule. The second constraint

states that if a monitoring rule is associated with a property as a recommended or compulsory rule

by a Satisfies relation then there cannot be another Satisfies relation between the same rule and

property that is of a different type. Note that there can still be properties which are not associated

with any rules via a Satisfies relation (e.g., because they are too expensive, impossible or not

necessary to monitor).

Table 2 describes in a tabular form an example of possible monitoring rules assigned to S&D

properties and their division into compulsory or recommended. For example, as shown in the table,

Rule 1 is compulsory for property Pm and Rule 2 is recommended for properties P1 and P2. Note

that in cases where the S&D Pattern with the rules described in Table 2 is chosen for providing

property Pm, then Rule 1 and Rule N will be activated by default. Recommended rules, however,

may be deactivated upon a request from an authorised user of the framework. Note also that if there

are rules that depend on Rule 1 or Rule N which are activated by default, then these rules will also

be activated, as they are also required as a building block for offering the property Pm.

 Properties:

Rules:

P1 P2 … Pm

Rule 1 Compulsory

Rule 2 Recommended Recommended

…

Rule N Recommended Recommended

Table 2 – Satisfies relation: an example of compulsory and recommended rules.

It should be noted that Satisfies traceability relations are also beneficial when a monitoring rule gets

violated. In this case, relations of this type can be used for determining the S&D Properties that are

no longer true for that S&D Pattern. For example, if Rule 1 in Table 2 has been violated, then Pm is

no longer true for the S&D Pattern. If a recommended monitoring rule, such as Rule 2 in Table 2,

however has been violated, then it is not necessarily true that the S&D Properties which the rule

refers to (via a Satisfies relation), i.e. P1 or P2, are not true. This is because by virtue of our

definition only a failure of a compulsory rule will lead to the failure of the S&D Property it refers

to.

A4.D2.1 – Basic traceability model for run-time S&D

Monitoring

SERENITY - 027587 Version 1.0 Page 18 of 61

3. Traceability between Monitoring Rules and other

elements in S&D Patterns

In this section we investigate the vertical traceability relations between monitoring rules and other

elements within S&D Patterns. The benefits of these traceability relations are that they help with

runtime monitoring of the S&D Patterns and enhance the understanding of the solution described.

The S&D Pattern language is still under development, but the key elements, described in [4], are:

components, parameters, interface, pre-conditions for parameters and solution (provides the

context), monitoring rules. Monitoring rules are expressed in event calculus (EC) [5] (a first-order

temporal formal language) in terms of events and fluents. Events signify the emission or reception

of messages by different components of a system, and they are obtained or observed at runtime.

High-level events are those that are described in the monitoring rules and low-level events are those

that are captured from the system at runtime. Fluents represent changes in the (modelled) state of a

system which are triggered by events. Fluents are not explicitly obtained or observed at runtime;

they are derived by the monitoring engine using assumptions. Since events are obtained at runtime

and also determine the values of fluents, we define traceability as the correlation of events between

the monitoring rules and the key elements in S&D Patterns. Therefore, we investigate traceability

relations between:

1. Monitoring rules and (high-level) events;

2. Monitoring Rules (events) and Components/Parameters (we include parameters here as well

as they simply some under-specified components);

3. Context and Monitoring Rules, and,

4. Monitoring Rules.

3.1. Traceability between Monitoring Rules and Events

Monitoring rules and events are related by a traceability relation, called “Contains”. This

traceability relation is required when monitoring rules refer to events which are not at a higher level

than the events which can be obtained by the event captors associated with the implementation APIs

contained in the pattern. In such cases, it is necessary to specify how the high level events which are

referred to by the rules can be obtained from events that signify occurrences of API calls and

responses to such calls. In such cases, the transformation from the events at the API level to the

events at the rule level must be specified. The specification of this transformation is specified by

virtue of an event calculus “theory” (i.e. a set of event calculus transformation rules). The presence

of this theory is necessary so that: (i) the implementation developers know which “high” level

events the “low” events of an implementation will need to be transformed to and how this

transformation should be performed, and (ii) the monitor can derive the events through the API-

level events.

The traceability relation Contains is defined as follows:

A4.D2.1 – Basic traceability model for run-time S&D

Monitoring

SERENITY - 027587 Version 1.0 Page 19 of 61

Definition of Contains Relation

Name: Contains

Type: Dependency

Definition: Contains ⊆ Rules × Events

Attributes: Transformation theory (i.e. a set of event calculus rules that specify

transformations of implementation events to rule events).

Cardinality: One monitoring rule to many events

Constraints: N/A

Directionality: Bidirectional

Place of definition: In the definition of monitoring rules in the S&D Patterns.

In addition to the reasons identified above regarding the need for Contains relations, relations of

this type are also beneficial for determining:

(i) Which event collector to use in order to obtain the events required for a specific rule (this

also requires the use of traceability relations between events and components or

parameters which are described in Section 3.2).

(ii) Whether the events that are related by Contains relations with a monitoring rule will still

need to be captured if the rule is deactivated (i.e. it is no longer checked by the

monitoring service). The SERENITY framework will need to determine this by checking

not only the Contains relations of the specific rule that is deactivated but also whether the

same events are contained in other monitoring rules which are still active. Determining

which events are required leads subsequently to determining (by using some additional

traceability relations) whether specific event collectors are still needed at runtime.

3.2. Traceability between Events and Components/Parameters

Events are captured at runtime by event capturing mechanisms that are placed at the system

components of interest. The components of interest are determined by which events need to be

captured for checking the monitoring rules. Therefore, a traceability relation between events

expressed in monitoring rules and components is required in order to determine which component

an event expressed in a monitoring rule belongs to and therefore should have an event captor that

would be able to detect and report the event at runtime. This information consequently helps with

diagnosis and recovery because when a monitoring rule is violated, we can determine which

components were involved.

To support the identification of the components in the implementation of the system which need to

provide the events which are required for monitoring, we introduce a special type of traceability

relations, called “SourceOf”. SourceOf relations can be defined between events and S&D pattern

component and parameters. Components and parameters constitute parts of the architecture that

A4.D2.1 – Basic traceability model for run-time S&D

Monitoring

SERENITY - 027587 Version 1.0 Page 20 of 61

realises the solution specified in an S&D Pattern and, according to A5.D2.1 [4], the main difference

between them is that components are considered as complex types of parameters that are part of the

solution described by an S&D patterns whose behaviour and other special characteristics are

described within the pattern. Parameters on the other hand do not have detailed descriptions within

an S&D pattern.

For the purposes of this document, we will use the term “component” to refer to both S&D pattern

parameters and S&D pattern components. Given this assumption, the traceability relation SourceOf

is defined as follows.

Definition of SourceOf Relation

Name: SourceOf

Type: Dependency

Definition: SourceOf ⊆ Components × Events

Attributes: N/A

Cardinality: One component to many events

Constraints: (i) ∀e∈Events ∃c∈Components . (c, e) ∈ SourceOf

∧¬∃c’∈Components . c’≠c ∧ (c’, e) ∈ SourceOf

Directionality: Bidirectional

Place of definition: In the definition of an event that has a reference to its source, i.e. to the

component or parameter where it’s produced. Events are described within

the section of monitoring rules, within S&D Patterns.

It should be noted that although the SourceOf relations between components and events as well as

between parameters and events can be described in a similar way and therefore it is possible to

provide a common definition, the difference between components and parameters could be

important when considering where the event capturing mechanisms that will provide the events will

be placed. More specifically, the main difference here is that, in our view, event capturing

mechanisms can always be placed on components if the mechanism to do so is available, because

the components are introduced as part of the solution for the pattern. On the other hand, some of the

parameters may be bound to existing components of the application architecture (i.e. during

configuration the parameters will be unified with the real application components) and therefore it

is not entirely clear if event capturing mechanisms could always be attached to these components.

And in cases where it is not possible to attach event capturing mechanisms to parameters then the

monitoring service will not be able check rules that contain events from such parameters and, as a

consequence, the particular S&D Pattern should not be chosen. This has important repercussions for

the dynamic selection of patterns at run-time by the SERENITY framework, since it must constrain

the selection to only these patterns which demand events from the application components which

A4.D2.1 – Basic traceability model for run-time S&D

Monitoring

SERENITY - 027587 Version 1.0 Page 21 of 61

are indeed obtainable. As such, the definition of S&D Classes will need to take this aspect into

consideration as well.

The traceability relation between events and components/parameters is defined during the

construction of an S&D Pattern. The events expressed in the monitoring rules have the following

generic form:

e(_ID, _sender, _receiver, _status, _o, _source)

where:

• _ID is a unique identifier for the event

• _sender is the name of the entity that sends the message _o.

• _receiver is the name of the entity that receives the message.

• _status represents the processing status of an event. The status of the event can be: (i) REQ-

B, that is a request for the invocation of an operation that has been received but whose

processing has not started yet; (ii) REQ-A, that is a request for the invocation of an

operation that has been received and whose processing has already started; (iii) RES-B, that

is a response generated upon the completion of an operation that has not been dispatched

yet; or (iv) RES-A, that is a response generated upon the completion of an operation that has

been dispatched.

• _o is a list of arguments and their types that the operation/event takes.

• _source is the name of the component where this event has been captured at.

Given this event structure, it is clear that an event holds information about its _source which should

correspond to either a component or a parameter in an S&D Pattern. Note that parameters could

represent other items besides components, such as key length, which a source of an event would

never map to.

The cardinality of the SourceOf relation is one-to-many, since one component may provide many

events. Table 3 illustrates examples of sourceOf relations between components and events.

Component A Component B ... Parameter C

ev(1, …, A) ev(3, …, B) … ev(5, …, C)

ev(2, …, A) ev(4, …, B) … ev(6, …, C)

… … … …

Table 3 – Examples of SourceOf relations between components and events

Furthermore, it should be appreciated that the traceability relation SourceOf can also be used to

check whether an event collector has failed. Thus, if, for example, the monitoring service has not

received any events from an event collector at component X for a specific time period, such as 10

hours, then it can deduce that the event collector at X has failed.

A4.D2.1 – Basic traceability model for run-time S&D

Monitoring

SERENITY - 027587 Version 1.0 Page 22 of 61

3.3. Traceability between Context and Monitoring Rules

The context of an S&D Pattern consists of preconditions and invariants. Preconditions are

differentiated between those that apply to parameters and those that apply to the solution, and they

are currently described as a condition in natural language in A5.D2.1 [4]. Preconditions are

properties that must be true before an S&D Pattern is selected. Thus, the validity of preconditions

should be checked by the SERENITY framework before an S&D Pattern is adopted and, therefore,

there is no need for monitoring them after a pattern is selected. Consequently, a traceability relation

between preconditions and monitoring rules is of no interest for monitoring.

