
 

 

 

 
A4.D4.1 – Mechanisms for detecting potential S&D 

threats 
N. Amalio, V. Di Giacomo, C. Kloukinas, G. Spanoudakis 

 

 

Document Number A4.D4.1 

Document Title  Mechanisms for detecting potential S&D threats 

Version 1.0 

Status final 

Work Package WP 4.4 

Deliverable Type  Report 

Contractual Date of Delivery  28/02/2008 

Actual Date of Delivery  14 May 2008 

Responsible Unit  CUL 

Contributors  

Keyword List   

Dissemination level PU 



 
Mechanisms for detecting potential S&D threats 

 

SERENITY - 027587 Version 1.0   Page 2 of 57 

 

Change History 

Version Date Status Author (Unit) Description 

0.1 19/12/2007 Draft Nuno Amalio (CUL) First version of document 
structure. Initial draft of 
sections 1 and 3. 

0.2 8/01/2008 Draft Valentina Di Giacomo 
(ENG) 

Inputs on modelling aspects 

0.3 18/01/2008 Draft Nuno Amalio (CUL) Drafted Section 3 (threat 
detection mechanisms, an 
overview). 

0.4 22/01/2008 Draft George Spanoudakis 
(CUL) 

Revised introduction of section 
3, and terminology (section 
3.1). Introduced section 3.2 
(overview of detection 
mechanisms of SERENITY). 

0.5 25/01/2008 Draft Nuno Amalio (CUL) Re-structured section 3. 
Introduced section 7 for case 
study and examples. 

0.6 18/4/2008 Draft Nuno Amalio (CUL) Re-structured document. Added 
sections 2, 3, 4, and 7. 

0.7 18/4/2008 Draft Christos Kloukinas 
(CUL) 

Initial draft of section 6 

0.8 21/4/2008 Draft George Spanoudakis 
(CUL) 

Revised draft of Sections 4 and 
6, Executive summary  

0.9 28/4/2008 Draft Nuno Amalio (CUL) Revision of Section 4  

0.10 29/4/08 Draft Christos Kloukinas 
(CUL) 

Revision of Sections 2 and 4 

0.11 30/4/2008 Draft Nuno Amalio (CUL Extension of Section 7  

0.12 7/5/2008 Draft 
submitted 
for quality 
review 

George Spanoudakis 
(CUL) 

Final editing 

1.0 14/5/2008 Final Nuno Amalio (CUL) After quality review 



 
Mechanisms for detecting potential S&D threats 

 

SERENITY - 027587 Version 1.0   Page 3 of 57 

 

Executive Summary 

This document presents the mechanisms for detecting threats at run-time in the context of the 
SERENITY framework. These mechanisms are being implemented and in their final version will 
constitute an integrated part of the SERENITY framework serving two main functional objectives 
within it. The first objective is to support the automatic generation of monitoring policies and attack 
signatures that can be used for the detection of runtime violations of S&D properties security. The 
second objective is to estimate the likelihood of potential violations of S&D properties (aka S&D 
threats). 

The generation of attack signatures starts from the specification of a security objective for a specific 
system asset. Starting from a pair of a security objective and an asset, the attack signature generator 
identifies the possible system operations whose execution can potentially violate the required 
security property that underpins the goal. Subsequently, it creates initial monitoring specifications 
using pre-specified monitoring rule templates that cover basic security properties. These initial 
monitoring specifications might not include directly monitorable events and/or make references to 
system states which cannot be directly monitored at runtime. Hence, it is necessary to be 
transformed into attack signatures that can be monitored merely on the basis of runtime events 
received by the monitor during the operation of a system. This transformation is based on planning 
that uses an abductive reasoning procedure and a set of assumptions (EC formulas)  that indicate 
how concrete events that can be monitored during the operation of a system can set and modify 
system states and/or generate other non directly observable events. 
If the generation of monitorable attack signatures is succesfull then the usets of the SERENITY 
monitoring framework can turn them into monitoring policies and use them to detect security 
threats for the system being monitored. It should be noted, however, although the mechanisms that 
we have presented in this report support the generation of attack signatures from security objectives 
and assets there is no guarantee that the specification of a security objective for a specific system 
asset can always lead to the generation of monitorable attack signatures. 
The detection of security threats at runtime is based on the basic monitoring capability of the 
SERENITY monitoring framework. More specifically, as soon as some runtime event instantiates a 
security monitoring rule and can, therefore, possibly lead to a violation of this rule, the event 
constitutes a security threat. To enable, however, the users of the SERENITY monitoring 
framework concentrate on security threats which are more likely to lead to a violation of security 
property in some future state of the system, the framework should calculate the likelihood of a 
violation given the current state of a system. The computation of this likelihood is the second main 
objective of the mechanisms described in this report and the computation of this likelihood is based 
on the Dempster Shafer theory of evidence.  



 
Mechanisms for detecting potential S&D threats 

 

SERENITY - 027587 Version 1.0   Page 4 of 57 

 

Table of Contents 

1. Introduction ........................................................................................................................... 6 

2. An overview of our threat detection approach ..................................................................... 7 
2.1. Motivating Example.......................................................................................................... 7 

2.2. Stages of threat detection .................................................................................................. 8 
3. Generation of monitoring policies ....................................................................................... 13 

3.1. Overview of monitoring templates .................................................................................. 13 
3.2. The Formal Template Language...................................................................................... 14 

3.2.1. A short introduction to FTL ..................................................................................... 14 
3.2.2. Example of FTL template of EC predicate ............................................................... 16 
3.2.3. FTL semantics and instantiation mechanisms........................................................... 16 

3.3. Expressing Monitoring Templates in FTL....................................................................... 18 
3.3.1. Confidentiality Monitoring Template in FTL ........................................................... 18 

3.4. Generating monitoring policies from security objective and asset.................................... 19 
3.4.1. Template selection from Security Objective ............................................................. 20 

3.4.2. Gathering instantiation information from the  security asset ..................................... 20 
3.4.3. Example................................................................................................................... 23 

3.5. Summary ........................................................................................................................ 25 
4. Attack signature generation ................................................................................................ 26 

4.1. Overview ........................................................................................................................ 26 
4.2. The abductive plan generation algorithm......................................................................... 28 

4.3. Example.......................................................................................................................... 29 
5. Evaluation of threat likelihood............................................................................................ 35 

5.1. Overview ........................................................................................................................ 35 
5.2. Event uncertainties.......................................................................................................... 35 

5.3. Threat likelihood............................................................................................................. 36 
5.4. Basic probabilities for event occurrences......................................................................... 38 

5.5. Combination of basic probability assignments through DS belief networks ..................... 42 
5.6. Example of threat likelihood evaluation .......................................................................... 47 

6. Integration with SERENITY Framework .......................................................................... 50 
7. Related work ........................................................................................................................ 52 

7.1. Anomaly-based approaches............................................................................................. 52 



 
Mechanisms for detecting potential S&D threats 

 

SERENITY - 027587 Version 1.0   Page 5 of 57 

 

7.2. Misuse-based approaches ................................................................................................ 53 

7.3. Other approaches ............................................................................................................ 53 
8. Conclusions .......................................................................................................................... 54 

 



 
Mechanisms for detecting potential S&D threats 

 

SERENITY - 027587 Version 1.0   Page 6 of 57 

 

1.  Introduction 
This document presents the mechanisms for detecting threats in the context of SERENITY 
framework. These mechanisms serve the following functional objectives within the framework: 

 They support the automatic generation of attack signatures that can be stored in S&D 
patterns as security monitoring rules and used for the detection of security threats at runtime. 
The generation of attack signatures starts from the specification of a security objective for a 
specific system asset that is defined in the class model of an S&D pattern. Starting from a 
pair of a security objective and an asset, an attack signature generator identifies generic 
monitoring templates for the objective and possible system operations whose execution can 
potentially violate the objective. Subsequently, it creates initial attack signatures by 
instantiating the identified monitoring templates for the objective using the system 
operations. These initial attack signatures might not include monitorable events or make 
references to system states which cannot be directly monitored at runtime. Hence, it is 
necessary to be transformed into attack signatures that can be monitored. This 
transformation is carried out by an abductive reasoning procedure using assumptions about 
the system that indicate how concrete events that can be monitored during the operation of a 
system can set and modify system states and/or generate other non directly observable 
events. If the generation of monitorable attack signatures is succesfull then the users of the 
SERENITY monitoring framework can give them the status of  security monitoring rules 
and store them S&D patterns to detect security violations and threats for the system using 
the mechanisms described below. 

 They support the detection of security threats (i.e., potential violations of security 
monitoring rules) at runtime by extending the basic monitoring capability of the SERENITY 
monitoring framework. More specifically, as soon as some runtime event instantiates a 
security monitoring rule and can, therefore, possibly lead to a violation of this rule, the event 
constitutes a security threat. To enable, however, the users of the SERENITY monitoring 
framework concentrate on security threats which are more likely to lead to a violation of 
security monitoring rule, the framework calculates the likelihood of a violation given the 
current state of a system. The calculation of likelihood is based on the Dempster Shafer 
theory of evidence.  

The rest of this report is structured as follows. In Section 2, we provide an overview of the 
overall approach for the detection of threats. In Sections 3 and 4, we discuss the generation of 
attack signatures. In Section 5, we discuss the mechanisms for the estimation of the likelihood 
of threats. In Section 6, we provide an overview of the relation of the mehanisms described in 
this report with the runtime and development framework of SERENITY. Finally, in Section 7 
we provide an overview of related work and, in Section 8, we summarise our approach. 

 



 
Mechanisms for detecting potential S&D threats 

 

SERENITY - 027587 Version 1.0   Page 7 of 57 

 

2.  An overview of our threat detection approach 
Run-time threat detection is aimed at detecting potential violations of S&D properties, before these 
violations actually occur, and estimating their likelihood. Threat detection is the responsibility of 
SERENITY’s overall monitoring framework (shortly referred to as “monitor” in the rest of this 
report) and the mechanisms supporting it are being implemented as part of this framework [2]. 
This section provides an overview of our approach for threat detection that is introduced based on a 
motivating example.  

