
Christos KLOUKINAS

Introduction

Goal

Thread States

Architecture

Layers

System Model

X Modes

Synthesis Steps

SS Reduction

No Clocks

Example

Implementation

Conclusions

Future

Synthesis of Application Specific Schedulers
for Heterogeneous Real-Time Systems

Guaranteeing Safety & Allowing QoS
Extensions

Christos KLOUKINAS

Christos.Kloukinas@imag.fr

Verimag

(http://www-verimag.imag.fr/)

Grenoble, France

École IN2P3 d’informatique: Temps Réel – 29 May 2003 – p.1/25

http://www-verimag.imag.fr/PEOPLE/Christos.Kloukinas/
http://www-verimag.imag.fr/


Christos KLOUKINAS

Introduction

Goal

Thread States

Architecture

Layers

System Model

X Modes

Synthesis Steps

SS Reduction

No Clocks

Example

Implementation

Conclusions

Future

Introduction

Heterogeneous Applications
Periodic, Aperiodic, Sporadic threads
Difficult to analyse their behaviour

Using PIP/PCP for deadlock avoidance
Difficult to get priorities right (may need to split
threads @ I/O points, at least when modelling)
PIP/PCP are pessimistic

RMA, EDF, etc.
RMA is only for Periodic (must group non-periodic),
max U = 69%
EDF : overhead, unstable under overload, priority
inversion, if not schedulable you don’t know why

Extending scheduling with QoS constraints ???
École IN2P3 d’informatique: Temps Réel – 29 May 2003 – p.2/25



Christos KLOUKINAS

Introduction

Goal

Thread States

Architecture

Layers

System Model

X Modes

Synthesis Steps

SS Reduction

No Clocks

Example

Implementation

Conclusions

Future

Our Goal

Analyse an application & synthesise a scheduler which :

Guarantees Safety - no Deadlocks / Deadline Misses

is not as Pessimistic as PCP

is easy to extend with additional QoS constraints

Meant to be used on single-processor systems

École IN2P3 d’informatique: Temps Réel – 29 May 2003 – p.3/25



Christos KLOUKINAS

Introduction

Goal

Thread States

Architecture

Layers

System Model

X Modes

Synthesis Steps

SS Reduction

No Clocks

Example

Implementation

Conclusions

Future

States of Threads

Application threads can be :

Blocked

Ready to execute = ¬ Blocked

Safe to execute ⊆ Ready

Executing (at most one) ∈ Safe

École IN2P3 d’informatique: Temps Réel – 29 May 2003 – p.4/25



C
hristos

K
L

O
U

K
IN

A
S

Introduction

G
oal

T
hread

S
tates

A
rchitecture

Layers

S
ystem

M
odel

X
M

odes

S
ynthesis

S
teps

S
S

R
eduction

N
o

C
locks

E
xam

ple

Im
plem

entation

C
onclusions

F
uture

S
ch

ed
u

ler
A

rch
itectu

re

Ready-Exec

Safe-Exec

READY TASKS - Rexec ⊆ Cexec

SAFE TASKS - Sexec ⊆Rexec

EXECUTING TASKS - Qexec ⊆ Sexec

Execution Scheduler Stack

Mutual Exclusion Rules

Provide low-level mechanisms

TASKS CANDIDATING FOR EXECUTION - Cexec

QoS-Exec

R-T OS

Application

Avoid Deadlocks
Guarantee Deadlines

Assure the QoS

Choose one among Qexec for execution

Application Tasks

É
cole

IN
2P

3
d’inform

atique:
Tem

ps
R

éel–
29

M
ay

2003
–

p.5/25



Christos KLOUKINAS

Introduction

Goal

Thread States

Architecture

Layers

System Model

X Modes

Synthesis Steps

SS Reduction

No Clocks

Example

Implementation

Conclusions

Future

Scheduler Layers

Ready-Exec: which threads are Ready ?
(mutual-exclusion, waiting for notification)

Safe-Exec: which among the Ready are Safe ?
(no deadlocks, deadlines honoured)

QoS-Exec: which of the Safe meet the QoS req. ?
(speed, memory, energy)

The Real-Time OS picks one among the latter as the
Executing thread

We synthesise the Ready-Exec & Safe-Exec layers, con-
sidering a maximal QoS-Exec scheduler (i.e., all Safe
threads meet the QoS requirements) — the user provides
a different QoS-Exec scheduler, if he so wishes.