Contextual invariants are properties that should be true throughout the execution of the

implementation of the solution provided by an S&D Pattern. For example, an invariant of an S&D

Pattern could be that the pattern should not be used with WI-FI networks. Therefore, the monitoring

service could check if at any time during the execution of an implementation of an S&D Pattern the

solution uses WI-FI and if it does, the monitoring service should raise a signal to the SERENITY

framework to request the deactivation of the pattern and possibly its substitution by a different S&D

Pattern. Thus, it is necessary to establish traceability relations between invariants and monitoring

rules.

For invariants, however, which are fully defined within a pattern a traceability relation to the

monitoring rules that will be used to check it at runtime will need to be specified. These relations

will be called “CheckedBy” relations and are defined as follows:

Definition of CheckedBy Relation

Name: CheckedBy

Type: Generalisation

Definition: Invariants → 2
Rules

Attributes: N/A

Cardinality: Many invariants to many monitoring rules

Constraints: N/A

Directionality: Unidirectional, from invariants to rules.

Place of definition: In the definition of monitoring rules in S&D Patterns.

Furthermore, for an invariant I, a monitoring rule can be described in the form of: f_I ⇒ C, where C

is the action/condition required and f_I is a fluent that is true when the invariant is true. The

monitoring service can receive events emitted from the SERENITY framework that is responsible

for checking the invariants, which inform the monitor about the value of the invariant’s fluent.

A4.D2.1 – Basic traceability model for run-time S&D

Monitoring

SERENITY - 027587 Version 1.0 Page 23 of 61

Examples of events that it will receive are: Initiates(f_I) and Terminates(f_I). In this way, the

monitor can the framework respond to invariants which are violated.

We should also note that, as invariants are not as yet described in the S&D Pattern language in

A5.D2.1 [4], the definition of CheckedBy relations might need to be amended when the

specification language for invariants becomes fully defined.

3.4. Traceability between Monitoring Rules

Traceability relations need also to be expressed between the different monitoring rules which are

specified in an S&D Pattern.

Dependency can be used by the monitoring service for detecting inconsistencies caused not only by

the recorded but also by the expected behaviour of a system [6]. When checking whether a

monitoring rule f:C⇒A is inconsistent with the expected behaviour of a system, the monitor takes

into account not only the events that have been observed at runtime but also events that can be

generated by other formulas and can affect the satisfiability of f. The definition of when a formula f

is inconsistent with the expected behaviour of a system relies on a dependency relation between

rules. This relation is defined in [11], as follows. Suppose that dep(f) is the set of formulas g:B⇒H

that f depends on. A formula g:B⇒H belongs to dep(f), if its head H has a literal L that unifies with:

(i) some literal K in the body C or the head A of f, or (ii) some literal K in the body B’ or head H’ of

another formula g’ that belongs to dep(f) [11].

An example of dependency relations may be given in reference to a monitoring rule for checking

the integrity of the e-healthcare system that we have given in [10]. In the e-healthcare scenario that

is described in [8], patients who have been discharged from hospitals with potentially threatening

medical conditions can use an e-health terminal (EHT) − that is an e-health application installed on

their PDAs − to contact an emergency response centre (ERC) for assistance and fast ordering of

medication. In one scenario of this case study, a patient who had suffered from a cardiac arrest,

feels unwell and sends through his EHT a request for assistance to ERC. To establish the cause of

the problem, ERC retrieves the patient’s medical record through the EHT. From this record, ERC

establishes that the patient’s doctor is on vacation and broadcasts a message to a group of doctors

known to be able to substitute the patient’s doctor. A doctor D receives this message on his own

EHT and replies immediately. ERC verifies D’s ability to substitute for the patient’s doctor for the

specific assistance request. Following this, D’s EHT interrogates ERC to receive the patient’s

medical data. D analyses all these data, identifies the most appropriate treatment, and writes the

electronic prescription on his/her EHT which subsequently sends the prescription to ERC which

forwards it to the patient’s EHT after registering it.

In the above scenario, the following integrity requirement has been identified:

“Electronic prescriptions shall be issued only by doctors by means of an e-health terminal.”

(i.e., Req. 2.2.1.15 in [8])

A4.D2.1 – Basic traceability model for run-time S&D

Monitoring

SERENITY - 027587 Version 1.0 Page 24 of 61

As we have indicated in [10], this requirement can be monitored by a rule stating that if an ERC

receives an electronic prescription by a doctor then this doctor must be authorised to issue the

prescription. The rule can be created by assuming that:

(i) ERC provides the operation createPrescription(docID:String, request:String, presc:

Prescription) to create new electronic prescriptions (presc) for a medical assistance request

(request), and

(ii) Doctors are authorised through the execution of an operation of ERC with the following

signature: verifyDoctor(docID:String, request:String, verified:Boolean). This operation verifies

if a doctor (docID) can deal with a given request (request).

Assuming the above operations, the following rule can be specified to monitor the integrity

requirement Req. 2.2.1.15 (this rule is derived from a monitoring pattern as described in [8]):

Rule IR1:

∀ _eID1,_ercID,_docEhtID:String; t:Time

Happens(e(_eID1,_docEhtID,_ercID,REQ-B,

createPrescription(_docID,_request,_presc), _ercID), t, ℜ(t,t)) ∧

HoldsAt(transforms(createPrescription(_docID,_ request,_presc), _ercID), t)

⇒

HoldsAt(authorised(_ercID, _docID, e(_eID1,_docEhtID, _ercID,REQ-B,

createPrescription(_docID,_ request,_presc), _ercID)), t)

The rule IR1 checks whether the doctor (_docID) who invokes the operation createPrescription in

ERC (_ercID) is authorised to do so. IR1 effectively describes a delegation of the doctor’s right to

create prescriptions to his/her EHT, since it is the EHT which is the sender in this interaction

(_docEhtID), while it is the doctor who is being authorised (_docID) for the action in reality.

Following the pattern for monitoring integrity that we introduced in [10], the following assumption

needs also to be specified in order to generate at runtime the information that is needed for

checking the rule IR1:

Assumption IA2:

∀ _eID2,_ercID,_docEhtID:String; t:Time; _request: String, _verified:

Boolean

Happens(e(_eID2,_ercID,_ercID, RES-A, verifyDoctor(_docID,

_request,_verified), _ercID), t,ℜ(t,t)) ∧

HoldsAt(valueOf(_verified, True),t) ⇒

Initiates(e(_eID2,_ercID,_ercID, RES-A,

verifyDoctor(_docID,_request,_verified), _ercID), authorised(_ercID,

_docEhtID, e(_eID1,_docEhtID, _ercID,REQ-B, createPrescription(_docID,_

request,_presc), _ercID)), t)

A4.D2.1 – Basic traceability model for run-time S&D

Monitoring

SERENITY - 027587 Version 1.0 Page 25 of 61

This assumption states that a doctor is authorised to call the operation createPrescription in ERC

only if this is verified by the operation verifyDoctor. In this case, an appropriate authorisation fluent

will be generated by IA2 and by virtue of the EC axiom

HoldsAt(f,tB) ⇐ (∃e,t) Happens(e,t,ℜ(tA,tB)) ∧ Initiates(e,f,t) ∧

¬Clipped(t,f,tB)

we can derive that the HoldsAt predicate in the head of the rule IR1 is satisfied.

In this example, the rule IR1 depends on the assumption IA2 or, equivalently, IA2 belongs to the set

dep(IR1). This is because the predicate

HoldsAt(authorised(_ercID, _docID, e(_eID1,_docEhtID, _ercID,REQ-B,

createPrescription(_docID,_ request,_presc), _ercID)), t)

of IR1 can be unified with the predicate HoldsAt(f,t) in the above EC axiom. Thus the axiom

belongs to dep(IR1). Following this unification, however, the axiom takes the following from:

HoldsAt(authorised(_ercID, _docID, e(_eID1,_docEhtID, _ercID,REQ-B,

createPrescription(_docID,_ request,_presc), _ercID)), t) ⇐

(∃e,t) Happens(e,t,ℜ(tA,tB)) ∧

Initiates(e,authorised(_ercID, _docID, e(_eID1,_docEhtID, _ercID,REQ-B,

createPrescription(_docID,_ request,_presc), _ercID)), t) ∧

¬Clipped(t, authorised(_ercID, _docID, e(_eID1,_docEhtID, _ercID,REQ-B,

createPrescription(_docID,_ request,_presc), _ercID)), t,tB)

The predicate

Initiates(e,authorised(_ercID, _docID, e(_eID1,_docEhtID, _ercID,REQ-B,

createPrescription(_docID,_ request,_presc), _ercID)), t)

in this new form of the axiom, however, can be unified with the predicate

Initiates(e(_eID2,_ercID,_ercID, RES-A,

verifyDoctor(_docID,_request,_verified), _ercID), authorised(_ercID,

_docEhtID, e(_eID1,_docEhtID, _ercID,REQ-B, createPrescription(_docID,_

request,_presc), _ercID)), t)

of IA2. Thus, according to the definition of dependent formulas above, IA2 also belongs to

dep(IR1).

A4.D2.1 – Basic traceability model for run-time S&D

Monitoring

SERENITY - 027587 Version 1.0 Page 26 of 61

The dependency relations between monitoring rules will be called “DependsOn” relations and are

defined as follows:

Definition of DependsOn Relation

Name: DependsOn

Type: Dependency

Definition: Rules →2
Rules ∪ Assumptions

Attributes: N/A

Cardinality: One-to-many

Constraints: If a monitoring rule MR1 is activated because it provides an S&D

Property P1 of interest, then all monitoring rules on which MR1 depends

on must also be activated.

Directionality: Unidirectional

Place of definition: In the definition of monitoring rules in S&D Patterns by a reference to

other dependent rules. For example, if MR1 and MR2 are rules that

depend on MR3, then they should have a reference to MR3 (a “depends

on” XML reference is defined).

The same definition of dependency can be used for determining dependencies not only between

monitoring rules and assumptions defined in S&D Patterns but also between monitoring rules

themselves. Such dependency relations between the monitoring rules in an S&D Pattern are

important to identify because they can be used for triggering the activation of rules and for

recovery. If a monitoring rule MR1 is activated as it provides an S&D Property P1 of interest, for

instance, then all the other monitoring rules that MR1 depends on will also be activated and

checked. For recovery, the dependencies between the monitoring rules help to determine which

rules have failed (i.e. a rule MR1 and all the rules which depend on it). Finally, it should be noted

that DependsOn relations can be automatically generated using the definition of the set dep(f) that

was given above. By identifying these dependencies statically and expressing them as DependsOn

relations, the monitoring service can use them at runtime to identify the derived events that may

affect the satisfiability of monitoring rules as described in [11].