2.1.  Motivating Example 
To appreciate the notion of threats as seen in SERENITY, consider an example drawn from the e-
healthcare system that is described in [15][16]. This e-healthcare system supports the monitoring of 
patients with critical medical conditions and the provision of assistance and medication to them 
based on smart-item technology. 
In this system, patients who have been discharged from hospitals with potentially threatening 
medical conditions can use an e-health terminal (EHT) − that is an e-health application installed on 
their PDAs − to contact an emergency response centre (ERC) for medical assistance and fast 
ordering of medication. To guarantee the availability of medical advice to patients, one of the 
workflow level S&D patterns for this system suggests the search for an alternative doctor in cases 
where following a health threatening incident for a given patient, the doctor who is normally 
associated with the particular patient is not available. Consider also that in this system, doctors have 
access the medical data of patients through the execution of specific system operations but subject 
to the satisfaction of the requirements shown in Table 1.  

R1 A patient’s medical file may be seen by the doctor of the patient only. 

R2 All doctors may see partial pieces of information belonging to a 
patient's medical file in a way that preserves requirement R1. 

Table 1. Examples of requirements for the e-health care system (based on [15]). 
The first of these requirements (R1) states that the complete medical file of a patient may be seen 
only by the doctor of the patient. This requirement is a confidentiality requirement whose aim is to 
protect the privacy of patients. 
In cases, however, where an alternative doctor is identified and given responsibility for handling a 
patient incident by ERC according to the alternative doctor search pattern there is a potential for 
violation of R1. More specifically, suppose that the patient in question is Mr Anderson, the doctor 
of this patient is Dr Jones, and in a specific incident requiring medical help for Mr Anderson, 
another doctor, namely Dr. Smith, who is not Anderson's doctor is identified and appointed for 
handling the case since Dr. Jones is not available (Figure 1). In this scenatio, although Dr Jones 
would have access to the full medical file of Mr. Anderson, Dr Smith should not enjoy the same 
access level as he is not Anderson's doctor. Note, however, that due to requirement R2, the system 
will have operations providing access to parts of a patient’s medical file which in the particular 
scenario may conflict with R1. 
A scenario illustrating how R2 may conflict with R1 is shown  in Figure 1. In this scenario, Dr 
Smith can infer all the information in Anderson's medical file by obtaining gradually partial 



 
Mechanisms for detecting potential S&D threats 

 

SERENITY - 027587 Version 1.0   Page 8 of 57 

 

information about Anderson which enables him infer other information in Anderson’s file without 
having accessing it directly. This indirect way of accessing confidential data in this case is an 
instance of the so-called inference attacks [17]. 

Dr Jones

Dr Smith

Anderson’s 
medical file

HasAccessTo

Mr Anderson
Owns

IsDoctor

Partial Data 1 Partial Data 2 Partial Data n
. . .

HasAccessTo

Has not direct 
access to

 
Figure 1.  A partial data inference scenario in the e-health care system. 

In this example, whilst it is relatively easy to specify a monitoring rule for detecting runtime 
behaviour that would violate directly requirement R1 (this rule could simply state that only the 
doctor of a patient has the authorisation to execute the operation which retrieves the whole medical 
file of the patient), it is relatively difficult to do the same for the latter requirement. This is because 
the specification of a rule enabling the monitoring of R2 requires the identification of: (a) the 
combinations of the partial medical data that would reveal confidential information to an 
unauthorised doctor, and (b) the different possible ways of getting access to these medical data 
within the system so as to monitor them.  
Furthermore, when a rule for R2 (and R1 for the same matter) is specified, it is necessary for the 
monitor to have a means of assessing how “close” the system is to an inference attack at each state 
of its operation. This, however, would require looking at the set of the partial data that an 
unauthorised doctor has got up to a certain point and the likelihood of getting the remaining data 
which are required for the inference. 

Our approach to threat detection supports these two activities (i.e., the specification of complex 
monitoring rules and the evaluation of the likelihood of potential violations of rules) as we describe 
in the following. 

2.2.  Stages of threat detection 
As discussed earlier, the threat detection mechanisms that we have designed for SERENITY 
support: (a) the off-line, automated construction of security monitoring rules for an S&D Pattern, 
based on its constituent components/parameters and the S&D Properties it guarantees, and (b) the 
continuous evaluation of the current level of threat for an S&D Pattern based on the collection of 
run-time information on the likelihood of the occurrence (or non-occurrence) of the events which 



 
Mechanisms for detecting potential S&D threats 

 

SERENITY - 027587 Version 1.0   Page 9 of 57 

 

appear in these rules and ways to update this information.  In the remaining of this section, we 
provide an overview of the approach underpinning the design of these mechanisms following an 
introduction of the basic concepts used in it. These concepts are:  

 System model: A system model is a specification of the components of a software system 
that is being monitored and the operations provided by these components at an interface 
level. A system model may also include relationships between the components that it refers 
to as well as relationships between the object types of the parameters of the operations of 
these components. Typically a system model comprises the specification of the parts of an 
S&D pattern and the S&D class that the pattern conforms to and is extracted from an S&D 
pattern. 

 Asset: An asset is a type of information that is used and/or held by a system or an operation 
of a system (e.g. the type of an operation parameter, part of the internal structure of a 
component etc).  

 S&D Property.  An S&D property is a property related to the security and dependability of 
an asset. 

 S&D objective. An S&D objective is a specification that expresses the intention to achieve a 
specific S&D Property in connection with one or more assets (e.g. confidentiality of an 
operation parameter, availability of a specific operation of a component of an S&D pattern, 
integrity of an operation of the S&D class of an S&D pattern). 

 Event. Any observable (or deduced) occurrence in a network or a system. 
 S&D monitoring rule. A specification of a combination of events and circumstances (e.g. 

system states), representing a property, whose violation can be detected at runtime. In 
SERENITY, S&D monitoring rules are specified by Event Calculus formulas as part of 
S&D patterns. 

 Assumption. An Event Calculus formula which specifies how events that are directly 
observed during the system operation at runtime affect the state of the system or can lead to 
the establishment of other events. During monitoring, assumptions are used by the 
SERENITY monitor to deduce information about the state of the monitoring system or 
derived events. Unlike S&D monitoring rules, assumptions do not need to be satisfied by 
runtime events and their satisfiability is not checked by the monitor. 

 Monitoring policy. Part of the specification of an S&D pattern that specifies the conditions 
that need to be monitored at runtime in order to ensure the correctness of the pattern’s 
operation and, therefore, the achievement of the S&D property that the pattern is meant to 
provide. A monitoring policy has two parts: a part that includes the S&D monitoring rules 
that should be checked at runtime and a part that includes the assumptions which can be 
used to derive information about the state of the system that is being monitored and event 
about it which are necessary for checking the S&D monitoring rules. 

 Rule violation. A state in which a monitoring rule is known to have been violated. 
 Threat. Any circumstance or event with the potential to violate a monitoring rule. 
 Threat likelihood. A measure that indicates how likely is for a threat to occur. 
 Attack signature. An attack signature is a combination of events whose occurrence in certain 

violates an S&D Property. An attack signature consists of only of events that can be detected 
during the system operation at runtime without referring to system states that should be 



 
Mechanisms for detecting potential S&D threats 

 

SERENITY - 027587 Version 1.0   Page 10 of 57 

 

established during monitoring. Thus, appart from the absence of any references to system 
states, attack signatures are otherwise equivalent to S&D monitoring rules and can acquire 
this status if an S&D pattern developer includes them in the monitoring policy of an S&D 
pattern. 

 Attack. An attack is an explicit attempt to execute an attack signature that violates an S&D 
property. 

As indicated in the above terminology, each S&D Pattern contains a monitoring policy with two 
parts. The first of these parts describes the behaviour of the components of the pattern at some high 
level of abstraction and how this behaviour can change the state of the monitored system (i.e. the 
system that deploys the pattern). This part is expressed by Event Calculus formulas known as 
assumptions [2]. Assumptions are used by the monitor at runtime to deduce important facts about 
the state of the system which are relevant to monitoring. The second part of a monitoring policy 
specifies the specific properties which should be monitored at run-time to ensure that the S&D 
Properties of the S&D Pattern are indeed guaranteed. These properties are the monitoring rules that 
the monitor is checking at runtime to detect if they are violated. 

The specification of monitoring rules is generally more difficult than the specification of the 
assumptions of an S&D Pattern. This is because assumptions tend to be rather simple and 
straightforward descriptions of how the execution of a system operation changes the state of the 
system (e.g. the state of some internal variable, etc). Unlike assumptions, however, the specification 
of monitoring rules should describe of ALL the possible ways in which the combination of the 
known runtime events can render an S&D Property invalid. 

To address this problem which arises in the specification of monitoring policies in S&D patterns, 
we have introduced monitoring templates which specify in an abstract parametric form  monitoring 
rules for general S&D Properties including, for example, properties such as confidentiality, integrity 
and availability [19]. 

Through the use of these monitoring templates, S&D Pattern developers can produce the monitoring 
rules needed for the monitoring policy of the pattern more easily. This is possible by selecting the 
S&D property they are interested in, the assets in the pattern that need protection with respect to the 
selected property, and the elements interacting with these assets (operations, data types). 
Subsequently, they can instantiate the monitoring template which corresponds to the selected 
property using the operations and data types which relate to the aspect that needs protection. Our 
initial template-based approach to the generation of monitoring policies that was described in [19] 
assumed that this process would be carried out manually. To ease it further, however, we have 
developed a scheme for automating it. Our expectation of this scheme is that it will increase not 
only the usability of the whole monitoring framework of SERENITY but also the degree of 
confidence that users have in it, since the automated construction of the monitoring rules can ensure 
their correctness. 

As in [19], the automatic generation of monotoring rules starts from the identification of the assets 
of an S&D pattern and the S&D Properties required for them in order to automatically construct the 
monitoring rules needed for the pattern. The information needed for the instantiation comes from 
the identified assets and the assumptions which describe exactly how these assets are used in the 
context of the specific S&D Pattern. Additional information is taken from the basic architectural 
description of the S&D Pattern components and parameters within the pattern, which effectively 
identifies the relationship of these elements with the abstract events and states used in the 
monitoring templates. 



 
Mechanisms for detecting potential S&D threats 

 

SERENITY - 027587 Version 1.0   Page 11 of 57 

 

These automatically generated monitoring rules can then be used along with the monitoring 
assumptions to automatically derive all possible ways through which the rules can be violated at 
run-time, i.e., the attack signatures. Knowing these attack signatures is essential for computing the 
threat likelihood during run-time, since it is by matching these possible attack signatures that one is 
able to estimate the likelihood of an attack becoming successful. 