École IN2P3 d’informatique: Temps Réel – 29 May 2003 – p.6/25



Christos KLOUKINAS

Introduction

Goal

Thread States

Architecture

Layers

System Model

X Modes

Synthesis Steps

SS Reduction

No Clocks

Example

Implementation

Conclusions

Future

QoS Policies

What is a QoS policy (our definition) ?
Something that helps increase some “goodness”
metric
Something that cannot kill you
So, it’s only applicable on safe threads

Examples :
(Locally) Minimise Context-Switches
Helps with optimising Speed, Memory accesses
(fewer cache flushes/misses), Energy . . .

Exception : (there’s always one . . . )
Non-Preemption
Too important to forbid – for network messages, it’s
the only way

École IN2P3 d’informatique: Temps Réel – 29 May 2003 – p.7/25



Christos KLOUKINAS

Introduction

Goal

Thread States

Architecture

Layers

System Model

X Modes

Synthesis Steps

SS Reduction

No Clocks

Example

Implementation

Conclusions

Future

Scheduler Synthesis - The Casting

The Good : Scheduler

The Bad : Environment (i.e., Time)
Completely uncontrollable

And the Ugly : Application
Only controllable at pre-specified points

École IN2P3 d’informatique: Temps Réel – 29 May 2003 – p.8/25



Christos KLOUKINAS

Introduction

Goal

Thread States

Architecture

Layers

System Model

X Modes

Synthesis Steps

SS Reduction

No Clocks

Example

Implementation

Conclusions

Future

Scheduler Synthesis

Even though in theory we could control each
instruction, in practice we can only observe & control
instructions of the type:

lock/unlock ;
wait/waitTimed ;
waitForNextPeriod ; and
timer expirations

No re-scheduling at notify/notifyAll !
The notified thread(s) immediately block on the
(re-)lock, so no need to re-schedule

École IN2P3 d’informatique: Temps Réel – 29 May 2003 – p.9/25



Christos KLOUKINAS

Introduction

Goal

Thread States

Architecture

Layers

System Model

X Modes

Synthesis Steps

SS Reduction

No Clocks

Example

Implementation

Conclusions

Future

Scheduler Synthesis - II

Effectively, a two-player game,
Environment versus Scheduler ,
where the Scheduler is aided by the Application

Each player moves in turn

Scheduler/Controller Synthesis amounts to :
Find a winning strategy for the game
“What action must I (i.e., the Scheduler ) take to
prevent my opponent (i.e., the Environment ) from
winning (i.e., cause the Application to miss
deadlines) ?”

École IN2P3 d’informatique: Temps Réel – 29 May 2003 – p.10/25



Christos KLOUKINAS

Introduction

Goal

Thread States

Architecture

Layers

System Model

X Modes

Synthesis Steps

SS Reduction

No Clocks

Example

Implementation

Conclusions

Future

System Model - The Environment

A

Alarm
alarm
=⇒ change state & reschedule

¬ Alarm ∧ ¬ (Compute ∨ wait)
appli
=⇒ allow application to run

¬ Alarm ∧ (Compute ∨ wait)
tick
=⇒ advance clocks

École IN2P3 d’informatique: Temps Réel – 29 May 2003 – p.11/25



Christos KLOUKINAS

Introduction

Goal

Thread States

Architecture

Layers

System Model

X Modes

Synthesis Steps

SS Reduction

No Clocks

Example

Implementation

Conclusions

Future

System Model - The Scheduler

ti ∈ Rexec ∩ Sexec ∩Qexec

Choose ti
=⇒ T ′

Exec
= ti

A

École IN2P3 d’informatique: Temps Réel – 29 May 2003 – p.12/25



Christos KLOUKINAS

Introduction

Goal

Thread States

Architecture

Layers

System Model

X Modes

Synthesis Steps

SS Reduction

No Clocks

Example

Implementation

Conclusions

Future

System Execution Modes

No Alarms ⇒ Application

Alarm
s

?

Schedulers
Only

Time
Only

Time
and

Application

Re-
Sch

ed
ule

Fire
Alarm

(s)

New tick ⇒ Alarms ?

École IN2P3 d’informatique: Temps Réel – 29 May 2003 – p.13/25



Christos KLOUKINAS

Introduction

Goal

Thread States

Architecture

Layers

System Model

X Modes

Synthesis Steps

SS Reduction

No Clocks

Example

Implementation

Conclusions

Future

Scheduler Synthesis Basic Idea

Construct the entire state space

Find Deadlock states
These identify states where the Application
deadlocked due to a cycle in the shared resources;
and
states where the Application missed a deadline.