A4.D2.1 – Basic traceability model for run-time S&D

Monitoring

SERENITY - 027587 Version 1.0 Page 27 of 61

4. Traceability between Monitoring Rules and S&D

Implementations

In this section we describe the horizontal traceability relations between monitoring rules and S&D

Implementations. Traceability in this case is fine-grain and focuses on the correlation of events

between rules and S&D Implementations.

An S&D Implementation consists of an implementation of the solution described in an S&D Pattern

and a set of event-capturing mechanisms (event collectors) for capturing and emitting low-level

events from the implementation of the solution at runtime. In this section, we consider traceability

relations between: (a) low-level events captured by the event collectors in S&D Implementations

with high-level events which ate described in the monitoring rules and (b) implementations with

event collectors.

4.1. Mapping of low-level events-to-high-level events

The S&D Patterns describe the monitoring rules using high-level events. These monitoring rules

will be given as input to the monitoring service in order to perform the checking. However, the

events observed by the event collectors at runtime may be low-level events that need to be mapped

onto the high-level events required by the monitoring service. Low-level events can be mapped into

high-level events by using a theory of transformation formulas. For example, if a sequence of three

low-level events (E1, E2 and E3) should be mapped to a single high-level event E4, the

transformation could be expressed by a formula f: E1 ∧ E2 ∧ E3 ⇒ E4. Following such

transformation the high level events are sent to the monitoring service.

It should be noted that there are three possible options for performing the mapping of low-level

events to high-level events:

1. The mapping occurs in the monitor and requires an Event Calculus theory. This theory can

be expressed in the S&D Implementation and is sent to the monitoring service.

Subsequently, the mapping is performed within the monitoring service according to the

theory. The theory must be written by the developer who knows how the mapping should be

done. Figure 4 shows the flow of events and their transformation in the various components

of the SERENITY framework in the case of this option.

A4.D2.1 – Basic traceability model for run-time S&D

Monitoring

SERENITY - 027587 Version 1.0 Page 28 of 61

Monitoring service

that implements

the theory for

converting low-

level events to

high-level events

S&D Framework

configuration

S&D Manager

Active Patterns

Executable S&D Implementation

Instance (includes event capture

mechanisms and Event

Transformation Theory expressed

in Event Calculus)

Monitoring

Rules

Low-level events &

Event Theory

SERENITY runtime

Framework

Figure 4 – Part of SERENITY runtime framework that interacts with the monitoring service

2. The mapping occurs in the SERENITY framework (for example, in the event manager) and

it requires a theory that is described in the S&D Implementation. The language in which this

theory will be described must be defined by A6. Figure 5 illustrates how the active patterns

and executable implementation instances interact with the monitoring service. More

specifically, according to this figure the executable implementation instances send the low

level events and the transformation theory to the SERENITY framework which

subsequently transforms them into the high level events expected by the monitor and

forwards the latter to the monitoring service.

Monitoring

service

S&D Framework

configuration

S&D Manager

Active Patterns

Executable S&D Implementation

Instance (includes event capture

mechanisms & event

transformation theory)

Event Manager

Monitoring

Rules

Low-level

events &

Theory

High-level

Events

SERENITY runtime

Framework

Figure 5 – Part of SERENITY runtime framework that interacts with the monitoring service

A4.D2.1 – Basic traceability model for run-time S&D

Monitoring

SERENITY - 027587 Version 1.0 Page 29 of 61

3. The mapping occurs in the S&D Implementation, which also contains a description of the

theory required for it (see Figure 6). The implementation directly maps the low-level events

to high-level events and sends the latter to the monitoring service. In this option, the S&D

implementation can express the event transformation theory in the language of its choice.

Monitoring

service

S&D Framework

configuration

S&D Manager

Active Patterns

Executable S&D Implementation
Instance (includes event capture

mechanisms & event

transformation theory)

Monitoring

Rules

High-level

Events

SERENITY runtime

Framework

Figure 6 – Part of SERENITY runtime framework that interacts with the monitoring service

By defining the mapping between the low-level and high-level events, we are also able to trace a

particular high-level event defined in a monitoring rule to its corresponding low-level event(s) and

vice versa. This is of particular interest when a monitoring rule is found by the monitor to have been

violated so that fine-grain diagnosis can be performed.

The traceability relation between high level and low level events is called “Mapped” and is defined

as follows:

Definition of Mapped Relation

Name: Mapped

Type: Refinement

Definition: Mapped ⊆ High-level events × Low-level events

This traceability relation is defined by a correlation of low-level events to

high-level events.

Attributes: Transformation: Theory of how of high-level events are produced from

low-level events.

A4.D2.1 – Basic traceability model for run-time S&D

Monitoring

SERENITY - 027587 Version 1.0 Page 30 of 61

low-level events.

Cardinality: Many high-level events to many low-level events

Constraints: Formulas that connect high-level and low-level events can be used to

check if the transformations are correct.

Directionality: Bidirectional

Place of definition: In the monitor or the S&D Implementation.

The advantages and disadvantages of each of the three mapping approaches are summarised in

Table 4.

 Location of Mapping Advantages Disadvantages

1) In the monitor Good for fine-grain diagnosis. Burdens the monitor.

2) In the SERENITY

framework

Clear separation of functionality, i.e.

monitor responsible for checking rules

only, S&D Implementation for

implementing solution and framework

for any translations, mappings etc.

Burdens the Framework.

3) In the S&D

Implementation

Not burdening the monitor or

framework. The implementation is not

burdened either. In fact, it might

improve performance because there

will be less communication with the

SERENITY framework.

Diagnosis is coarse-grain,

since the traceability relation is

effectively missing.

Table 4 – Advantages and disadvantages of different architectures

Regardless of which of the above three options is chosen, it should be noted that when it comes to

the diagnosis of detected rule violations is required, the Mapped relation from high-level to low-

level events must be defined, and for each high-level event this relation must provide a theory in

event calculus specifying how the transformation occurs. Such a theory can be specified as the

value of the attribute Transformation of each of the elements of the Mapped relation. Along with

this relation, the set of low-level events which have occurred so far will be needed. This set should

either be held at the runtime framework, through which the monitor can retrieve it, or the S&D

Implementations should support requests from the monitor for retrieving these events.

A4.D2.1 – Basic traceability model for run-time S&D

Monitoring

SERENITY - 027587 Version 1.0 Page 31 of 61

4.2. Traceability between event collectors and S&D Implementations

The second type of traceability relations that we consider is a relation between event collectors and

S&D implementations.

An S&D Pattern may have many executable implementations of the solution it describes. Each of

these implementations is expected to have a set of event collectors that will be attached to

components & parameters of the S&D Pattern. An implementation can use the same event-collector

as another implementation. Assuming that during runtime certain S&D Implementations are

adopted, sometimes in place of other implementations; it would be beneficial if there was some

mechanism in the SERENITY framework responsible for managing event collectors
2
. For example,

if an event collector EC1 is used by two Java implementations, when none of these implementations

is any longer applied in the application, the event collector EC1 should also stop executing. In this

way, the performance of the system’s execution will be improved as the use of event collectors

delays the system’s performance. Apparently, we cannot stop this event collector when only one of

the implementations which are using it is replaced.

To be able to identify the event collectors which are required during the operation of the

SERENITY framework, we can use a traceability relation between S&D Implementations and event

collectors, which we call “Uses”. This relation is defined as follows:

Definition of Uses Relation

Name: Uses

Type: Dependency

Definition: Uses ⊆ Implementations × Event Collectors

Attributes: N/A

Cardinality: Many implementations to many event collectors

Constraints: N/A

Directionality: Bidirectional

Place of definition: In the S&D Implementation we provide a list of event collectors used

The traceability relations Uses between event collectors and S&D Implementations are defined

during the construction of an S&D Implementation by enumerating the event collectors used by the

implementation. Using this information, the SERENITY framework can determine which event

2
 The event collector manager can be compared to garbage collection, i.e. its aim is to stop unused event collectors

from executing.

A4.D2.1 – Basic traceability model for run-time S&D

Monitoring

SERENITY - 027587 Version 1.0 Page 32 of 61

collectors to deactivate (or clean up) based on whether they are currently being used by active S&D

implementations. Table 5 illustrates an example of the Uses traceability relation between event

collectors and active implementations. The relationship between implementations and event

collectors is many-to-many (one implementation can use many event-collectors and one event-

collector can be used by many implementations). In this example, if the S&D implementation

ImpC, for instance, becomes inactive, the event collector EC2 can also be deactivated. Unlike it, the

event collector EC1 cannot be deactivated if the S&D implementation ImpA becomes inactive since

it would still be needed by ImpB.

Event Collector Implementations

EC1 ImpA

EC1 ImpB

EC2 ImpC

ECn ImpF

ECn ImpD

ECn ImpA

Table 5 – Relation between event collectors and active implementations

4.3. Traceability relation between events and event collectors

Each event collector should describe the set of events that it can capture. Capture relations of this

form are represented by a traceability relation called “CollectedBy” that is defined as follows:

Definition of CollectedBy Relation

Name: CollectedBy

Type: Dependency

Definition: Event → Event Collector ∪ {nil}

Attributes: N/A

Cardinality: One event to one event collector

Constraints: N/A

Directionality: Unidirectional – from event to event collector

A4.D2.1 – Basic traceability model for run-time S&D

Monitoring

SERENITY - 027587 Version 1.0 Page 33 of 61

Place of definition: In the S&D Implementation, for each event collector we provide a list of

events that can be captured.

Given the presence of such relations, when the time comes to attach an event collector to a

component in order to capture the events of interest (i.e. the events that are described in the rules) it

will be possible to determine which event collector should be used for an event. According to its

definition above the cardinality of CollectedBy is one-to-one. This reflects our assumption that an

event can be captured only by one event collector in a single S&D Implementation.

Note that high-level events do not have any event collectors associated with them, since they are

formed by a theory over the low-level events that the collectors collect.