The process of generating monitoring rules, attack signatures and detecting the likelihood of 
violations of them is shown in Figure 2. As shown in the figure, the security objective and the 
design information of an S&D Pattern are used by the Template Instantiator to produce the 
monitoring policy. Using this policy, the Attack Signature Generator produces the attack signatures 
for the S&D Pattern and, finally, the Threat Evaluator uses the signatures and runtime observations 
to evaluate the likelihood of threat at runtime. 

The creation of the monitoring policy itself is shown in more detail in Figure 3. Using a pair of a 
security objective and an asset (i.e., a pair of the form 〈Security Objective, Asset〉), the monitoring 
template which is associated with the specific security objective is identified in the catalogue of 
monitoring templates initially. Also, the asset og interest is used to select appropriate elements from 
the design of the S&D Pattern, which are used subsequently to instantiate the chosen monitoring 
template. Then the instantiated monitoring template forms a monitoring policy that can be used to 
detect violations of S&D properties but not threats. For the latter, it is necessary to derive all 
possible attack plans, i.e., the different ways that the interaction of the S&D Pattern’s elements can 
violate each monitoring rule within the policy. These attack plans are computed by the Attack 
Signature Generator component of Figure 2 and form the attack signature shown in Figure 4. 

 

Attack Signature 

Generator

Threat Evaluator

Monitoring Policy

Generated attack signature 

and run -time observations

Template Instantiator

Threat likelihoods

Security Objective / 

Design information

 
Figure 2. Main components for threat detection. 



 
Mechanisms for detecting potential S&D threats 

 

SERENITY - 027587 Version 1.0   Page 12 of 57 

 

It should be noted that, the existence of different attack plans does not mean that these will always 
take place at runtime. Therefore, the final component of Figure 2, namely the Threat Evaluator, 
uses the information concerning known events and the currently known degree of correlation 
among events to evaluate the likelihood of each of these attack plans materialising and therefore the 
overall threat level. 

 

Initial Specification

S&D Design 

Elements
Monitoring 

Templates

Monitoring 

Policy

instantiates

generates

Security 

Objective

selectsFrom

Templates 

Catalogue

selects

Asset selects

 

Figure 3. Generation of a monitoring policy from monitoring templates and design models. 
 

(Rule, Assumptions)

AP1 AP2 AP3 APn...

 
Figure 4. From goals to attack signatures.  

Given the underlying uncertainty which exists with various aspects of the system, the evaluation of 
threat likelihood is based on the  Dempster Shafer theory of evidence [3]. Initially, when some 
event that (partially) matches the attack signature is observed then this constitutes a possible threat 
and its likelihood is evaluated. As more observations are gathered, this likelihood of threat may be 
confirmed and become stronger or refuted and become weaker. The evaluation of threat likelihood 
is carried out by the component signified as Threat Evaluator in Figure 2. 



 
Mechanisms for detecting potential S&D threats 

 

SERENITY - 027587 Version 1.0   Page 13 of 57 

 

3.  Generation of monitoring policies 
This section describes the scheme for the generation of monitoring policies by instantiating 
monitoring templates. This is what drives the software component Template Instantiator identified 
in Figure 2. 

3.1.  Overview of monitoring templates 
The monitoring templates described herein were first introduced in [19] and then in [20], in order to 
facilitate the specification of the monitoring rules for the monitoring policies of S&D Patterns. They 
were derived by the observation that the basic security properties, i.e., confidentiality, integrity & 
availability in the CIA model, need specific types of monitoring rules, whose structure is 
independent from the specific system they are defined for. The system specific differences have in 
general to do with the identification of the asset/data to be protected, the operations that 
access/modify the asset and the principals which perform these operations. Thus, if one identifies 
these design elements – asset, operations, and principals – then it is possible to produce a 
specialised version of the monitoring template for the specific system.  

Monitoring rules: 

∀ _o:Operation; _i:InformationTerm;  t1 :Time 

    _sender, _receiver, _owner, _agent1:Agent;     

 Happens(E1, t1, ℜ(t1, t1))  ∧  

 HoldsAt(exposes(<_o>, <_owner>, <_i>), t1) ⇒ 

 HoldsAt(authorised(<_owner>, <_receiver>, E1),t1) 

where: 

 E1 = e(_eID1
1

,<_sender>,<_receiver>, 

  [REQ-*|RES-*], <_o>, <_sender>) 

CSR1 

Assumptions:  

Initially(exposes(<_o>, <_owner>, <_i>)) CSA1 

∀  _authorO: Operation;  

 _sender, _receiver,_agent1, _owner:Agent; 
_authorisedValue, _result_authorO: Term; t:Time; 

 Happens(E2, t,ℜ (t,t)) ∧  
HoldsAt(equalTo(<_result_authorO>, 

 <_authorisedValue>),t) ⇒ 

 Initiates( E2, 
authorised(<_owner>,<_receiver>,E1),t) 

where 

E2 = e(_eID2,<_agent1>,<_sender>, RES-A, 
 <_authorO>, <_sender>) 

CSA2 

Figure 5. Pattern for confidentiality monitoring (adapted from [19]) 

                                                

1 The variables indicating the identifiers of events in all the formulas in the paper are assumed to be of type String and universally quantified. 



 
Mechanisms for detecting potential S&D threats 

 

SERENITY - 027587 Version 1.0   Page 14 of 57 

 

An example of such a template for confidentiality is the one shown in Figure 5.  The template uses 
as  template parameters the elements such as <_o>, <_owner>, etc. and uses these to specify when 
an asset <_i> owned by agent <_owner> is exposed to someone else. 

However, the templates of [19] were described in an ad-hoc language, which is a combination of the 
Event Calculus language used for the monitoring rules and assumptions, and of an informal 
language which introduced the template parameters, such as the asset <_i>, as can be seen in Figure 
5. 

The need to automate the process of template instantiation made it necessary to describe all parts of 
the templates templates in a formal language and, for this puprose, we have recasted templates 
using a language that is a combination of Event Calculus and the Formal Template Language (FTL) 
[10][11]. FTL is used to express the monitoring templates, as well as, to formalise the generation of 
monitoring policies from the templates given an instantiation, i.e., a mapping of the template 
parameters to specific modelling elements. 

In the following, we start by giving a description of FTL and then, we express the confidentiality 
monitoring template shown in Figure 5, and illustrate the monitoring policy generation process 
using this template and a design model from our motivating example. 

3.2.  The Formal Template Language 
The Formal Template Language (FTL) [10][11] is a generic formal language for expressing 
templates of any target language. A key characteristic of FTL is that it is generative; that is, it 
describes sentences of some target language (here we use EC) and can generate sentences when 
provided with an instantiation. FTL has a denotational semantics based on its abstract syntax (see 
[10][11] for further details). 
The following starts by giving a short introduction to FTL. Then, we present FTL’s syntax and 
show how we can use FTL to define templates of the Event Calculus. Finally, we discuss FTL’s 
semantics in more detail and discuss the implementation of its instantiation mechanisms. 

3.2.1.  A short introduction to FTL 
The main constructs of FTL are placeholders, lists, choice, template definitions and template 
references (see [10][11] for further details). The following briefly describes each of these 
constructs. 
Placeholders. Placeholders are represented by enclosing one variable within 〈〉. When not within 
lists, placeholders denote one variable occurrence and they are substituted by the value assigned to 
the variable when the template is instantiated. The template,  
 〈X〉=〈Y〉 ∨ 〈X〉=〈Z〉 ,  

includes four placeholders and three variables, X, Y and Z. This can be instantiated with the 
substitution set,  
 {Xa ”A”, Ya ”1”, Z a  “2”},  

to yield: 
 A=1 ∨ A=2 

List. A list comprises one list term, a list separator (the separator of the instantiated list terms) and a 
string representing the empty instantiation of the list, and it is represented by enclosing the list term 



 
Mechanisms for detecting potential S&D threats 

 

SERENITY - 027587 Version 1.0   Page 15 of 57 

 

within [ ]. The list term is a combination of text, placeholders and possibly other lists. Often, the 
abbreviated form of lists, without separator and empty instantiation, is used.  
A placeholder within a list denotes an indexed set of variable occurrences. This means that 〈X〉 and 
[〈X〉 ] actually denote different variable occurrences; 〈X〉 denotes an occurrence of the variable X, 
but [ 〈X〉 ] denotes the occurrence of the indexed set of variables, {x1, …, xn} 

The template,  
 [〈X〉=〈Y〉](∨, λ),  

can be instantiated with the sequence of substitution sets  
 〈{Xa ”A”, Ya ”1”}, { Xa ”B”, Y a  “2”}〉,  

to yield : 
 A=1 ∨ B=2 

Choice. The FTL choice construct expresses choice of template expressions. That is, only one of 
the available choices is present in the instantiation. There are two kinds of choice: optional and 
multiple. Optional choice is represented by enclosing a template expression within ( )? and it means 
that the enclosed expression may be present in the instantiation or not. Multiple choice is 
represented by enclosing the choice expressions within ( ) and separated by [] (see below); it means 
that one of the choice expressions must be present in the instantiation. Choices are instantiated with 
a choice-selection, a natural number, indicating the selected choice; non-selection takes the value 
zero. 

The template (〈X〉 = 〈Y〉 )? can be instantiated with (1, {X → “A”, Y → “1”), to yield: A = 1. To avoid 
the presence of the expression in the instantiation, the template can be instantiated with (0 {}), 
which simply yields the empty string. In the multiple-choice template, 
 ( <X> = <Y> [] <X> = {<Z>} ) 

the first choice is instantiated with (1, {X → “A”, Y → “1”}), to yield: A = 1; the second with 

(2, {X a  “A”, Z a  “2”} to yield: A = {2}. 

Template Definitions. FTL provides a construct to define templates, which associates some 
template name with a set of template expressions. For example, we may associate the name 
“SimpleDisjunctionOfEquals” with the template expression used above to illustrate placeholders: 
 〈SimpleDisjunctionOfEquals〉 tdef == 〈X〉 =〈Y〉 ∨ 〈X〉=〈Z〉 

We may also associate a name with the template expression used above to illustrate the list 
constructor: 
 〈CompositeDisjunctionOfEquals〉 tdef == [〈X〉=〈Y〉](∨, λ),  

Template Reference. Names are associated with templates so that they can be referenced by other 
templates. We define references to templates by using the “template reference” construct. For 
example, from the template defined above we can define a new template: 

〈SimpleOrCompositeDisjunction 〉 tdef ==  

 〈SimpleDisjunctionOfEquals〉 tref []〈CompositeDisjunctionOfEquals〉 tdef 

which defines a new template as a choice of two template references. 
 