École IN2P3 d’informatique: Temps Réel – 29 May 2003 – p.14/25



Christos KLOUKINAS

Introduction

Goal

Thread States

Architecture

Layers

System Model

X Modes

Synthesis Steps

SS Reduction

No Clocks

Example

Implementation

Conclusions

Future

Scheduler Synthesis Basic Idea - II

From each deadlock state:
Go backwards in the trace up to the first state
where the scheduler could have made this trace
impossible (i.e., don’t allow some thread to execute)
All these constraints are effectively the constraints
we need for implementing the Safe scheduler layer.
So, Safe-Exec is a table, indexed by a system
state, containing the Application threads which we
must not allow to execute at that state

If no thread can be scheduled at some state, add the
state to the deadlocked states

If no thread can be scheduled at the initial state, there
is no Safe scheduler for this application

École IN2P3 d’informatique: Temps Réel – 29 May 2003 – p.15/25



Christos KLOUKINAS

Introduction

Goal

Thread States

Architecture

Layers

System Model

X Modes

Synthesis Steps

SS Reduction

No Clocks

Example

Implementation

Conclusions

Future

Synthesis Steps

Use the untimed model to remove deadlocks
Obtain a Deadlock-Free scheduler for any
combination of underlying hardware and algorithms
used for the computations

avoid dormant deadlocks
be robust against wrongly estimated execution
durations
know if you got it really wrong . . .

Do so using a much smaller model than the
original timed one
Use the Deadlock-Free scheduler to constrain the
timed model
Find additional constraints for avoiding missed
deadlines

École IN2P3 d’informatique: Temps Réel – 29 May 2003 – p.16/25



Christos KLOUKINAS

Introduction

Goal

Thread States

Architecture

Layers

System Model

X Modes

Synthesis Steps

SS Reduction

No Clocks

Example

Implementation

Conclusions

Future

State Space Reduction

Branching Bisimulation Equivalence (bbe)
reduction

Series of consecutive ticks are substituted by a
single “super” tick
A safe reduction , since we could not perform
scheduling anywhere inside such a series in the
first place
We only pay for the ticks we can observe . . .

A 74% reduction of the state space on a small
example

École IN2P3 d’informatique: Temps Réel – 29 May 2003 – p.17/25



Christos KLOUKINAS

Introduction

Goal

Thread States

Architecture

Layers

System Model

X Modes

Synthesis Steps

SS Reduction

No Clocks

Example

Implementation

Conclusions

Future

State Space Reduction - II

Non-Preemption
When an alarm fires, while some thread is
computing, we never preempt it
Conservative reduction - we may fail to find a
scheduler
Sometimes this is the reality (messages in
networks)
If negative, the system is overloaded and we
identify the set of problematic threads
A 40% reduction (on its own), 80% when
combined with bbe

Use the constraints found in the previous steps
(deadlocks,non-preemption) to constrain the system
when preemption is allowed

École IN2P3 d’informatique: Temps Réel – 29 May 2003 – p.18/25



Christos KLOUKINAS

Introduction

Goal

Thread States

Architecture

Layers

System Model

X Modes

Synthesis Steps

SS Reduction

No Clocks

Example

Implementation

Conclusions

Future

Synthesised Scheduler

Constraints :
−−→
PCi ∧

−−−−→
Clocks i ⇒ Do not execute

−−−→
Thr ij

(where i is a state in the state space)

The scheduler needs to examine the PC’s and the
Clocks of all the threads to identify the current state i

Reality Check :
Observing clocks is costly
Using clocks (i.e., watchdogs) is not for free either
Can we avoid paying this overhead ?

Try to find a set of constraints which are
independent of time, i.e.,
−−→
PCi ⇒ Do not execute

−−−→
Thr

′

ij

École IN2P3 d’informatique: Temps Réel – 29 May 2003 – p.19/25



Christos KLOUKINAS

Introduction

Goal

Thread States

Architecture

Layers

System Model

X Modes

Synthesis Steps

SS Reduction

No Clocks

Example

Implementation

Conclusions

Future

No Clocks

Removing clocks from constraints can cause deadlines
to be missed

So, remove clocks & synthesise again
(by now the system is reduced ˜ 89%)

If it fails what ?
The application is not robust with respect to time !
Either :

Rewrite it (change algos / hardware); or
Use the safe scheduler which examines the clocks
but make sure it ain’t too slow !