A4.D2.1 – Basic traceability model for run-time S&D

Monitoring

SERENITY - 027587 Version 1.0 Page 34 of 61

5. Traceability between Monitoring Rules and S&D

Configuration

Each system has a single S&D Configuration (referred to as the “System S&D Configuration”)

which unifies the parameters of the different S&D Patterns to system and/or other S&D Pattern

components. At the same time, each S&D Pattern needs its own S&D Configuration, which unifies

the parameters of the S&D Properties provided by the pattern to the S&D Pattern

components/parameters. The S&D Configuration also must describe the concrete interfaces of the

parameters, that is, say which of the real components’ operations are mapped to the abstract

operations of the parameters. These are not described anywhere else but they are required by the

monitoring service, since the monitoring rules use this information to check the interactions

between components and parameters in order to ensure the S&D Properties.

For the purposes of monitoring, the operations of pattern parameters which are described in the

events which are referenced by the monitoring rules must be traced to the actual operations of the

components that have substituted for pattern parameters. To enable this tracing defined To enable

this tracing, we introduce two types of traceability relations in the S&D Configurations. The first of

these relations is called “UnifiesWithComponent”, associates pattern parameters with the actual

system components that are bound to them at runtime and is defined as specified below:

Definition of UnifiesWithComponent Relation

Name: UnifiesWithComponent

Type: Refinement

Definition: (Patterns × Parameters) → Components

Attributes: N/A

Cardinality: One pattern, parameter pair to one component

Constraints: N/A

Directionality: Unidirectional

Place of definition: S&D Configuration

The second relation is called “UnifiesWithOperation”, associates abstract operations of monitoring

rules with the concrete component operations which are bound to them at runtime and is defined as

specified below:

A4.D2.1 – Basic traceability model for run-time S&D

Monitoring

SERENITY - 027587 Version 1.0 Page 35 of 61

Definition of UnifiesWithOperation Relation

Name: UnifiesWithOperation

Type: Refinement

Definition: UnifiesWithOperation ⊆ (Patterns × Abstract Operations) × Concrete

Operations

Attributes: N/A

Cardinality: Many abstract operations to many concrete operations.

Constraints: N/A

Directionality: Bidirectional

Place of definition: S&D Configuration

Let us consider a simple example. Suppose that the following monitoring rule MR1 is expressed in

an S&D Pattern P:

Rule MR1

(∀ t1,t2:Time) Happens(e(A,B,op1(p1),A),t1) ⇒

 Happens(e(B,C,op2(p2,p3),B),t2) & t2 ≥ t1

This rule states that if A invokes an operation op1(p1) which is received by B at time t1, then B

must invoke the operation op2(p2,p3) which is received by C at some time t2 after t1. In this rule,

A, B and C signify dispatchers and/or receivers of the invocations of the operations op1(p1) and

op2(p2,p3). More specifically, A dispatches the invocation of op1(p1), B received the invocation of

op1(p1) and dispatches the invocation of op2(p2,p3) and C receives the invocation of op2(p2,p3).

Suppose also that A and B have been defined as parameters in the S&D Pattern that incorporates

MR1, and C has been defined as a component in the same pattern. The operations op1(p1) and

op2(p2,p3) belong to B and C, respectively.

When this S&D Pattern is selected (activated) by the SERENITY framework for a specific system,

the S&D Configuration of this system will unify the elements in the S&D Pattern with the “actual”

components of the involved system and/or the implementation of the S&D solution described by the

selected pattern. Thus, for example, the parameters A and B may be unified with the components c1

and c2 using the UnifiesWithComponent relation as follows: UnifiesWithComponent((P,A), c1),

UnifiesWithComponent((P,B),c2). The interface of the components should also be described in the

configuration part of the pattern, i.e. all the operations that c1 can invoke as op1 and c2 can invoke

as op2. Then op1 and op2 must be unified with the actual operations using the

UnifiesWithOperation relation, e.g. op1(p1), could be send(data) & receive(data), and op2(p2,p3)

could be add(d1, d2).

It should be noted that a concrete operation can be unified with many abstract operations and an

abstract operation can be unified with many concrete operations. An abstract operation signifying

A4.D2.1 – Basic traceability model for run-time S&D

Monitoring

SERENITY - 027587 Version 1.0 Page 36 of 61

the disclosure of an information parameter i in an S&D pattern, called leaks(i) for instance, can be

unified with concrete operations that result in information disclosure such as write(f) and print(r).

Similarly, one concrete operation can also be unified with many abstract operations. The concrete

operation write(f), for example, can be unified with the abstract operation leaks(d) above and

another abstract operation signifying the transmission of information called transmit(m).

A4.D2.1 – Basic traceability model for run-time S&D

Monitoring

SERENITY - 027587 Version 1.0 Page 37 of 61

6. Use of Traceability Relations at Runtime

Having defined the different types of traceability relations in the previous sections, we can now

describe how these relations can be used by the SERENITY framework at runtime. Generally, these

relations can be used at runtime to enable:

 the selection (activation) of monitoring rules when an S&D Pattern is selected

 the attachment of event collectors to system components

 the checking of the monitoring rules by the monitor

 the deactivation of monitoring rules

 the detachment of event collectors to system components

Note that the assumptions of monitoring rules are treated in the same way as monitoring rules.

However, an assumption is always associated to a monitoring rule.

6.1. Activation of monitoring rules

Monitoring rules are activated when an S&D Pattern is selected from the library to provide a

solution that ensures particular S&D Properties. The user who chooses the S&D Patterns/Classes

during the development of the system must also provide the information required for the

SelectedFor traceability relation, i.e. which S&D Properties this S&D Pattern has been chosen for.

Note also that the SERENITY framework can dynamically change the SelectedFor relation for a

particular software system.

The steps which must be performed in order to activate the monitoring rules are as follows:

1. The user/framework selects an S&D Pattern pat from the library. This selection can take

place either during the development of a system by the user (not at runtime) or at runtime by

the framework when an S&D Pattern is no longer capable of providing a particular solution

and another S&D Pattern has to be chosen instead.

2. The SelectedFor traceability relation between S&D Patterns and S&D Properties must be

updated by the framework with the required information that is found in the S&D

Configuration to indicate which S&D Properties the S&D Pattern was chosen for. At this

point a check to ensure that the set of the properties that the pattern was selected for is a

subset of the properties that the pattern provides (as expressed by the Provides relation)

must be performed. Subsequently, the initial set of compulsory and recommended

monitoring rules for the selected S&D Property can also be determined. The identification

of these monitoring rules will be based on the SelectedFor relations and the Satisfies

relations between rules and S&D Properties. More specifically, for each S&D Property that

is referenced by the SelectedFor relation, its compulsory and recommended monitoring

rules are identified and activated using the Satisfies relations which refer to the property.

When activated a rule is sent to the monitoring service to be checked. It should be noted that

the recommended rules of a SelectedFor S&D Property can be deactivated. This, however,

must be done explicitly, as the default is to activate both the compulsory and recommended

rules of a desired S&D Property. Formally, the initial set of activated rules is defined as

follows:

InitRulespat = {r | ∃ q∈ SelectedFor(pat) ∧ ∃ a∈ Attributes . (r,a,q)∈ Satisfiespat }

A4.D2.1 – Basic traceability model for run-time S&D

Monitoring

SERENITY - 027587 Version 1.0 Page 38 of 61

where Attributes is the set {Compulsory, Recommended}.

3. Then, by using the DependsOn traceability relation between monitoring rules, all the

monitoring rules that are dependent on to initial set of rules that have been activated for the

S&D Pattern can also be determined and activated. Formally, the set of rules that will be

activated at this step is defined as follows:

FinalRulespat = InitRulespat ∪ U
patInitRules

)(
∈r

pat rDependsOn

4. Subsequently, all the parameters in the event references which are made within the

monitoring rules must be instantiated with the actual values that are described in the S&D

Configuration of the system. This is done by using the traceability relations

UnifiesWithComponent and UnifiesWithOperation which as we discussed in Section 5 are

defined in the system S&D Configuration. In this way, we can obtain instances of

monitoring rules which refer to actual system components and operations, instead of abstract

pattern parameters/components and operations. The resulting set of fully instantiated

monitoring rules is called InstantiatedFinalRulespat.

5. Finally, the instantiated rules in InstantiatedFinalRulespat are activated, i.e. they are sent to

the monitor to be checked.

6.2. Attaching event collectors to system components

S&D Implementations have sets of event collectors that can be used to provide the events required

for the monitoring of the solutions that they realise. When an S&D Pattern is chosen, along with a

corresponding S&D Implementation, the appropriate event collectors will need to be attached to or

activated in the system components which runtime events need to be captured from. The process of

determining the event collectors that will be required and activating/attaching them to system

components is driven by the instantiated rule set for the specific system and takes place through the

following steps::

1. For each rule the set InstantiatedFinalRulespat of the activated pattern pat, the events of

interest that need to be captured by the event collectors are determined through the Contains

traceability relation. This set of events is formally defined as follows:

EventsOfInterestpat = {e : ∃ r ∈ InstantiatedFinalRulespat . (r,e) ∈ Containspat }

where Containspat is the Contains traceability relation between rules and events in S&D

Pattern pat.

2. Then, by using the SourceOf traceability relation for each event of interest e, we determine

the component that e needs to be obtained from. In this way we can determine the set of all

the components which are the sources of the events of interest and attach the corresponding

event collectors to them. This set of components is defined as follows:

A4.D2.1 – Basic traceability model for run-time S&D

Monitoring

SERENITY - 027587 Version 1.0 Page 39 of 61

ComponentOfInterest = {c : (c,e) ∈ SourceOfpat}
3

3. Also by using the CollectedBy traceability relation we can determine the event collector for

each event of interest e.

EventCollector = CollectedByimp(e)

4. Finally, the SERENITY framework will attach the identified event collector to the identified

component, if the former is not nil, since not all events have a corresponding event-

collector.

6.3. Checking of monitoring rules

In order to check monitoring rules, the monitoring service requires the set of active monitoring rules

and assumptions and the set of events which occur at runtime, i.e. those captured by the event

collectors. Note that monitoring rules contain high-level events, while the events which are captured

by the event collectors are low-level. Therefore, the steps that must be performed in order to check

the monitoring rules are:

1. The active monitoring rules in the S&D Pattern are sent to the monitoring service.

2. The low-level events are mapped to high-level events and sent to the monitoring service.

The Mapped traceability relation will allow for low-level events to be traced to high-level

events and vice versa. The mapping can occur at different locations and this depends on the

type of architecture that the SERENITY framework will adopt.

3. The DependsOn traceability relation will determine the dependencies between the

monitoring rules (or assumptions) which will enable the detection of different types of

inconsistencies as defined in [6].