 
Mechanisms for detecting potential S&D threats 

 

SERENITY - 027587 Version 1.0   Page 16 of 57 

 

The formal definition of FTL’s syntax in the Backus-Naur form (BNF) is given in Figure 6.  

T ::= TD | TD T 

TD ::= 〈I〉tdef == E 

E ::= CA | CA E 

A :: = 〈I〉 | T | 〈I〉 tref 

C ::= (E)? | (CL) 

CL ::= E1  [] E2 | E [] CL 

L ::= [ LT ](SEP, EI) | [ LT ] 

LT ::= CA | CA LT 

SEP ::=  Str 

T ::= Str 

Figure 6. The syntax of FTL. 

3.2.2.  Example of FTL template of EC predicate 
To further illustrate FTL in the context of the EC, suppose the following FTL template of an EC 
predicate, which specifies a number of event preconditions associated with the template event E: 
 〈FTLECDef〉tdef == (∀ t : Time) Happens (〈E〉, t, R(t, t)) ⇒ [ HoldsAt (〈F〉, t) ]  

This template includes two placeholders and one list term. It basically says that a number of pre-
conditions (HoldsAt predicate inside the list with placeholder F) may be associated with some event 
(E placeholder in Happens predicate). The template can be instantiated to give the following EC 
formula: 
 (∀ t : Time) Happens (Eat, t, R(t, t)) ⇒ HoldsAt (IsHungry, t)∧ HoldsAt (DinnerServed, t) 

Below, we give further examples of FTL templates of EC predicates and their instantiations. 

3.2.3.  FTL semantics and instantiation mechanisms 
FTL has a semantics based on substitutions. Given an instantiation (a set of substitutions) a 
template is substituted with values for placeholders until target language text is generated. FTL has 
been given two alternative semantics: the total-instantiation semantics and the partial-instantiation 
semantics [10][11]. Our implementation of the instantiation mechanisms follows the total-
instantiation semantics of FTL, which means that all substitutions are performed on some template 
until it has been totally instantiated. 

The instantiation process is done in two steps: 
1. First all template references constructs are substituted by the template they refer to. This is 

done by fetching the appropriate template from the template catalogue and performing the 
appropriate substitution. We call this process template reference resolution, and its 
underlying algorithm is described in Figure 7.  



 
Mechanisms for detecting potential S&D threats 

 

SERENITY - 027587 Version 1.0   Page 17 of 57 

 

2. After all template references have been resolved, substitutions are performed according to 
the given instantiation. This effectively performs the substitutions of placeholders, lists and 
choices until the final text of the target language (in our case the Event Calculus) is 
generated. A pseudo-code description of the algorithm that performs this is given in Figure 
8.  

Resolve_Template_References ( ftl_template : String) 

1. FTL_Abs_Syn_Tree = Parse_FTL_Def (ftl_template); 

2. For each node in FTL_Abs_Syn_Tree do 

3.    If node.type == tpl_ref then 

4.     Find_And_Replace (node, node.value); 

5.    end if 

6. end for 

end Resolve_Template_References 

Figure 7. Template reference resolution algorithm. 
Instantiate_Template (ftl_template : String; Instantiation) 

1. FTL_Abs_Syn_Tree = Parse_FTL_Def (ftl_template); 

2. If Has_references (FTL_Abs_Syn_Tree) then 

3.    raise exception “FTL Def not resolved”;  

4. end if 

5. For each node in FTL_Abs_Syn_Tree do 

6.    switch(node.type)  

7.       case tpl_placeholder then  substitute_placeholder(node, instantiation); 

8.       case tpl_choice then substitute_choice (node, instantiation); 

9.       case tpl_list then substitute_list (node, instantiation); 

10.    end case; 

11. end for 

end Instantiate_Template 

Figure 8. Algorithm for instantiation of placeholders, lists and choices. 
The software component FTL template instantiator, as shown in Figure 9, is responsible for 
carrying out the tasks described above, i.e., the implementation of the instantiation mechanisms as 
these are defined in the semantics of FTL [10][11].  

Template

Instantiation

FTL Template 

Instantiator

Target 

language text

 
Figure 9. The FTL template instantiator 



 
Mechanisms for detecting potential S&D threats 

 

SERENITY - 027587 Version 1.0   Page 18 of 57 

 

3.3.  Expressing Monitoring Templates in FTL 
In order to better illustrate our approach we will first re-specify the template for confidentiality that 
we introduced earlier (Section 3.1. in FTL and apply it to our motivating example (see Section 2) 
showing how these template can be specialised for the purpose of modelling partial access to some 
asset’s data, and then be automatically instantiated from elements of the system model of an S&D 
pattern. 

3.3.1.  Confidentiality Monitoring Template in FTL 
The confidentiality monitoring template that we introduced earlier in Section 3.1. is expressed in 
FTL as shown in Figure 10. The core part of this tempalte comprises one monitoring rule (formula 
1) and two assumptions (formulas 2–3).  Formula 1 says that if an agent is exposed to some asset he 
must be authorised to do so at the time of the exposition. Formula 2 says that an event 
“〈Authorise〉” initiates (sets to true) the fluent “Authorised〈Asset〉”. Formula 3 says that an event 
“〈Disclose〉” initiates the fluent “Exposed〈Asset〉”.   

The template of Figure 10 expresses a basic and general security property, namely confidentiality in 
relation to some asset’s data. By virtue of the monitoring rule that is expressed by formula 1, the 
template says that the asset’s data may be disclosed to some agent only if the agent is authorised to 
access these. This is because if that’s not the case the rule expressed by formula will be breached 
resulting in an S&D violation. Although quite general, however, this template does not support all 
possible needs of confidentiality monitoring and, in particular, it does not cover the case of partially 
accesing data which in the case of our motivating example in Section 2 is important.   

〈Confidentiality〉tdef ==  

(∀ ag : 〈Agent〉; a: 〈Asset〉;  t : Time)  

 HoldsAt (Exposed〈Asset〉 (ag, a), t) ⇒ HoldsAt (Authorised〈Asset〉(ag, a), t) 

(1) 

(∀ ag : 〈Agent〉; a: 〈Asset〉;  t : Time)  

  Happens(〈Authorise〉 (ag, a), t, R (t, t)) 

 ⇒  Initiates(〈Authorise〉 (ag, a), Authorised〈Asset〉  (ag, a), t) 

(2) 

(∀ ag : 〈Agent〉; a: 〈Asset〉;  t : Time)  

 Happens(〈Disclose〉 (ag, a), t, R (t, t))  

 ⇒ Initiates (〈Disclose〉 (a, ag), Exposed〈Asset〉 (ag, a), t) 

(3) 

Figure 10. Core confidentiality template. 
To deal with this case, we need to extend the core template so as to cover partial accesses to the 
asset’s data and the template for confidentiality with inference, given in Figure 11, extends the core 
confidentiality template to monitor exactly these indirect accesses to the asset. The FTL expression 
“〈Confidentiality〉ref” in the template of Figure 11 means that the core confidentiality template of 
Figure 10 is to be included at that point, and so instantiations of ‘Confidentiality.Inference’ also 
comprise an instantiation of the core ‘Confidentiality’ template. The ‘Confidentiality.Inference’ 
template is made entirely of assumptions (formulas (4)-(6)) with no additional monitoring rules. In 
particular, formula 4 in the extended template says that the event “〈DiscloseP〉” initiates the 



 
Mechanisms for detecting potential S&D threats 

 

SERENITY - 027587 Version 1.0   Page 19 of 57 

 

template fluent “KnowsPD〈Asset〉”. Formula 5 says that event “〈DiscloseP〉” initiates the fluent 
“Exposed〈Asset〉”, provided the agent already knows all partial pieces of the medical file apart from 
the one being accessed currently (by event 〈DiscloseP〉). Finally, formula 6 specifies which partial 
pieces of data are available. 

 

〈Confidentiality.Inference〉tdef ==  

〈Confidentiality〉tref 

 

∀ ag : 〈Agent〉; a: 〈Asset〉; pdt : 〈PDT〉; t : Time)  

 Happens(〈DiscloseP〉 (ag, a, pdt), t, R (t, t)) 

 ∧ HoldsAt(AvailablePD〈Asset〉 (pdt, t) 

 ⇒  Initiates (〈DiscloseP〉  (ag, a, pdt), KnowsPD〈Asset〉 (ag, a, pdt), t) 

(4) 

(∀ ag : 〈Agent〉; a: 〈Asset〉; pdt : 〈PDT〉; t : Time)  

 Happens (〈DiscloseP〉 (ag, a, pdt), t, R (t, t)) 

 ∧ HoldsAt(AvailablePD〈Asset〉  (pdt), t) 

 ∧ ((∀ pdt2 : 〈PDT〉) pdt ≠ pdt2 

  ∧ HoldsAt(AvailablePD〈Asset〉 (pdt2), t) 

    ⇒ HoldsAt(KnowsPD〈Asset〉 (ag, a, pdt2), t)) 

  ⇒  Initiates(〈DiscloseP〉 (ag, a, pdt),  

 Exposed〈Asset〉 (a, ag), t)  

(5) 

[ Initially(AvailablePD〈Asset〉(〈PD〉)) ] (6) 

Figure 11. Extension to the core template for monitoring access to partial data. 
 
Given the extended template that is expressed in FTL we are now in a position to show how 
concrete monitoring policies can be generated from it (and other templates). 

3.4.  Generating monitoring policies from security objective and asset 
The initial stage of the process for generating monitoring policies is concerned with how the 
templates are selected and how they are instantiated into the final monitoring policy. 

As briefly explained in Section 2.  this process is driven by a pair of 〈security objective, asset〉 
indicating that the security objective is required for asset within an S&D pattern. This is what 
initiates the request for monitoring some security property (specified by the security objective) over 
some system asset. The former is used to select a template and the latter to gather information to 
instantiate the selected template. 

The process of monitoring policy generation starts by selecting a template given the above pair, and 
proceeds with gathering information from the S&D pattern design model (if possible) to enable 



 
Mechanisms for detecting potential S&D threats 

 

SERENITY - 027587 Version 1.0   Page 20 of 57 

 

template instantiation and monitoring policy generation. These steps are explained below illustrated 
through the use of our motivating example. 