École IN2P3 d’informatique: Temps Réel – 29 May 2003 – p.20/25



C
hristos

K
L

O
U

K
IN

A
S

Introduction

G
oal

T
hread

S
tates

A
rchitecture

Layers

S
ystem

M
odel

X
M

odes

S
ynthesis

S
teps

S
S

R
eduction

N
o

C
locks

E
xam

ple

Im
plem

entation

C
onclusions

F
uture

A
n

E
xam

p
le

V.monitorEnter

[2,3] V_write

L.monitorEnter

[1,1] L_fresh:=true

L.notify

L.monitorExit

V.monitorExit

notified

! V_fresh

V_fresh

Writer

notified \/ timedout

Refresher

L.monitorEnter

L.monitorEnter

[1,1] L_fresh:=false

L.timed_wait(13)

V.monitorEnter

[1,1] V_fresh:=L_fresh

V.notify

V.monitorExit

L.monitorExit

User

V.monitorEnter

while(!V_fresh)

V.wait

V.monitorEnter

[2,2] V_fresh:=false; V_read

V.monitorExit

[5,6] compute

wait_for_period(20)

Shared variable V

holds the latest value

read by Writer (and

used by User) & L tells

us if it’s fresh enough

(calculated by the Re-

fresher)

É
cole

IN
2P

3
d’inform

atique:
Tem

ps
R

éel–
29

M
ay

2003
–

p.21/25



Christos KLOUKINAS

Introduction

Goal

Thread States

Architecture

Layers

System Model

X Modes

Synthesis Steps

SS Reduction

No Clocks

Example

Implementation

Conclusions

Future

Example (continued)

Original Timed Model: 45.5 K States

10 states in the untimed model are Deadlock states

It Misses a Deadline in 367 states in the timed model

Synthesised :
8 constraints for avoiding Deadlocks
30 constraints for guaranteeing Deadlines when
QoS =Non-Preemption
18 additional constraints when allowing Preemption
& no longer observing clocks

56 constraints in total – final safe state space has 1.6
K states

École IN2P3 d’informatique: Temps Réel – 29 May 2003 – p.22/25



Christos KLOUKINAS

Introduction

Goal

Thread States

Architecture

Layers

System Model

X Modes

Synthesis Steps

SS Reduction

No Clocks

Example

Implementation

Conclusions

Future

Implementation

From Java application to abstract model : By hand

From abstract to detailed model (slicing, etc.) : AWK

CADP tools for the bbe reduced state space

Synthesis algorithm : Lisp

Constraints to C code : AWK script

Basic library for eCos: C

330 MHz Pentium II – Min/Avg/Max/Avg-Dev (in µs)
Schedule : 0.00 / 0.66 / 4.00 / 0.45
Context Switch : 0.00 / 0.77 / 1.00 / 0.35
Trylock (unlocked) : 0.00 / 0.69 / 2.00 / 0.47
Unlock (locked) : 0.00 / 0.75 / 3.00 / 0.47

École IN2P3 d’informatique: Temps Réel – 29 May 2003 – p.23/25

http://www.inrialpes.fr/vasy/cadp/


Christos KLOUKINAS

Introduction

Goal

Thread States

Architecture

Layers

System Model

X Modes

Synthesis Steps

SS Reduction

No Clocks

Example

Implementation

Conclusions

Future

Conlcusions

Weak points :
Initial model hand-constructed – some early results
let us believe we can solve this
We give the CPU to a thread by stopping the rest
& lock the underlying scheduler at certain points –
an implementation with priorities in user space

Strong points :
Completely automatic analysis – no need for RMA,
selecting priorities by hand, etc.
Durectly usable with heterogeneous applications
Helps in analysing an application – separates
constraints for deadlocks, deadlines (under
non-preemption, preemption)
Scheduling is easily extendible with QoS policies

École IN2P3 d’informatique: Temps Réel – 29 May 2003 – p.24/25



Christos KLOUKINAS

Introduction

Goal

Thread States

Architecture

Layers

System Model

X Modes

Synthesis Steps

SS Reduction

No Clocks

Example

Implementation

Conclusions

Future

Future

Forward, On-the-fly synthesis

Currently away in the mist :
Scheduling for memory – minimise total memory
needs / minimise cache misses
Scheduling for energy – minimise / stabilise energy
consumption
Multiprocessor systems, with different clock speeds
Automate WCET estimation of basic blocks
Simple Model-checker – the time automaton can
be an observer

“Optimum” Schedulers – variables, order, cost, etc.

École IN2P3 d’informatique: Temps Réel – 29 May 2003 – p.25/25


	Introduction
	Our Goal
	States of Threads
	Scheduler Architecture
	Scheduler Layers
	QoS Policies
	Scheduler Synthesis - The Casting
	Scheduler Synthesis
	Scheduler Synthesis - II
	System Model - The Environment
	System Model - The Scheduler
	System Execution Modes
	Scheduler Synthesis Basic Idea
	Scheduler Synthesis Basic Idea - II
	Synthesis Steps
	State Space Reduction
	State Space Reduction - II
	Synthesised Scheduler
	No Clocks
	An Example
	Example emph {(continued)}
	Implementation
	Conlcusions
	Future