By checking each monitoring rule, the monitor determines whether the rule holds or is violated

when the system is executed (during runtime). The following steps outline what happens when a

rule is violated:

1. If a compulsory rule is violated, then the S&D Property that the monitoring rule is related to

will no longer hold for the selected S&D Pattern. The identification of the properties which

are affected by violations of monitoring rules is based on the Satisfies traceability relation.

Then, the SelectedFor traceability relation is used to determine which properties of interest

have been violated, so as to report this to the S&D Framework.

2. If a recommended rule is violated then the monitoring service raises a violation signal to the

SERENITY framework but continues to monitor the other active rules without affecting the

activation of the S&D pattern necessarily.

3
 This set has a single element.

A4.D2.1 – Basic traceability model for run-time S&D

Monitoring

SERENITY - 027587 Version 1.0 Page 40 of 61

6.4. Deactivation of monitoring rules

As we discussed earlier, recommended monitoring rules can be deactivated but compulsory rules

cannot. The recommended rules for an S&D Property can be determined by using the Satisfies

traceability relation between S&D Properties and monitoring rules. A rule can only be deactivated

explicitly by a user, the SERENITY framework or an action of another rule. The deactivation of a

rule means that it will not be checked by the monitoring service.

6.5. Detaching event collectors from system components

When particular S&D Implementations are deactivated, i.e. they are no longer selected, their event

collectors may be detached from the components of these implementations. This should, however,

happen only if these collectors are not also being used by other S&D Implementations. Event

collectors can be detached in cases where they are found to be unreliable, e.g. in the case where

they do not capture the required events in a bounded length of time.

In the first case, the deactivation of an event collector from a system component takes place as

follows. First by using the Uses traceability relation between event collectors and S&D

Implementations, the set of active S&D Implementations that are using a particular event collector

is determined. Then, if an S&D Implementation is deactivated, the SERENITY framework can

check whether there are other implementations that are still using the specific event collector and, if

not, the event collector can be detached from its component.

In the second case, the deactivation of an event collector from a system component takes place

through the following steps:

1. The SERENITY framework checks whether events are captured by an event collector within

a bounded amount of time (the time can be determined by performing some analysis on the

system). Other checks can be performed as well for determining the reliability/availability of

the event collector.

2. By using the SourceOf traceability relation, for each component which has an event

collector, a list of expected events can be determined.

3. Then if none of these events in the list have been observed in the given length of time, it can

be deduced that the event collector is unavailable. If an event is observed by the event

collector, then it is mapped to a high-level event by using the Mapping traceability relation

and then the SourceOf relation is used to determine whether the event is in the set of the

expected events
4
.

4
 More generally, there might be other factors that could affect the trustworthiness of events (or how confident we are

that their absence is genuine and not the effect of some attack). In the initial version of the runtime monitoring

components of SERENITY, we assume that all the captured events can be trusted and that the absence of events

should also be trusted. In subsequent stages of the project, we will investigate possible trust models for event

collectors and may need to provide more elaborate mechanisms for assessing event trust.

A4.D2.1 – Basic traceability model for run-time S&D

Monitoring

SERENITY - 027587 Version 1.0 Page 41 of 61

7. Example

In this section we illustrate the use of traceability relations in reference to a part of the smart items

scenario that has been described in A7.D2.1 (see Section 2 in [8]). To enable this illustration, in the

following we describe an S&D Pattern that describes a partial solution for a selected part of this

scenario.

7.1. Smart Items scenario – A Solution

The solution that we describe in the following refers to the following requirements in A7.D2.1 [8]:

“Each communication between the patient’s e-health terminal and the ERC shall

guarantee message delivery, integrity and confidentiality of the data exchanged,

and mutual authentication.” (Req. 2.2.1.2)

“Each communication between the ERC and the e-health terminal of the selected

doctor shall guarantee integrity and confidentiality of the data exchanged, and

mutual authentication.” (Req. 2.2.1.14)

The initial draft of our solution guarantees authorisation and confidentiality of the data exchanged

between the ERC and the e-health terminals of patients and doctors but does not guarantee message

delivery or authentication. This limitation is due to the fact that our objective here is to demonstrate

the use of traceability relations rather than providing a complete solution to the above requirements.

Also it should be noted that the description of our solution is based on the following assumptions:

 The patient’s and the doctor’s e-health terminals cannot communicate with each other

directly during emergencies. All communications must go through the ERC (Emergency

Response Centre). Therefore, in the case when a patient contacts the ERC with an

emergency requiring a prescription, it is the ERC’s responsibility to ensure that only an

authorised doctor can assign a prescription to this patient.

 Both the patient and doctor trust the ERC.

 Authorisation is provided by the ERC.

 There is a public key known to both the doctor and the ERC, and another public key known

to both the ERC and the patient.

Furthermore, it should be noted that at this stage we do not focus on defining an executable

implementation for this solution. Our focus is on defining a general S&D Pattern that could be used

for the development of executable implementations. Thus, we consider only the general

architecture of the solution and the interactions between the components in this architecture.

A4.D2.1 – Basic traceability model for run-time S&D

Monitoring

SERENITY - 027587 Version 1.0 Page 42 of 61

C D

Auth

F

Figure 4 – Architecture of the solution

C’ E1

C

D2 D’

D

F’

D1 E2

F

Auth

F-Auth

N1 N2

Figure 5 – Decomposed architecture of the solution

Figure 4 illustrates the architecture of the solution described using abstract components that could

be unified with other components in different types of applications, i.e. not only in the smart items

application. This architecture describes an indirect communication between two abstract

components C and D that must take place through another intermediary abstract component F

which also has responsibility for the authorisation of C and D in the communications. This

authorisation is carried out by another abstract component called Auth that F communicates with.

The architecture also describes the security realms in which the different parameters and

components belong to, i.e., the fact that C’ and E1 are in the same realm, just like the F’, D1, E2 &

Auth are in their own. For the smart items scenario, C would be unified with the doctor’s e-health

A4.D2.1 – Basic traceability model for run-time S&D

Monitoring

SERENITY - 027587 Version 1.0 Page 43 of 61

terminal, F would be unified with the ERC, D would be unified with the patient’s e-health terminal,

and Auth would be unified with an authorisation function that is executed on the same machine as

ERC.

The architecture of the solution can be further decomposed as illustrated in Figure 5, where the

exact components that are responsible for performing certain functions are identified. For example,

to ensure confidentiality, data encryption and decryption functions need to be introduced between

the components C and F, and between F and D. Thus, the component C is refined into a

decomposition that incorporates: (i) a component C’ which provides the operations that are

concerned with the normal system behaviour for C, and (ii) a component E1 which provides the

operations required for encryption/decryption. Similarly, the component D in Figure 4 is

decomposed into a component D’ that provides the normal operations of D and a component D2

that provides the encryption/decryption operations for D and the component F is decomposed into

the components F1 that provides the normal operations of F and the components D1 and E2 that

provide decryption and encryption functions for F. Note that encryption and decryption operations

are not required for the communication between F and Auth since these two components are

assumed to be running on the same machine and they may be event internal components of the

same application. Thus, Auth does not have any encryption/decryption components.

The objective of this solution is to ensure that when a component C invokes an operation of D with

some data, the data must be encrypted for ensuring confidentiality by using E1 and together with

the operation it is first sent to F, which decrypts it using D1, and checks that C is authorised

according to F to invoke that operation. Once F checks that C is authorised by communicating

internally with Auth, it forwards the original operation call from C (with the encrypted data) to D

(before doing this F encrypts the data using E2 with the public key of D). Subsequently, D decrypts

the data using D2 and executes the operation. In this solution, F functions as a proxy to D, filtering

the calls made to it and allowing only the authorised ones.

The sequence diagram in Figure 6 illustrates some of the actions that can occur between the

components illustrated in Figure 4. In the case where C is not authorised by F to invoke an

operation of D, then nothing is sent to or invoked in D. Figure 7 illustrates the sequence of actions

in this case.

A4.D2.1 – Basic traceability model for run-time S&D

Monitoring

SERENITY - 027587 Version 1.0 Page 44 of 61

C Auth F D

ev(id2,C, F, REQ-B, op1(encrypted(p1)),C)

ev(id4,F, Auth, REQ-A,checkAuth(C,F,op1(p1)),F)

ev(id3,F,F,REQ-A,decrypt(encrypted(p1)),F)

ev(id5,Auth,F, REQ-A,reply(authorised(C,F,op1(p1))),Auth)

ev(id6, F, F, REQ-A,encrypt(p1,KeyFB),F)

ev(id1,C,C,REQ-A,encrypt(p1),KeyCF),C)

ev(id7,F,D, REQ-B,op1(encrypted(p1)),D)

ev(id8,D,D,REQ-A,decrypt(encrypted(p1)),D)

Figure 6 – Sequence diagram where F authorises C to invoke operation op1 of D

In the smart items scenario, when a doctor sends a prescription to a patient the prescription goes to

the ERC initially and the ERC, which plays the role of F in this case, needs to check that the doctor

is authorised to assign the prescription. The prescription is sent by the doctor in an encrypted form

(using the public key of ERC) that can be decrypted by the ERC (by using its private key). Once

ERC has checked that the doctor is authorised to assign the prescription, it encrypts the prescription

with the public key of the patient and sends the encrypted prescription to the patient, who can then

decrypt it with his/her private key.

A4.D2.1 – Basic traceability model for run-time S&D

Monitoring

SERENITY - 027587 Version 1.0 Page 45 of 61

C Auth F D

ev(id2,C, F, REQ-B, op1(encrypted(p1)),C)

ev(id4,F, REQ-A,Auth, checkAuth(C,F,op1(p1)),F)

ev(id3,F,F,REQ-A,decrypt(encrypted(p1)),F)

ev(id5,Auth,F, REQ-A,reply(authorised(C,F,op1(p1))),Auth)

ev(id1,C,C,REQ-Aencrypt(p1,KeyCF),C)

Figure 7 – Sequence diagram where F authorises C to invoke operation op1

7.2. S&D Properties

The language for an S&D Property has not yet been defined. In this section, we envision what this

language might be and how we can use it to describe the properties that the solution ensures, and

discuss any language requirements that we feel are necessary.

Each “type” of security requirement can correspond to more than one different S&D Properties. In

the case of integrity, for example, a number of S&D Properties could be described depending on

which system architecture integrity is applied to. Thus, we can have integrity of data sent between

two components, integrity of data ensured by a third party, integrity of data stored on a single

machine etc. Therefore, the language of an S&D property should allow for a description of the

general system architecture that the property is applied to.