3.4.1.  Template selection from Security Objective  
The security objective identifies uniquely both the security property to monitor and the template to 
be used. This is because the name of each security monitoring template identifies a specific security 
property. For example, the security objective Confidentiality.Inference results in the selection of the 
template of Figure 11. 
Computationally, this involves a simple search query within the catalogue of templates, where 
given a template/property name one tries to find a matching template, if there is one. 
Once retrieved, a template is parsed in order to identify any references to other templates, which are 
themselves then retrieved and their references are substituted with their contents and so on, 
recursively.  

The final template, which contains no further references to other templates, identifies (among 
others) a set of placeholders. Collectively, these placeholders identify the required instantiation 
information. This instantiation information is then retrieved from the contents of the S&D Pattern, 
by using the asset description. 

3.4.2.  Gathering instantiation information from the  security asset 
The process of template selection from a security objective identifies the template to be instantiated. 
Once the template is identified, we need to retrieve the instantiation parameters that enable the 
instantiation of the template. These parameters are used along with the specified system asset to 
search for instantiation information, which is essentially a search for values to assign to 
placeholders. The algorithm that retrieves the instantiation parameters is described in Figure 12. 

Retrieve_Instantiation_Parameters (ftl_template : String) : Instantiation_Parameters 

1. ins_params : Instantiation_Parameters; 

2. ins_params = {}; 

3. FTL_Abs_Syn_Tree = Parse_FTL_Def (ftl_template); 

4. if Has_references (FTL_Abs_Syn_Tree) then 

5.    raise exception “FTL Def not resolved”;  

6. end if; 

7. For each node in FTL_Abs_Syn_Tree do 

8.    switch(node.type)  

9.       case tpl_placeholder then  add_to_ins_params_placeholder (ins_params, node); 

10.       case tpl_choice then add_to_ins_params_choice (ins_params, node); 

11.       case tpl_list then add_to_ins_params_list (ins_params, node); 

12.    end case; 

13. end for; 

14. return ins_params; 

end Retrieve_Instantiation_Parameters   

Figure 12. Algorithm for retrieving instantiation parameters from templates. 



 
Mechanisms for detecting potential S&D threats 

 

SERENITY - 027587 Version 1.0   Page 21 of 57 

 

The search for instantiation information involves going through the system model of a pattern to 
find instantiation information pertinent to the asset. This search process relies on tags or stereotypes 
that are attached to system models (illustrated below for UML stereotypes), where the name of a tag 
or stereotype corresponds to some template placeholder. This effectively establishes the link 
between user models and template placeholders. 

Our generation process assumes that the system models in the SERENITY S&D patterns follow the 
meta-model of Figure 13. More specifically, according to this meta model, each system model is 
composed of modelling elements (class ModellingElement) having type (e.g. class, operation, 
attribute) and name attributes (the name of the class, attribute, etc). Furthermore, each modelling 
element may have relations with other modelling elements (e.g. a class has attributes, operations 
and associations) and be associated with zero or more tags or stereotypes (see association between 
classes Tag and ModellingElement in Figure 13)2. 

 

type

name

ModellingElement

name

Tag

0..* 0..*

0..*

0..*

 
Figure 13. Meta model for system models. 

 
Currently, the list of placeholders/tags that we use in the specification of monitoring templates and 
for stereotyping design models in S&D patterns includes the tags shown in Table 2. The same table 
also indicates the meaning of each placeholder/tag and the types of the modelling elements that the 
tag can be applied to. 

                                                
2 This is because the same modelling element may assume different roles across security policies. For 
instance, in the context of a confidentiality property the some operation (a modelling element) may assume 
the role of a “Disclose” operation and is, therefore, tagged as such, but in the context of integrity the same 
operation may assume the role of a “Tranforms” operation. 



 
Mechanisms for detecting potential S&D threats 

 

SERENITY - 027587 Version 1.0   Page 22 of 57 

 

 

Tag / 
Placeholder 

Description Modelling 
Element type 

Asset Used to identify system assets. Class, Entity 

Agent Used to identify a generic agent in some security policy. Class, Entity 

Disclose Identifies an operation that discloses some data related to 
an asset. 

Operation 

DiscloseP Identifies an operation that discloses some partial data 
that is related to some asset. 

Operation 

Authorise Identifies an operation that authorises access to some 
asset’s data. 

Operation 

PDT Used in confidentiality monitoring policies to identify a 
type of partial data. 

Class, Entity 

Transform Identifies a transformation of data, used in integrity 
security policies. 

Operation 

Table 2. Names of placeholders to be used in security templates and as tags/stereotypes  
The list of tags shown in Table 2 has been identified from an analysis of the concepts related to the 
specification of the basic security properties of confidentiality, integrity and availability. It should, 
however, be noted that our approach is generic and can accommodate further tags/placeholders that 
may be defined by communities of S&D pattern developers and users of the SERENITY 
framework. 
Given the structure assumed by the meta-model of Figure 13, the search algorithm that finds 
instantiation information works as follows: 

1. It looks in the system models of an S&D pattern for modelling elements with the name of 
the specified asset and with the tag “Asset” to produce a set of core modelling elements. 

2. It searches through the core modelling elements for their constituent modelling elements, 
using the template parameters, and gathering all required instantiation information in the 
process. 

Once this is done, it should obtain an instantiation for the template that should, along with the 
template, result in a specific monitoring policy. The algorithm that produces an instantiation is 
described in Figure 14. An illustration of how this algorithm works is given in the next section 
using our earlier example. 

 
TemplateInstantiation (asset_name : String, ins_params : Instantiation_parameters) : Instantiation 

1.    asset_model_elements : Set(ModelligElement); 

2.    param_m_elems : Set(ModellingElement); 

3.    result : Instantiation; 



 
Mechanisms for detecting potential S&D threats 

 

SERENITY - 027587 Version 1.0   Page 23 of 57 

 

4.    result = {}; 

5.    asset_model_elements =  Get_List_Modelling_Elements (“Asset”, asset_name); 

6.    if asset_model_elements == {} then 

7.       raise exception “Asset Not Found”; 

8.       return Empty_Instantiation; 

9.    end if; 

10.    result = result ∪ {(“Asset”, asset_name)}; 

11.    For each param in ins_params do  

12.       param_m_elems = Find_Modelling_Elements (asset_model_elements, param); 

13.       For each m_elem in param_m_elems do 

14.           result = result ∪ {(param.name, asset.name)}; 

15.       end for; 

16.    end for; 

17.    return result; 

end TemplateInstantiation 

Figure 14. Process for template instantiation. 

3.4.3.  Example 
We now show how the templates of Figure 10 and Figure 11 are instantiated to produce a 
monitoring policy.  
To start the generation process, we start from the object/asset pair: 

〈Confidentiality.Inference, Patient〉 

The above pair says that we want to monitor the “Confidentiality.Inference” security property over 
the “Patient” asset. The first element of the pair (security property) results in the selection of the 
template of Figure 11. The second element of the pair (Patient asset) would result in the selection of 
a set of system model elements in the relevant S&D pattern that specify properties of the asset. A 
simple design for the confidentiality security requirement expressed as a UML class diagram that 
refers to the Patient asset is shown in Figure 15. We can see that this model follows the structure of 
the meta-model of Figure 13 as certain elements in it have been tagged3. 

«Agent»

Doctor

«Authorise» AuthoriseAccess()

AccessControl

0..*

1

Controls

«Disclose» GetMF()

«DiscloseP» GetPD(in pdtype : PDType)

«Asset»Patient

0..1

0..*

IsDoctorOf

«PDT»

PDType

0..* 1

AvailablePD

 

Figure 15. A simple system model for Patients. 

                                                
3 An extension of the S&D pattern specification language will be required for the attachement of such tags to 
elements of S&D patterns. 



 
Mechanisms for detecting potential S&D threats 

 

SERENITY - 027587 Version 1.0   Page 24 of 57 

 

The class model of Figure 15 introduces the classes (object types) Doctor, Patient, PDType and 
AccessControl. The link with the confidentiality template is established through stereotypes, where 
each stereotype corresponds to the name of a placeholder. From this class model we obtain the 
following instantiation (or substitution set) of the monitoring template: 

{Agent a  ``Doctor”, Asset a  ``Patient”, Disclose a  ``GetMF”,  

Authorise a  ``AuthoriseAccess”, 

PDT a  ``PDType”, DiscloseP a  ``GetPD” } 

Based on the above substitution set the instantiation process results in the generation of the EC 
monitoring policy of Figure 16.  

 (∀ ag : Doctor; a: Patient;  t : Time)  

 HoldsAt (ExposedPatient (ag, a), t) ⇒ HoldsAt (AuthorisedPatient(ag, a), t) 

(7) 

(∀ ag : Doctor; a: Patient;  t : Time)  

  Happens(AuthoriseAccess(ag, a), t, R (t, t)) 

 ⇒ Initiates (AuthoriseAccess(ag, a), AuthorisedPatient  (ag, a), t) 

(8) 

(∀ ag : Doctor; a: Patient;  t : Time)  

 Happens(GetMF (ag, a), t, R (t, t))  

 ⇒ Initiates (GetMF (a, ag), ExposedPatient (ag, a), t) 

(9) 

∀ ag : Doctor; a: Patient; pdt : PDType; t : Time)  

 Happens (GetPD (ag, a, pdt), t, R (t, t)) 

 ∧ HoldsAt(AvailablePDPatient (pdt), t) 

 ⇒ Initiates (GetPD (ag, a, pdt), KnowsPDPatient (ag, a, pdt), t) 

(10) 

(∀ ag : Doctor; a: Patient; pdt : PDType; t : Time)  

 Happens(GetPD(ag, a, pdt), t, R (t, t)) 

 ∧ HoldsAt(AvailablePDPatient(pdt), t) 

 ∧ ((∀ pdt2 : PDType) pdt ≠ pdt2 

 ∧ HoldsAt(AvailablePDPatient (pdt2), t)  

    ⇒ HoldsAt(KnowsPDPatient (ag, a, pdt2), t)) 

 ⇒ Initiates(GetPD(ag, a, pdt), ExposedPatient (a, ag), t) 

(11) 

Initially(AvailablePDPatient(PD1)) (12) 

Initially(AvailablePDPatient(PD2)) (13) 

Figure 16. Generated Event Calculus monitoring policy. 
In this monitoring policy all the placeholders of the original template have been replaced by the 
model elements that were identified through the instantiation search process. The placeholder 
<authorise> in formula 3, for instance, has been replaced by the operation AuthoriseAccess in the 



 
Mechanisms for detecting potential S&D threats 

 

SERENITY - 027587 Version 1.0   Page 25 of 57 

 

model giving rise to formula 8 in the instantiated monitoring policy. This substitution was identified 
by the fact that the latter operation had the same stereotype as the placeholder in formula (3) (i.e., 
the stereotype <authorise>). 

