Integration of a function of two variables
Similar idea to one variable. Recall:
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Example
Find the volume underneath the surface
f(x,y) =x2+2xy +1
For two variables: . .
where R is the square region:
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Note that the we could have performed the integration in the other
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More Complicated Regions

Integrate f = x? + 2xy + 1 over the region

What about if the region R that we are interested in is not a
square? Slice in the x direction, area of slice is: R
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where xg and x; will generally depend of y. So then we have:
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Solution
Initially choose to slice the region parallel to the x-axis:

Now note that the slices are between y =0 and y = 1.
Therefore out integral is
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So the inner integral is:
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Now to perform the integration:
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What about if we had chosen to slice parallel to the y-axis rather
that the x-axis. In this case the inner integral is:
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and our slices are in the region between x =0 and x = 1.
Therefore our integral can be written as:
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Example
Now to perform the integration:
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Solution
Consider: So we can transform the integral given into.
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Can we make life easier by altering the order of integration?



Example

A cylinder in three dimensions is given by x? + y? = 2ax. If it is
cut off by slices in the planes z = 0 and z = mx find the volume.
Note, it is actually possible to do this particular case without
integration as follows: The centre of the top face is at z = ma,
Cut the top part off and flip over to get a cylinder with volume
ma(na?) i.e. the volume is mra®.

Now we change variables: u = x — a, remembering that we must
also change the limits.
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Now let v = asinf and so du = acosfdf
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Consider changing coordinates from Cartesian to polar. Let

X =a+ rcosf

y=rsinf

then the height is m(a + r cos )
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Using a small area element rdrd
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Consider x(s, t) and y(s, t).
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The lower left coordinate a is, say, at (sp, tp). This will be mapped

to &’ which is at xo = x(so, t0), Yo = y(s0, to)-

Solution

First note that the height of each part above an area element dxdy
is mx. So the volume is going to be given by:
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V= 2ma3(g) =7ma®

This was rather time consuming. Is the a better way to deal with
the boundary?

Changing Variables In Integration

In the last example we saw that things became a lot easier in the
integration when we changed at the start from Cartesian
coordinates to polar. The area element in these co-ordinates was
dxdy and rdrd6 respectively.

This raises the question of how do we make such changes in
general both in two dimensions and three dimensions?
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Consider now the mapping of the other coordinates b, ¢, d.
The bottom right coordinate b is mapped to

(x(s+ ds),y(s + ds)). b is at (xo + 55%’;,)/0 + 55%).
Similarly ¢’ is at (xo + 6t%§,y0 + 65%).’

dis (xo + 55‘2—: + (5t%,y0 + 65% + dt%).



Now our area in x — y space is:
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In general
dxdy = |J|dsdt

where the Jacobian of the transformation is:
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Three or More Variables

Now if, for example, x(r, s, t), y(r,s,t) and z(r,s, t).

Then
dxdydz = |J|drdsdt

where
Ox  0x  9x
or ds Ot

This naturally extends to higher number of variables.

Solution
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Let r =sin¢
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However cos ¢ sin ¢ cos ¢ can be written as sing — sin® ¢, which can
in turn be written as %(sin 3¢ +sin ¢). Therefore:
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Polar Coordinates

Ssot <8x dy Ox0y
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Recall x = rcosf, y = rsinf. Then

Therefore |J| = rcos?0 + rsin? i.e. |J| = r. So dxdy = rdrdf

Example

Find the volume underneath f(x,y) = /1 — (x2 + y2) in the
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region bounded by the unit disc.
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Calculate
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Other Coordinate Systems

There are other coordinate systems. The two most common in
three dimensions are:

» Cylindrical Polars

» Spherical Polars
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So |J| = r. and so for a function, f
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Cylindrical Polar Coordinates

Xx = rcosf
y =rsinf
z=2z

Spherical Polar Coordinates
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Example Solution
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Find the volume of a sphere of radius a.
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