The language of the properties should allow for its description in English and also in a formal

notation (to ensure that it is described precisely and unambiguously). The level of formality

depends on the types of static and run-time analysis that we wish to perform – for example, in

SERENITY we do not expect to see formulae describing the computational complexity of breaking

a particular encryption method, since this type of analysis is out of the project’s scope.

In the following, we give examples of two S&D properties: a property expressing the need for

authorisation (P1) and a property expressing the need for confidentiality. For both of these

properties, we give a description of the property in English and a formalisation in event calculus.

Our examples are given to demonstrate the need for incorporating some abstract description of the

system architecture which the property refers to and the formal specification of the property. It

A4.D2.1 – Basic traceability model for run-time S&D

Monitoring

SERENITY - 027587 Version 1.0 Page 46 of 61

should be noted that although our examples use Event Calculus to demonstrate the formal

specification of properties, the development of the final property specification language will be

determined in the A5 activity in the next phase of SERENITY.

S&D Property : P1

Description (in English): If an operation of B is invoked by agent A, then A must be authorised to

invoke that operation in B. (Authorisation)

Formal Description (in event calculus):

(∀ t:Time; Happens(ev(ID,A,B,RES-*,op(d),B),t, ℜ(t,t)) ⇒

 HoldsAt(authorised(A, B, op(d)),t)

A B

Figure 8 – Architecture of property P1

S&D Property : P2

Description (in English): The data which are transmitted between two components, G and H,

through a network N remain confidential.

Formal Description (in event calculus):

Rule:

P2.R1:

Happens(e(id2, N, H, REQ-*, send(G, H, op1(d1), KH), H), t2, ℜ(t1,t2)) ⇒

¬HoldsAt(exposes(e(id2, N, H, REQ-*, send(G, H, op1(d1), KH), H), op1(d1))

Assumptions:

P2.A1:

Happens(e(id1, G, N, REQ-*, send(G, H, op1(d1), KH), G), t1, ℜ(t1,t1)) ∧

Happens(e(id2, N, H, REQ-*, send(G, H, op1(d1), KH), H), t2, ℜ(t1,t2)) ⇒

Happens(e(id3, N, I, REQ-*, send(G, H, op1(d1), KH), I), t2, ℜ(t2,t2))

P2.A2:

Happens(e(id4, N, I, REQ-*, send(G, H, op1(d1), KH), I), t, ℜ(t,t)) ∧

length(KH) < 100 ⇒

A4.D2.1 – Basic traceability model for run-time S&D

Monitoring

SERENITY - 027587 Version 1.0 Page 47 of 61

Initiates(e(id4, N, I, REQ-*, send(G, H, op1(d1), KH), I),

exposes(e(id2, N, H, REQ-*, send(G, H, op1(d1), KH), H), op1(d1))

G H

Intruder

N

Figure 9 – Architecture of property P2

The specification of P1 makes reference to a simple architecture referring to two communicating

agents (A and B) that is necessary in order to express the need for authorisation of one of them in

the other. The formal specification of the property in EC states that when an event signifying the

invocation of an operation op(d) by A in B occurs, A must have the appropriate form of

authorisation by B.

The specification of P2 demonstrates a more complex example. In the architecture for this property,

it is necessary to refer to the network N that exists between two agents G and H and the presence of

an intruder (I) against which the confidentiality of the data should be preserved. The formal

specification of the property is based on the following reasoning. When G wants to call an operation

op1(d1) in H, it calls operation send(G, H, op1(d1), KH) in N. N calls the operation send(G, H,

op1(d1), KH) in H. At the same time, we may assume that N also calls the same operation on an

intruder I (since intruders can read messages which pass through the network). The assumption here

is that H knows KH but the intruder I doesn’t – we do not care whether G knows KH since we wish

our property to describe both the case of a shared key and the case of a public/private key pair. The

Intruder’s capabilities are modelled by the fact that a message is revealed to it only if the length of

the key KH is less than a particular number, let’s say 100.

The formalisation of the attack model already signals a possible monitoring rule for any pattern

which will try to offer this property for this attack model, that is, that the keys used for the excange

of messages have a length which is equal to or greater than 100.

In EC, the property is specified by the rule P2.R1 which states that when G sends a message to H,

the message is not exposed to any third party. The assumptions specified for this rule indicate the

circumstances under which the property can be violated. P2.A1 expresses the fact that N will

always send the encrypted message to an intruder (this is equivalent to assuming an intruder that

always has the capacity to catch the encrypted message as discussed earlier). The second

assumption (P2.A2) states that the contents of the message are exposed if the encryption key has a

length that is less than the assumed threshold.

A4.D2.1 – Basic traceability model for run-time S&D

Monitoring

SERENITY - 027587 Version 1.0 Page 48 of 62

In this way we can easily model situations where the capabilities of the Intruder range from private

persons, able to crack messages with short keys, to big companies, able to crack messages with

medium keys, and even to countries, which can break messages with even longer key lengths.

The specifications of these properties including their descriptions in English and Event Calculus as

well as the simple architecture models which are required are shown in Figure 9.

7.3. S&D Pattern

In this section, we describe the S&D pattern for a solution of the smart items application using the

schema specified in [4] extended with traceability relations that we have introduced in this

deliverable.

A4.D2.1 – Basic traceability model for run-time S&D

Monitoring

SERENITY - 027587 Version 1.0 Page 49 of 61

S&D Pattern: AuthAndConfidentiality

 Creator: CUL.com

 Trust mechanism: signed by CUL

 Provided Properties:

 Property:

 ID: P1

 Timestamp: 200611161204

 Property:

 ID: P2

 Timestamp: 200611201206

 Interface (this is for the components only):

 Calls:

 reply(authorise(C,F,op1(p1))

 authorise(C, F,op1(p1),result)

 Components:

 Component: Auth

 Component: F’

 Component: E1

 Component: E2

 Component: D1

 Component: D2

 Parameters:

 Parameter: C’

 Parameter: D’

 Parameter: N1

 Parameter: N2

A4.D2.1 – Basic traceability model for run-time S&D

Monitoring

SERENITY - 027587 Version 1.0 Page 50 of 61

 Parameter: p1

 Parameter: KeyCF

 Parameter: KeyFB

 Parameter pre-condition: Public key KeyCF is agreed on and known by C and F before session

starts. (C and F trust each other)

– Knows(C, KeyCF) ∧ Knows(F, KeyCF)

 Parameter pre-condition: Public key KeyFB is agreed on and known by F and B before the session

starts. (F and B trust each other)

– Knows(F, KeyFB) ∧ Knows(B, KeyFB)

 Solution pre-condition: F and B have private keys that are not disclosed.

– Knows(F, KeyF) ∧ Knows(B, KeyB) ∧ ¬(∃I. I≠F ∧ Knows(I, KeyF)) ∧ ¬(∃I. I≠B ∧ Knows(I, KeyB))

 Solution pre-condition: C and D cannot communicate with each other directly.

 Solution description: Order of events for correct behaviour

 ev(id1,C, C, REQ-A, encryptedC(p1,KeyCF),C);

 ev(id2,C,F, REQ-B, op1(encryptedF(p1)),C);

 ev(id3,F,F, REQ-A, decryptF(encrypted(p1)),F);

 ev(id4,F, Auth, REQ-A, checkAuth(C,F,op1(p1)),F);

 ev(id5,Auth,F, REQ-A, reply(authorise(C,F,op1(p1)),Auth);

 ev(id6, F,F, REQ-A, encryptF(p1,KeyFB),F);

 ev(id7,F,D, REQ-B, op1(encrypted(p1)),F);

 ev(id8, D,D, REQ-A, decryptD(encrypted(p1)),D)

 Static Tests Performed:

 Test: …

 Conditions of test:

 Attack models considered:

A4.D2.1 – Basic traceability model for run-time S&D

Monitoring

SERENITY - 027587 Version 1.0 Page 51 of 61

 System Configuration:

 UnifiesWithComponent :

Unification with the S&D Property P1 (note that → means unifies in this case):

P1.A → C

P1.B → D

Unification with the S&D Property P2:

P2[1].G → C

P2[1].H → F

P2[2].G → F

P2[2].H → D

(Note that there are two “instances” of P2 within the pattern – one concerns the communication link

between C & F and the other concerns the link between F & D.)

The decomposition of components C, F, and D are (where || represents parallel composition):

C= C’ || E1

F= F’ || D1 || E2

D= D’ || D2

 Monitoring:

 Rule 1:

 ∀ t1,t2:Time;

 Happens(ev(id1,C,F,REQ-A,op1(encryptedC(p1)),F),t1,ℜ(t1,t1)) ∧

 Happens(ev(id2,F,D,REQ-B,op1(encryptedF(p1)),F),t2, ℜ(t1,t2)) ⇒

 HoldsAt(authorised(C,F,o1(encryptedC(p1))),t2)

This rule checks whether C is authorised to invoke the operation op1(p1) in F. This rule is compulsory for

P1 as we discuss in Section 7.6 below.

 Rule 2:

 ∀ t1,t2:Time;

 Happens(ev(id3,F,Auth,REQ-B,checkAuth(C,F,op1(p1),res),F),t1,ℜ(t1,t1)) ⇒

 Happens(ev(id4,Auth,F,RES-B,checkAuth(C,F,op1(p1),res),F),

 t2,ℜ(t1,t1+10))

If F sends a checkAuth message to Auth (to check if C is authorised for F), then Auth must reply within 10

seconds. (This rule checks the availability of Auth based on events captured at F). This rule is

recommended for P1 as we discuss in Section 7.6 below.

A4.D2.1 – Basic traceability model for run-time S&D

Monitoring

SERENITY - 027587 Version 1.0 Page 52 of 61

The difference between compulsory and recommended monitoring rules is that if a compulsory rule

is violated during runtime, then the S&D Property that it ensures is violated too. While, if a

recommended rule is violated during runtime, the S&D Property that is refers to is not necessarily

violated. Note that Assumption 1 is for enabling the monitoring of S&D Property P1 and P2.

7.4. System S&D Configuration

The System S&D Configuration describes the unification of abstract pattern components and

parameters with system components and the interfaces of the abstract pattern parameters and

components with the interfaces of system components. Once established, these unifications are

represented by the traceability relations UnifiesWithComponent and UnifiesWithOperation,

respectively.

In the case of our example scenario and pattern, the unification of components and parameters for

consist of the following relations:

UnifiesWithComponent (C’,Doctor)

UnifiesWithComponent(E1,Doctor)

UnifiesWithComponent (D’,Patient)

UnifiesWithComponent (D2, Patient)

UnifiesWithComponent (F’,ERC)

UnifiesWithComponent(D1,ERC)

UnifiesWithComponent(E2,ERC)

UnifiesWithComponent(Auth, ERC)

UnifiesWithComponent(KeyCF, Public Key of ERC)
5

UnifiesWithComponent(KeyFB,Public, Key of Patient)

5
 Some parameters are components, while others are not. Keys, for instance, can be modelled as parameters in S&D

patterns and, therefore, they should be unified to concrete artefacts.