The next section shows how the generated monitoring theory is used to detect threats to the 
confidentiality security requirement at run-time. In particular, it shows how an attack signature can 
be derived for this monitoring policy. 

3.5.  Summary 
The template instantiator software component implements all algorithms that have been described 
in this section. In particular: 

• The resolution of templates references to produce a template without references to other 
templates (Figure 7). 

• The generation process given a reference-resolved template and an instantiation of the given 
template to produce a monitoring policy (Figure 8). 

• The derivation of instantiation parameters from a reference-resolved template (Figure 12).  
• The algorithm that produces instantiation information by searching through user models 

(Figure 14). 
The whole process of producing a monitoring policy uses these individual algorithms as follows: 

The given  security 

objective  is used to 

retrieve a template 

The instantiation 

parameters are 

derived from the 

template

Instantiation parameters 

along with given asset  are 

used to derive an 

instantiation for the template

Selected template is 

instantiated with instantiation 

information to generate a 

monitoring policy

The template references of the 

selected template are resolved 

to obtain a reference -resolved 

template

Figure 17. Process for producing a monitoring policy. 
 



 
Mechanisms for detecting potential S&D threats 

 

SERENITY - 027587 Version 1.0   Page 26 of 57 

 

4.  Attack signature generation 
Attack signatures are generated from a monitoring policy by using AI planning techniques [12][13]. 
Our task does, however, differ from the work on classical planning, where the aim is to derive a 
concrete sequence of actions to achieve a goal. That is, given some specific state on some specific 
time-point, some formal theory and a goal, classical planning derives a concrete sequence of actions 
to achieve a goal; this specific sequence of actions is described in terms of specific instances. Given 
that attack signature generation is performed off-line, the process concentrates on deriving an 
abstract or universal plan representing all possible sequences of actions over time to achieve some 
goal. Such plans compactly represent every classical plan [21] involving both conditional and 
partial-order plans. Conditional plans may be generated as during the plan derivation process some 
information may be missing and different branches may have to be included [13]. Partial-order 
plans may also arise as it might not be possible to fully order the actions involved in them based on 
the available time constraints [12]. 
The next section presents a brief overview of the approach to derive an abstract signature from a 
monitoring policy based on planning. 

4.1.  Overview 
In general, there are two approaches to derive plans to achieve some goal:  

• The first approach proceeds forwards to derive either a set of paths that go from the initial 
state to the goal state (classical planning) or an abstract description of all these possible 
paths. This approach is known as deductive planning [22]  as the forward derivation of plans 
is based on the logical mechanism of deduction.  

• The second approach proceeds backwards from the goal state to different initial states that 
can lead to it, trying to derive either a set of paths (classical planning) or an abstract 
description of all possible paths (universal planning). This approach is known as abductive 
planning [13] because it is based on the logical mechanism of abduction. 

Our attack signature generation mechanisms undertakes the second approach and is based on an 
adaptation of the algorithm that is used in the SERENITY monitoring framework to generate the 
diagnosis for violations of S&D monitoring rules which has been presented in [4]. 

Abduction is a process of backward reasoning  to can generate a set of explanations for a given set 
of observations based on a specific theory [24] . It has been defined as a kind of inversion of Modus 
Ponens (or logical implication) [25]. The key idea behind abduction can be represented by the 
following inference rule [25]: 

!

""! ,#  

That is, from an observation ω and a rule “ϕ⇒ω” in a given theort, infer the occurrence of ϕ as a 
plausible hypothesis of what is the reason for the occurrence of ω or, equivalently, an explanation 
of ω. The idea of using abduction for planning in the Event-Calculus was introduced by Eshgi [12], 
whose aim was to compute all possible explanation of some goal by following an abductive 
strategy, going backwards from the goal. 



 
Mechanisms for detecting potential S&D threats 

 

SERENITY - 027587 Version 1.0   Page 27 of 57 

 

In our approach abduction is used in order to find all the possible “explanations” or causes of the 
predicates that constitute a goal. More specifically, the plan generation process starts from a triplet 
〈R, MP, ECAxs〉 which includes: (a) a monitoring rule R for which plans need to be generated, (b) a 
monitoring policy MP that includes R, other rules and assumptions about the system to be 
monitored, and (c) the set of axioms of event calculus ECAxs. Based on these inputs, the general 
steps of the plan generation process are the following: 

1. The goal G for which plans need to be generated is created by negating the monitoring rule, 
i.e. G = ¬R 

2. G is transformed into a conjunctive normal form (i.e., a conjunction of atomic conditions).  
3. An abductive plan generation algorithm is deployed to derive a plan for each atomic 

condition in G. As there may be alternative ways to reach a particular atomic condition, this 
step may generate a set of alternative subplans (AS) for each condition. This algorithm 
identifies the set of the alternative primitive possible causes for each atomic condition, i.e., 
causes which cannot themselves be the result of another cause. 

4. The valid combinations of all the different plans for each subgoal (atomic condition) are 
identified and alternative global plans for G are formulated as a conjunction of the valid 
combinations of the  plans for the subgoals.  

5. The global attack signature for G, which identifies all the possible ways of compromising R 
(aka attacks against R) is obtained by taking the disjunction of the alternative global plans. 

A simple example of undertaking the above steps and combining the alternative plans which are 
generated for the different atomic conditions of a goal of the form G = S1 ∧ S2 in given in Figure 
18. 

  
G

_  The goal G

(E1 _  E2) V (E3_E4)

S1 S2

E5 _  E6

((E1 _  E2) V (E3_E4)) _ (E5 _  E6)
The plan to achieve the goal G 

obtained by combining 
different individual plans

(E1 _  E2 _  E5 _  E6) V (E3_E4 _  E5 _  E6)

The abstract plan in the 
disjunctive normal form 

constitutes the attack signature. 

This identifies different types of 

attacks each is a disjunct .  
Figure 18. The derivation of a plan for the conjunctive goal S1 ∧  S2.  



 
Mechanisms for detecting potential S&D threats 

 

SERENITY - 027587 Version 1.0   Page 28 of 57 

 

4.2.  The abductive plan generation algorithm 
The abductive plan generation algorithm is shown in Figure 19.  

FindPlansForFormula(FR, Constraints): Φe 
/* FR: formula */ 
/* Constraints: temporal constraints related to FR */ 
/* Φe: a list keeping the disjunction of possible attack signatures for e  */ 

1.  Φe = [ id(FR):e ]OR /* a list keeping the possible attack signatures for e  */ 
2.  For all atomic formulas e in FR do 
3.   For all f ∈ AS do /* try to derive plans from all given assumptions AS*/ 
4.    u = mgu(head(f), e) /* mgu returns the most general unifier of e and a predicate p if this unifier exists*/ 
5.    If u ≠ ∅ Then /* e matches head(f) */ 
6.     Copy atomic conditions in the body(f) into CNDf 
7.     If CNDf = ∅ Then /* assumption f is an atomic formula of the form: ⇒head(f) */ 
8.      FormulaFailed = False  
9.      Cu = ApplyUnification(u, head(f)) 
10.     Φf = [(f:Cu, tmin(Cu) < tvar(Cu), tvar(Cu) ≤ tmax(Cu)]AND 
11.    Else /* assumption f is an non atomic formula of the form: body(f)⇒head(f) */ 
12.     TemporalConstraints = Constraints ∪c∈ CNDf {tmin(c) < tvar(c), tvar(c) ≤ tmax(c)} 

13.     If TemporalConstraints are consistent Then 
14.      FormulaFailed = False 
15.      Φf  = []AND /* return an empty Φf  */ 
16.      While FormulaFailed = False and CNDf ≠ ∅ Do /* find plans for all the conditions of f */ 
17.       Remove some condition C from CNDf   
18.       Cu = ApplyUnification(u, C) 
19.       ΦC = Explain(C, f, TemporalConstraints) 
20.       If ΦC is empty Then 
21.        FormulaFailed = True 
22.       Else 
23.        Φf = append(Φf , ΦC) 
24.       End If 
25.      End While 
26.     Else /* Constraints ∪ {tmin(C) < tvar(C), tvar(C) ≤ tmax(C)} are not consistent */  
27.      FormulaFailed = True 
28.      Φf  = []AND 
29.     End If /* temporal constraints test */  
30.    End if /* atomic vs non atomic assumption test */ 
31.    If FormulaFailed = False Then /*add the plans generated from f if none of its conditions failed */ 
32.     Φe = append (Φe,Φf) 
33.    End if 
34.   End if /* unification test */ 
35.  End For 
36.  End If 
37. End For 
38. return(Φe) 
END FindPlansForFormula 

Figure 19. Algorithm for abductive generation of attack signatures 



 
Mechanisms for detecting potential S&D threats 

 

SERENITY - 027587 Version 1.0   Page 29 of 57 

 

This algorithm is an adaptation of the algorithm used for the generation of diagnostic explanations 
by abduction within the SERENITY monitoring framework that has been discussed in [4]. 
The algorithm of Figure 19 tries recursively to produce an attack signature for a formula. For each 
atomic condition e of it searches exhaustively through the assumptions AS of the given monitoring 
policy to establish if any of them has a predicate in its head that matches e. If such an assumption f 
is identified the algorithm checks if it is an atomic formula and if that’s the case it adds f to the 
possible attack signatures for e.  If f is not an atomic formula, the algorithm gets the constraints of 
the time variables of f and checks if they are consistent with the constraints of the time variables of 
e. In case that they are, it proceeds recursively by trying to generate alternative attack signatures for 
each of the conditions of f. In cases where the generation of alternative attack signatures fails for 
any of the conditions of f, the entire set of partial signatures that might have been generated from f 
up to that point is disregarded. Note that the algorithm might return an empty list for attack 
signatures for a formula if there are no such signatures. 

The main difference between the above algorithm and the algorithm for the abductive generation of 
diagnostic explanations presented in [4] is that the algorithm for the generation of attack signatures, 
does not take into account only grounded predicates with specific time ranges as the algorithm for 
the generation of diagnostic information. Instead it deals with ungrounded predicates and time 
variables which are constained by symbolic constraints expressed as linear inequalities over other 
time variables instead of having specific numeric boundaries. Thus, it needs to perform symbolic 
computations to establish if sets of such constraints are consistent (see [23] for a more detailed 
discussion of this issue).  

4.3.  Example 
As an example of the derivation of an attack signature for a monitoring rule abductive reasoning 
consider the monitoring policy of Figure 16. The monitoring rule in this policy is expressed by the  
EC formula 7: 

R = 

(∀ _ag : Doctor; _a: Patient;  t : Time) 

HoldsAt (ExposedPatient (_ag, _a), t) ⇒ 

HoldsAt (AuthorisedPatient(_ag, _a), t) 

According to this formula when the medical file of a patient _a is exposed to a doctor _ag, _ag 
must be authorised to have access to the file. 

An attack signature can be generated for this monitoring rule based on the algorithm of Figure 19 
assuming that the inputs to it are: 

 The monitoring rule R above 
 The monitoring policy consisting of the formulas (8)−(13) in Figure 16; and 

 The following two EC’s axioms: 
EC1: HoldsAt(f,t)  ⇐ Initially(f) ∧ ¬∃e,t1 Happens(e,t1, R(0,t)) 

∧ Terminates(e,f,t1) 

EC2: HoldsAt(f,t2) ⇐ Happens(e,t1,R(t1,t1)) ∧ Initiates(e,f,t1) ∧ 
(t1 < t2)  ∧ ¬∃e,t1 Happens(e,t1, R(0,t)) ∧ Terminates(e,f,t1) 

Based on the above inputs the algorithm will generate the attack signature for R through the 
following steps. 



 
Mechanisms for detecting potential S&D threats 

 

SERENITY - 027587 Version 1.0   Page 30 of 57 

 

Step 1: Obtain goal G by negating the monitoring rule R: 

 
¬R → → (∃ _ag : Doctor; _a: Patient;  t : Time)  
  ¬( ¬HoldsAt (ExposedPatient (_ag, _a), t) ∨ 
  HoldsAt (AuthorisedPatient(_ag,_a), t)) 
 
 → (∃ _ag : Doctor; _a: Patient;  t : Time)  
  HoldsAt(ExposedPatient(_ag, _a), t) ∧ 
  ¬HoldsAt (AuthorisedPatient(_ag, _a), t)    (R1) 

 
Step 2: Generate plan for the first conjunct HoldsAt(ExposedPatient(_ag, _a), t) using assumption 
(11) in the monitoring theory in Figure 16; that is the formula: 
Assumption (11): 

(∀ _ag : Doctor; _a: Patient; _pdt : PDType; t : Time)  

Happens(GetPD(_ag, _a, _pdt), t, R (t, t)) ∧ 

HoldsAt(AvailablePDPatient(_pdt), t) ∧ 

((∀ _pdt2:PDType) _pdt ≠ _pdt2 ∧ HoldsAt(AvailablePDPatient (_pdt2), t) ⇒ 

HoldsAt(KnowsPDPatient (_ag, _a, _pdt2), t)) 

⇒ Initiates(GetPD(_ag, _a, _pdt), ExposedPatient (a, ag), t)  

 
From axiom EC2 and this assumption,  R1 is transformed into: 

 
R1 → (∃ _ag : Doctor; _a: Patient; _pdt:PDType; t: Time)   

  (Happens(GetPD(_ag, _a, _pdt), t, R (t, t)) 

   ∧ HoldsAt(AvailablePDPatient(_pdt), t) 

   ∧ (∀ _pdt2:PDType) (_pdt ≠ _pdt2 ∧ 

   HoldsAt(AvailablePDPatient(_pdt2), t)  

      ⇒ HoldsAt(KnowsPDPatient(_ag, _a, _pdt2), t)) 

  ∧ ¬HoldsAt(AuthorisedPatient(_ag, _a), t) 

 

 → (∃ _ag : Doctor; _a: Patient; _pdt:PDType;  t : Time)   

  (Happens(GetPD(_ag, _a, _pdt), t, R (t, t)) 

  ∧ HoldsAt(AvailablePDPatient(_pdt), t) 

  ∧ ((∀ _pdt2:PDType) 

   ¬(_pdt ≠ _pdt2 ∧ HoldsAt(AvailablePDPatient(_pdt2), t))  

      ∨ HoldsAt(KnowsPDPatient(_ag, _a, _pdt2), t)) 

  ∧ ¬HoldsAt(AuthorisedPatient(_ag, _a), t)    (R2) 

 

Step 3: Generate plan for the conjunct HoldsAt(KnowsPDPatient(_ag, _a, _pdt2), t1) in R2 using 
assumption (10) in the monitoring theory in Figure 16; that is the formula: 



 
Mechanisms for detecting potential S&D threats 

 

SERENITY - 027587 Version 1.0   Page 31 of 57 

 

Assumption (10): 
∀ _ag : Doctor; _a: Patient; _pdt : PDType; t : Time)  

 Happens(GetPD(_ag, _a, _pdt), t, R (t, t)) 

 ∧ HoldsAt(AvailablePDPatient(_pdt), t) 

 ⇒ Initiates(GetPD(_ag, _a, _pdt), KnowsPDPatient(_ag, _a, _pdt), t) 

 
From axiom EC2 and this assumption,  R2 is transformed into the following formula: 
R2 →  (∃ _ag : Doctor; _a: Patient;  _pdt : PDType; t, t1 : Time)   

  (Happens(GetPD(_ag, _a, _pdt), t, R (t, t)) 

  ∧ HoldsAt(AvailablePDPatient(_pdt), t) 

  ∧ (∀ _pdt2:PDType) 

  (¬(_pdt ≠ _pdt2 ∧ HoldsAt(AvailablePDPatient(_pdt2), t1))  

      ∨ (Happens (GetPD(_ag, _a, _pdt2), t1, R(t1,t1)) ∧ (t1 < t) 

       ∧ HoldsAt(AvailablePDPatient(_pdt2),t)))) 

  ∧ ¬HoldsAt(AuthorisedPatient(_ag, _a), t)    (R3) 

 

Note that in the formula R3 above the constraint t1 < t arises due to axiom EC2 and that since there 
are no terminating predicates in the theory of Figure 16 we do not need to consider the inexistance 
of an event which could terminate this fluent. 
Step 4: Generate plan for predicate HoldsAt(AvailablePDPatient(_pdt), t)) in R3 using the axiom 
EC1 (again, ignoring the terminating part of the axiom): 
 

R3 →  (∃ _ag : Doctor; _a: Patient; _pdt : PDType;  t, t1 : Time)   

  (Happens(GetPD(_ag, _a, _pdt), t, R (t, t)) 

  ∧ Initially(AvailablePDPatient(_pdt)) 

  ∧ (∀ _pdt2:PDType) 

  (¬(_pdt ≠ _pdt2 ∧ HoldsAt(AvailablePDPatient(_pdt2), t1))  

      ∨ (Happens(GetPD(_ag, _a, _pdt2), t1, R(t1,t1)) ∧ (t1 < t) 

       ∧ HoldsAt(AvailablePDPatient(_pdt2),t)))) 

  ∧ ¬HoldsAt(AuthorisedPatient(_ag, _a), t)    (R4) 

 

Similarly, the predicate HoldsAt(AvailablePDPatient(_pdt2),t) can be replaced (twice) in R4 based 
on EC1: 
R4 →  (∃ _ag : Doctor; _a: Patient; _pdt : PDType;  t, t1 : Time)   

  (Happens(GetPD(_ag, _a, _pdt), t, R (t, t)) 

  ∧ Initially(AvailablePDPatient(_pdt)) 

  ∧ (∀ _pdt2:PDType) 

  (¬(_pdt ≠ _pdt2 ∧ Initially(AvailablePDPatient(_pdt2)) 



 
Mechanisms for detecting potential S&D threats 

 

SERENITY - 027587 Version 1.0   Page 32 of 57 

 

      ∨ (Happens (GetPD(_ag, _a, _pdt2), t1, R(t1,t1)) ∧ (t1 < t)
  

       ∧ Initially(AvailablePDPatient(_pdt2)))) 

  ∧ ¬HoldsAt(AuthorisedPatient(_ag, _a), t)    (R5) 

 

Step 5: Generate different instantiations of R5 using the following assumptions in the monitoring 
theory in Figure 16 and the axiom EC1: 

Assumption (12): 
Initially(AvailablePDPatient(PD1)) 

Assumption (13): 
Initially(AvailablePDPatient(PD2)) 

The first alternative instantiation is generated by substituting  Initially(AvailablePDPatient(PD1)) 
for Initially(AvailablePDPatient(_pdt) and Initially(AvailablePDPatient(PD2)) for 
Initially(AvailablePDPatient(_pdt2), respectively, thus considering the instantiation of {(_pdt, 
PD1), (_pdt2, PD2)}: 
 
R5 →  (∃ _ag : Doctor; _a: Patient;  t, t1: Time)   

  (Happens(GetPD(_ag, _a, PD1), t, R (t, t)) 

  ∧ Initially(AvailablePDPatient(PD1)) 

  ∧ (∀ _pdt2:PDType) 

  ¬(PD1 ≠ PD2 ∧ Initially(AvailablePDPatient(PD2)))  

      ∨ (Happens(GetPD(_ag, _a, PD2), t1, R(t1,t1)) ∧   
  

        Initially(AvailablePDPatient(PD2)) ∧ (t1 < t)) 

  ∧ ¬HoldsAt(AuthorisedPatient(_ag, _a), t)    (R6) 

  

R6 →  (∃ _ag : Doctor; _a: Patient;  t, t1: Time)   

  (Happens(GetPD(_ag, _a, PD1), t, R (t, t)) 

  ∧ (Happens(GetPD(_ag, _a, PD2), t1, R(t1,t1)) ∧  (t1 < t)) 

  ∧ ¬HoldsAt(AuthorisedPatient(_ag, _a), t)    (R7) 

 

The transformation of R6 to R6 is because Initially(AvailablePDPatient(PD1) is a given fact in the 
monitoring policy and therefore always True as well as PD1 ≠ PD2. 

(PD1 ≠ PD2 ∧ Initially(AvailablePDPatient(PD2))) 

is True (Initially(AvailablePDPatient(PD2)) is part of the monitoring theory) and therefore 

¬(PD1 ≠ PD2 ∧ Initially(AvailablePDPatient(PD2))) is always False. 

Also, Initially(AvailablePDPatient(PD1)) and Initially(AvailablePDPatient(PD2)) are always True 
and therefore can be removed. 