 Assumption 1 (for P1, P2):

 ∀ t:Time;

 Happens(ev(id9,Auth,F,RES-B,checkAuth(C,F,op1(p1),res),F),t,ℜ(t,t)) ∧

 HoldsAt(equalTo(res,True), t) ⇒

 Initiates(ev(id9,Auth,F,RES-B,checkAuth(C,F,op1(p1),res),F),

 authorised(C,F,o1(p1)), t)

If Auth replies to F with the result of the check for authorisation and the result is true, then the value of

fluent authorised(C,F,o1(p1)) is initiated.

A4.D2.1 – Basic traceability model for run-time S&D

Monitoring

SERENITY - 027587 Version 1.0 Page 53 of 61

Furthermore,

(i) The unification of the interface of the component Doctor consists of the following

relations:

UnifiesWithOperation (encryptC(p1,KeyCF), encrypt(prescription,ERC_PublicKey))

UnifiesWithOperation(op1(encrypted(p1)), assignPrescription(encrypted(prescription)))

(ii) The unification of the interface of the component Patient consists of the following

relations:

UnifiesWithOperation (decryptD(encrypted(p1)), decrypt(encrypted(prescription)))

(iii) The unification of the interface of the component ERC consists of the following

relations:

UnifiesWithOperation (encryptF(p1,FB), encrypt(prescription, Patient_PublicKey))

UnifiesWithOperation (decryptF(encrypted(p1)), decrypt(encrypted(prescription)))

UnifiesWithOperation(checkAuth(C,F,op1(p1)),

checkAuth(Doctor,ERC,assignPrescription(prescription)))

7.5. Traceability between S&D Properties and S&D Patterns

The Provides relation between the S&D Pattern AuthAndConfidentiality and the S&D Properties P1

and P2 is shown in Table 6. According to these relations AuthAndConfidentiality specifies a

solution that achieves the properties P1 and P2 changes. Thus, if any of the definitions of these

properties changes than AuthAndConfidentiality should be checked for conformance and vice versa.

Provides Relations SelectedFor Relations

S&D Pattern S&D Property S&D Pattern S&D Property

AuthAndConfidentiality P1 AuthAndConfidentiality P1

AuthAndConfidentiality P2 AuthAndConfidentiality P2

Table 6 – Provides and SelectedFor relation between AuthAndConfidentiality and properties

P1 and P2

SelectedFor relations are also defined in S&D Configurations to indicate the S&D properties which

an S&D pattern has been selected for. This relation in the case of the AuthAndConfidentiality S&D

Pattern of our example is also shown in Table 6. According to this table, AuthAndConfidentiality

was chosen for both the S&D properties P1 and P2 and hence the reference points to both of them.

A4.D2.1 – Basic traceability model for run-time S&D

Monitoring

SERENITY - 027587 Version 1.0 Page 54 of 61

7.6. Traceability between S&D Properties and Monitoring Rules

As defined earlier, the Satisfies traceability relation is defined between S&D Properties and

monitoring rules to show which property is ensured by the checking of each rule. In the

AuthAndConfidentiality S&D Pattern, these traceability monitoring rules between monitoring rules

and the S&D properties which are provided by the pattern are shown in Table 7.

Properties:

Rules:

P1 P2

Rule 1 Compulsory

Rule 2 Recommended

Table 7 – Satisfies relations between S&D Properties and monitoring rules

As specified in this table, Rule 1 is compulsory for the property P1, since it ensures that no

operation execution request that D receives from C through F has been forwarded to it, without F

having checked the authorization rights of C first. Rule 2, on the other hand, has been only assigned

to P1 as a recommended rule. This is because Rule 2 checks a bounded form of the availability of

Auth (i.e. whether Auth responds to an authorization check request within 10 time units). In this

case, whilst the absence of any response to an authorization check request from Auth would affect

property P1, the absence of a response from Auth within the specific time period of 10 time units

which is set by Rule 2 does not mean that Auth will not eventually respond. Thus, although Rule 2

specifies a recommended check whose failure can indicate a possible future violation of P1, its

violation does not mean that P1 has also been violated or that it will definitely be violated.

7.7. Traceability between monitoring rules and events

Contains traceability relations between monitoring rules/assumptions and events identify the events

that are described in the rules/assumptions. The Contains relation for the rules and assumptions of

the AuthAndConfidentiality S&D Pattern is illustrated in Table 8.

Rule/Assumption Event

Rule 1 ev(id1,C,F,REQ-A,op1(encryptedC(p1)),F)

Rule 1 ev(id2,F,D,REQ-B,op1(encryptedF(p1)),F)

Rule 2 ev(id3,F,Auth,REQ-B,checkAuth(C,F,op1(p1),res),F)

Rule 2 ev(id4,Auth,F,RES-B,checkAuth(C,F,op1(p1),res),F)

Assumption 1 ev(id9,Auth,F,RES-B,checkAuth(C,F,op1(p1),res),F)

Table 8 – Contains relations between rules/assumptions and the events of

AuthAndConfidentiality S&D Pattern

A4.D2.1 – Basic traceability model for run-time S&D

Monitoring

SERENITY - 027587 Version 1.0 Page 55 of 61

7.8. Traceability between events and Components/Parameters

SourceOf traceability relations are defined between events and the components where these events

will be captured from. In the case of the monitoring rule Rule 1 in our AuthAndConfidentiality

pattern, both of the events which are referred to in the rule, i.e. ev(id1,C,F,REQ-

A,op1(encryptedC(p1)),F) and ev(id2,F,D,REQ-B,op1(encryptedF(p1)),F) are to be captured at the

component F.

Table 9 shows the SourceOf relations between all the monitoring rule/assumption events and the

components/parameters of the AuthAndConfidentiality S&D Pattern. As indicated in this example

events are not necessarily captured at the point where they were originally emitted. The event

ev(id4,Auth,F,RES-B,checkAuth(C,F,op1(p1),res),F), for instance, is originally emitted from the

component Auth in the pattern but is to be captured at the component F which is the component that

receives the event.

Auth C D F

 ev(id1,C,F,REQ-A,op1(encryptedC(p1)),F)

 ev(id2,F,D,REQ-B,op1(encryptedF(p1)),F)

 ev(id3,F,Auth,REQ-B,checkAuth(C,F,op1(p1),res),F)

ev(id4,Auth,F,RES-B,checkAuth(C,F,op1(p1),res),F)

ev(id9,Auth,F,RES-B,checkAuth(C,F,op1(p1),res),F)

Table 9 – SourceOf relation between events and components/parameters

7.9. Traceability between Context and Monitoring Rules

As defined earlier, the context of an S&D pattern is defined as the set of the pre-conditions and the

invariants of the pattern and the CheckedBy relations that associate context with monitoring rules

need to be defined between invariants and monitoring rules. In the case of the

AuthAndConfidentiality S&D Pattern there are no invariants however. Thus, the CheckedBy

traceability relation is not defined for this example.

7.10. Traceability between Monitoring Rules

In the case of the AuthAndConfidentiality S&D Pattern, a DependOn traceability relation exists only

between Assumption 1 and Rule 1. This dependency is not explicit; it arises implicitly through the

following dependencies:

 DependsOn(Rule 1, axiom EC4) (EC4 is one of the event calculus axioms which are defined

in Table 10)

 DependsOn(axiom EC4, Assumption 1)

A4.D2.1 – Basic traceability model for run-time S&D

Monitoring

SERENITY - 027587 Version 1.0 Page 56 of 61

(EC1) Clipped(t1,f,t2) ⇐ (∃e,t)Happens(e,t,ℜ(t1,t2)) ∧ Terminates(e,f,t)

(EC2) Declipped(t1,f,t2) ⇐ (∃e,t) Happens(e,t,ℜ(t1,t2)) ∧ Initiates(e,f,t)

(EC3) HoldsAt(f,t) ⇐ InitiallyP(f) ∧ ¬Clipped(0,f,t)

(EC4) HoldsAt(f,t2) ⇐ (∃e,t) Happens(e,t,ℜ(t1,t2)) ∧ Initiates(e,f,t) ∧ ¬Clipped(t,f,t2)

(EC5) ¬HoldsAt(f,t2)⇐(∃e,t)Happens(e,t,ℜ(t1,t2))∧ Terminates(e,f,t) ∧ ¬Declipped(t,f,t2)

(EC6) ¬HoldsAt(f,t) ⇐ InitiallyN(f) ∧ ¬Declipped(0,f,t)

(EC7) HoldsAt(f,t2) ⇐ HoldsAt(f, t1) ∧ t1 < t2 ∧ ¬Clipped(t1,f,t2)

(EC8) ¬HoldsAt(f,t2) ⇐ ¬HoldsAt(f, t1) ∧ (t1 < t2) ∧ ¬Declipped(t1,f,t2)

(EC9) Happens(e,t,ℜ(t1,t2)) ⇒ (t1 ≤ t2) ∧ (t1 ≤ t) ∧ (t ≤ t2)

Table 10 – Standard axiomatic definition of event calculus

7.11. Traceability between Monitoring Rules and S&D

Implementations

As in this document we have not defined the complete solution for the AuthAndConfidentiality

S&D Pattern including its S&D Implementation, executable implementations and S&D

Configuration, it is not possible to illustrate how these elements will be used in traceability

relations. However, what would happen in this case is that low-level events will be mapped to high-

level events according to a theory. This mapping can occur at three different places and each has

advantages and disadvantages. Where this mapping is to occur is a design decision for the

SERENITY framework.

We assume that this mapping allows the SERENITY framework to be able to trace back (using the

Mapped traceability relation) from a high-level event to a low-level event and vice versa.

The Uses traceability between event collectors and S&D Implementations for the

AuthAndConfidentiality S&D Pattern is illustrated in Table 11. This relation is described in the

S&D Configuration. According to events given in the monitoring rules, event collectors will be

placed at all of the components, i.e. at the ERC, at the Patient and at the Doctor. For the sake of the

example, we assume that two executable implementations exist, one implemented in Java

(JavaIMP) and one in C++ (C++IMP). Moreover, only the Java implementation is active.

Event collector Implementations

EC1 at Patient JavaIMP

EC2 at ERC JavaIMP

EC3 at Doctor JavaImp

Table 11 – The Uses traceability relation between event collectors and implementations.

The CollectedBy traceability relation between event collectors and events describes the set of events

that can be captured by an event collector. Table 12 illustrates the CollectedBy traceability relation

for the AuthAndConfidentiality S&D Pattern.

A4.D2.1 – Basic traceability model for run-time S&D

Monitoring

SERENITY - 027587 Version 1.0 Page 57 of 61

Event

collector

Events

EC2 ev(id1,C,F,REQ-

A,op1(encryptedC(p1)),F)

EC2 ev(id2,F,D,REQ-

B,op1(encryptedF(p1)),F)

EC2 ev(id3,F,Auth,REQ-

B,checkAuth(C,F,op1(p1),res),F)

EC2 ev(id4,Auth,F,RES-

B,checkAuth(C,F,op1(p1),res),F)

EC2 ev(id9,Auth,F,RES-

B,checkAuth(C,F,op1(p1),res),F)

EC1

EC3

Table 12 – The CollectedBy traceability relation between event collectors and events

7.12. Traceability between Monitoring Rules and S&D Configuration

The UnifiesWithComponent and UnifiesWithOperation traceability relations between monitoring

rules and S&D Configuration are defined by the unification of components/parameters and

operations with the actual system components and operations/interface.

The parameters that appear in the monitoring rules are unified with the actual system component

using the UnifiesWithComponent traceability relation, as described in Section 5.

The monitoring rules for the AuthAndConfidentiality S&D Pattern consist of events with the

following IDs: id2, id4, id5, id8, id9. Two of these events occur at the component Auth (part of the

ERC). For all the events that occur at parameters, we have to trace with UnifiesWithOperations

their operations to the actual operations defined in the parameter interface that is found in the S&D

Configuration. Table 13 illustrates the traceability between operations in events and operations in

the parameter interface for the AuthAndConfidentiality S&D Pattern.

Event Operation in parameter interface

ev(id2, F, D, REQ-B, op1(encryptedF(p1)),F) assignPrescription(encrypted(prescription))

ev(id4,F, Auth, REQ-A, checkAuth(C,F,op1(p1),res),F) checkAuth(Doctor,ERC,assignPrescription(prescription))

Table 13 – The UnifiesWithOperation traceability relation between operations in high-level

events and operations in parameter interface

A4.D2.1 – Basic traceability model for run-time S&D

Monitoring

SERENITY - 027587 Version 1.0 Page 58 of 61

8. Conclusion and Future Work

In this document we have defined a number of horizontal and vertical traceability relations between

the S&D modelling artefacts that support the representation of S&D Solutions, i.e. S&D Properties,

S&D Patterns, S&D Implementations and S&D Configuration. These traceability relations are of

importance for runtime monitoring and we have illustrated how they can be used for activating and

deactivating monitoring rules, checking rules and for attaching and detaching event collectors. We

propose that the S&D modelling artefacts be extended in order to represent these traceability

relations. The S&D modelling artefacts that need to be extended are: S&D Patterns, S&D

Configurations and S&D Implementations. Table 14 summarises the traceability relations that we

have defined and indicates whether the relation requires the current S&D modelling artefacts to be

extended.

Name Type Definition Place of

definition

Extension

required

Provides Dependency Patterns → 2
Properties

S&D Patterns No

SelectedFor Rationalisation Patterns → 2
Properties

S&D

Configuration

No*

Satisfies Satisfaction Rules ×

{Compulsory,

Recommended} ×

Properties

S&D Patterns Yes

Contains Dependency Rules × Events S&D Patterns No

SourceOf Dependency Components ×

Events

S&D Patterns No

CheckedBy Generalisation Invariants → 2
Rules

 S&D Patterns No

(because it

can be

represented

by the

extension

for

Satisfies)

DependsOn Dependency Rules →

2
Rules∪Assumptions

S&D Patterns Yes

A4.D2.1 – Basic traceability model for run-time S&D

Monitoring

SERENITY - 027587 Version 1.0 Page 59 of 61

Mapped Evolution High-level events

× Low-level events

Extra theory in the

S&D

Implementation or

implicitly in the

executable of the

S&D

Implementation.

No*

Uses Dependency Implementations ×

Event Collectors

S&D

Implementation

 No*

CollectedBy Dependency Event → Event

collector ∪ {nil}

S&D

Implementation

No*

UnifiesWithComponent Satisfaction (Patterns ×

Parameters) →

Components

S&D

Configuration

No*

UnifiesWithOperation Satisfaction (Patterns ×Abstract

Operations) ×

Concrete

Operations

S&D

Configuration

No*

Table 14 – Summary of traceability relations

Note that “No*” in Table 14 means that the S&D modelling artefact has not yet been developed and

hence the traceability relation can be assumed to be part of the representation language. Therefore,

the embodiment of the traceability relation does not require an extension of an existing language

representing the S&D modelling artefact.

8.1. Summary of Required Extensions

As shown in Table 14, certain traceability relations either require extensions to current S&D

artefacts or require particular information to be included in artefacts which have not yet been fully

developed, e.g., S&D Properties. In this section we will summarise these extra requirements by

examining each artefact in turn.

• S&D Properties: These need to be described in a language similar to S&D Patterns,

providing (abstract) interfaces for the components which participate in the description of the

relevant property.

• S&D Patterns: These need to be extended with an internal configuration, which unifies

the components of the provided properties with parameters/components of the pattern. This

unification is needed both for the static verification of the properties, as well as, by the run-

time monitoring of the assumptions and rules expressed in the S&D Properties that the S&D

Pattern is providing. For the same reasons, the S&D Property operations must be unified as

well to the operations used in the S&D Pattern.

A4.D2.1 – Basic traceability model for run-time S&D

Monitoring

SERENITY - 027587 Version 1.0 Page 60 of 61

S&D Patterns also need to include information for the Satisfies relation, i.e., which S&D

Properties are satisfied by which rules and whether the latter are compulsory or

recommended for each S&D Property.

The description of the components/parameters may need to be extended to include the

component’s realm, so as to help in the analysis of the S&D Pattern. Another possibility

would be to allow composite components like C, which is the parallel composition of C’

and E1 in the S&D Pattern of Section 7.3, and assuming that a composite component also

represents a particular realm. We consider this assumption a bit weak, since the two notions

– realm and composition – are not the same, so overloading composition would probably

cause confusion later on. We most probably need to support both.

Finally, we believe that it would be greatly beneficial if S&D Patterns would include an

architectural description of the system, i.e., how the different components/parameters are

connected, through what connectors, etc.

• S&D Implementations: These must include information for the Mapped relation, if the

mapping of low-level to high-level events is to be performed by the monitor engine, as well

as information for the Uses and CollectedBy relations.

• S&D Configuration: Probably the most important extension is the requirement for

introducing local configurations in the S&D Patterns (see corresponding item above) for

unifying the S&D Pattern artefacts with those of the S&D Properties it provides.

Along with this change, S&D Configurations need to include information for the

SelectedFor relation, which is used to document the intent of the system designer and to

make possible the selection of the run-time rules, and for the UnifiesWithComponent and

UnifiesWithOperation relations, which are used to instantiate the S&D Pattern parameters

to exact artefacts of the final system.

Since the language for describing the S&D modelling artefacts is still under development we expect

that changes will need to be introduced to the traceability relations discussed in this deliverable,

once the language is finalised. Moreover, with increased experience of applying these traceability

relations, we might find that some changes are required, that further traceability relations must be

defined or that certain relations/relation information are not really needed, e.g., because they are

encoded implicitly otherwise or because the goal for which they have been introduced can be

reached through other mechanisms. Finally, we still need to investigate the traceability relations

between the S&D modelling artefacts described in this deliverable with the S&D Integration

Schemes. All these will be investigated and discussed in the next traceability deliverable.

A4.D2.1 – Basic traceability model for run-time S&D

Monitoring

SERENITY - 027587 Version 1.0 Page 61 of 61

References

[1] Kloukinas C., Spanoudakis G., Ballas C., Presenza, D. (2006) A4.D2.2 - Basic set of Information

Collection Mechanisms for Run-Time S&D Monitoring

[2] Lindval M., Sandahl K., (1996) Practical Implications of Traceability, Software Practice and

Experience, vol. 26, no. 10, pp 1161-1180

[3] Mahbub K., Spanoudakis G. (2004) A Framework for Requirements Monitoring of Service Based

Systems , 2nd International Conference on Service Oriented Computing, New York. . Also available

from http://www.soi.city.ac.uk/~gespan/icsoc04.pdf

[4] Mana A., Munoz A., Sanchez F., Serrano D. (2006) A5.D2.1 – Patterns and Integration Schemes

Languages (First Version)

[5] Shanahan M. P. (1999) The Event Calculus Explained, in Artificial Intelligence Today, ed.

M.J.Wooldridge and M.Veloso, Springer Lecture Notes in Artificial Intelligence no. 1600,), pages

409-430, Springer. Also available from http://www.doc.ic.ac.uk/~mpsha/ECExplained.pdf

[6] Spanoudakis G. Mahbub K, (2006) Non Intrusive Monitoring of Service Based Systems , International

Journal of Cooperative Information Systems, Vol. 15, No. 3, 325-358. Also available from

http://www.soi.city.ac.uk/~gespan/ijcis06.pdf

[7] Spanoudakis G., Zisman A., (2005) Software Traceability: A Roadmap, in "Handbook of Software

Engineering and Knowledge Engineering - Vol. 3 Recent Advances", Shi-Kuo Chang (ed.), p. 395-

428, World Scientific Publishing Co., ISBN 981-256-273-7.

[8] Campadello S., Compagna L., Gidoin D., Giorgini P., Holtmanns S., Latanicki J., Meduri V.,

Pazzaglia J-C., Seguran M., Thomas R., Zanone N., (2006) A7.D2.1 – S&D Requirements

specifiation.

[9] Melton R. and Garlan D. (1997) Architectural Unification, in “CASCON '97: Proceedings of the 1997

conference of the Centre for Advanced Studies on Collaborative research”, p. 18, Toronto, Ontario,

Canada, IBM Press. Also available from http://citeseer.ist.psu.edu/melton97architectural.html

[10] Spanoudakis G., Kloukinas C., Androutsopoulos K. (2007), Towards Security Monitoring Patterns,

Proceedings of the 22
nd

 Annual ACM Symposium on Applied Computing, Technical Track on

Software Verification (to appear)

[11] Mahbub K. (2007), Requirements Monitoring of Service Based Systems, PhD Dissertation,

Department of Computing, City University.