 
Mechanisms for detecting potential S&D threats 

 

SERENITY - 027587 Version 1.0   Page 33 of 57 

 

The second alternative instantiation is generated by substituting  
Initially(AvailablePDPatient(PD2)) for Initially(AvailablePDPatient(_pdt) and 
Initially(AvailablePDPatient(PD1)) for Initially(AvailablePDPatient(_pdt2), respectively, thus 
considering the instantiation of {(_pdt, PD2), (_pdt2, PD1)}. This results into the formula: 
 
R5 →  (∃ _ag : Doctor; _a: Patient;  t, t1: Time)   

  (Happens(GetPD(_ag, _a, PD2), t, R (t, t)) 

  ∧ Initially(AvailablePDPatient(PD2)) 

  ∧ (∀ _pdt2:PDType) 

  ¬(PD2 ≠ PD1 ∧ Initially(AvailablePDPatient(PD1)))  

      ∨ (Happens(GetPD(_ag, _a, PD1), t1, R(t1,t1)) ∧    

        Initially(AvailablePDPatient(PD1)) ∧ (t1 < t)) 

  ∧ ¬HoldsAt(AuthorisedPatient(_ag, _a), t)     

  

 →  (∃ _ag : Doctor; _a: Patient;  t, t1: Time)   

  (Happens(GetPD(_ag, _a, PD2), t, R (t, t)) 

  ∧ (Happens (GetPD(_ag, _a, PD1), t1, R(t1,t1)) ∧ (t1 < t)) 

  ∧ ¬HoldsAt(AuthorisedPatient(_ag, _a), t)    (R8) 

 

Step 6: Generate different plans for ¬HoldsAt(AuthorisedPatient(_ag, _a), t) in R7 using 
assumption (8) in the monitoring theory in Figure 16, that is the formula: 

 
Assumption (8) 

(∀ _ag : Doctor; _a: Patient;  t : Time)  

Happens(AuthoriseAccess(_ag, _a), t, R (t, t)) 

⇒ Initiates (AuthoriseAccess(_ag, _a), AuthorisedPatient(_ag, _a), t) 

 
R7 →  (∃ _ag : Doctor; _a: Patient;  t, t1, t2: Time)   

  (Happens(GetPD(_ag, _a, PD1), t, R (t, t)) 

  ∧ (Happens(GetPD(_ag, _a, PD2), t1, R(t1,t1)) ∧  (t1 < t) 

  ∧ ¬Happens(AuthorisedAccess(_ag, _a), t2) ∧ (t2 < t)  (R9) 

 
Similarly from R8 we can generate 
R7 →  (∃ _ag : Doctor; _a: Patient;  t, t1, t2: Time)   

  (Happens(GetPD(_ag, _a, PD2), t, R (t, t)) 

  ∧ (Happens(GetPD(_ag, _a, PD1), t1, R(t1,t1)) ∧  (t1 < t) 

  ∧ ¬Happens(AuthorisedAccess(_ag, _a), t2) ∧ (t2 < t)  (R10) 

 



 
Mechanisms for detecting potential S&D threats 

 

SERENITY - 027587 Version 1.0   Page 34 of 57 

 

Formulas R9 and R10 constitute two alternative ways of failing R or, equivalently, two alternative 
attack signatures. Their disjunction constitutes part of overall attack signature for the rule (an 
alternative attack signature can be generated if at Step 2 above we use assumption (9) for the 
HoldsAt(ExposedPatient(_ag, _a), t) conjunct which would generate a formula representing a direct 
access attack). In the next section we show how we use the attack signature and run-time 
observations to compute the likelihood of threats. 



 
Mechanisms for detecting potential S&D threats 

 

SERENITY - 027587 Version 1.0   Page 35 of 57 

 

5.  Evaluation of threat likelihood 
5.1.  Overview 
This section describes the estimation of the level of threat that is faced by a system given the rules 
and attack signatures which are being monitored. As discussed earlier, an S&D threat in 
SERENITY is defined as the potential for the violation of a monitoring rule or an attack signature. 

The level of threat for a system monitored by the SERENITY framework is a measure of the 
likelihood of a potential occurrence of a violation of an S&D monitoring rule or attack signature 
defined for this system. This likelihood becomes 1 when a violation has indeed occurred given the 
runtime events that have been recorded in the log of the SERENITY framework. Thus, an S&D 
threat with a likelihood that is equal to 1 is equivalent to an S&D violation as defined in [1] . 
Our objective, however, in threat detection is to estimate the threat likelihood for a particular rule or 
attack signature before a violation occurs. To measure this likelihood we use beliefs founded in 
reasoning framework of the Dempster Shafer theory of evidence [3]. This is due to the need to cope 
with uncertainty regarding the events that have been seen at the different monitoring states of the 
system, which makes the use of classic probabilistic reasoning inappropriate for our needs. 

In the following, we introduce these beliefs and the reasoning underpinning their computation 
following  an overview of the uncertainties regarding the events which are made available to the 
monitor.   

5.2.  Event uncertainties 
Monitoring in SERENITY is based on runtime events which are produced by the components of the 
system that is being monitored. These events are captured by captors (sensors) associated with the 
components of the system that is being monitored. Captors transmit the events that they intercept to 
the framework through different communication channels. In this event capturing and 
communication setting, there are two forms of uncertainty associated with events: 

1. There might be events which have occurred but not received yet by the monitor 

2. There might be events which have been received by the monitor without having really 
occurred at the component where they appear to be coming from 

The former type of uncertainty arises due to the use of distributed event captors which communicate 
with the SERENITY monitoring framework via different channels. Individual channels are assumed 
to provide a first-in-first-out (FIFO) transmission (i.e., the events arive at the destination of the 
channel in exactly the same order in which they are dispatched at the channel’s origin). Therefore, 
the reception of an event from a channel informs the monitor that all the events that preceed this 
event, i.e., all the events with a timestamp earlier than the timestamp of the current event, have also 
been received4. In this case, the monitor may still in the future receive other events from the channel 
with the same timestamp as the last event seen from it but no events with a later timestamp. 
Generally, however, the monitor may be getting events from more than one sources using different 

                                                
4 As we describe in [2], even if the events which are transmitted through the same channel are captured at 
different sources, they have timestamps which are expressed using the monitor’s clock (this is achieved 
because sources synchronise their clocks with the clck of the monitor by using the NTP protocol).  



 
Mechanisms for detecting potential S&D threats 

 

SERENITY - 027587 Version 1.0   Page 36 of 57 

 

communication channels to send them to the monitor. When this is the case, the order of the arrival 
of events at the monitor cannot be guaranteed to be the same as the order of their dispatch from the 
sources where the events were captured. This is because, as we have discussed in [2], in the general 
case of multiple communication channels, there can be different transmission delays on each one of 
the channels. Thus, the reception of an event Ei from channel ci timestamped at time t (translated to 
the monitor’s clock) does not inform the monitor that all events Ej coming from a different channel 
cj and timestamped with t’ < t have already been received. In such cases, upon the reception of Ei 
the monitor will be unable to make a decision about the occurrence or not of the event Ej if the 
latest event seen from the cj channel has a timestamp that is less than t. 
In the presence of such uncertainty, the monitor would have to wait until it can guarantee that an Ej 
event could not have been observed. This would be possible when the monitor receives an event 
from cj that has a timestamp t’’ that is greater than t’. However, as our objective in threat detection 
is to generate early forecasts of the potential of violations of rules, delaying monitoring decisions is 
not desirable for this purpose5. It should also be noted that this type of event uncertainty increases 
when channels fail temporarily or become the subject of attacks that prevent them from sending 
events. In such cases, delaying the estimation of the likelihood of threats involving Ej events might 
not be desirable as an early estimate might be necessary for taking preemptive action to avoid 
problems arising from the violation of the relevant rules. Thus, the mechanisms used by the monitor 
to estimate threat likelihood should be able to reason about an event without certainty about its 
presence or absence. 
The second form of event uncertainty arises due to the possibility of having events in the log of the 
monitor which are the result of an attack. An event captor may, for example, be attacked and start 
producing events which are not coming from the system component which it is asscociated with. In 
such cases, the genuineness of the events involved in a potential violation of a rule needs to be 
assessed before estimating the likelihood of a threat. The diagnosis mechanisms of the SERENITY 
monitoring framework [4] can be used for this assessment. The basic principle realised by these 
mechanisms is that an event is considered to be genuine only if an explanation can be found for it 
and this explanation is confirmed by other runtime events. However, the confirmation or not of an 
event explanation depends on whether its expected consequences match with runtime events and, 
therefore, due to possible delays in the transmission of events there might be explanation 
consequences which are neither confirmed nor disconfirmed. Thus, there is further uncertainty 
associated with the validity of the explanations of events. To deal with the latter form of uncertainty 
whilst producing diagnostic information, we adopted the Dempster-Shafer theory of evidence. And 
for the same reasons, this theory is adopted as the belief reasoning framework that underpins threat 
detection.  

5.3.  Threat likelihood 
A threat is defined in reference to a specific S&D monitoring rule or attack signature. In 
SERENITY, both rules and attack signatures are expressed as Event Calculus (EC) formulas, 
formed by predicates which refer to occurences of system events and conditions regarding the state 
of the system that is being monitored (aka fluents). Since at a representation level both monitoring 
rules and attack signatures are exactly the same, in the remaining of this document we will refer to 
both of them as “rules”. 

                                                
5 The monitor waits only for the detection of definite S&D violations but not for threats. 



 
Mechanisms for detecting potential S&D threats 

 

SERENITY - 027587 Version 1.0   Page 37 of 57 

 

The predicates involving events – Happens(e(sender,recipient,type,src,operation-name,op-
params,timestamp), t, R(t1, t2)) – are effectively event parameters, with associated constraints on 
their sender, recipient, type, source, operation name and parameters, as well as the temporal 
constraints on the time t when an event is observed (this is the translation of the event’s timestamp 
into the monitor’s clock). When events arrive at the monitor and they can be unified with a 
predicate of a rule, the monitor performs the unification and generates a new rule template to 
represent the instantiation of the rule by the particular event. If more than one unification of an 
event with a rule is possible (this is the case when the event is unifiable with different predicates of 
the same rule), then more than one templates are created; one for each of the possible unifications. 
And, if at some point one of these templates has all its predicates unified and evaluates to False, the 
rule that is instantiated by the template is known to be violated. Thus, the threat likelihood of a rule 
R at each stage of the monitoring process needs to be a measure of the likelihood that any of the 
current templates (partial instantiations) of R will evaluate to False in a future state rather than a 
measure over just one template. To reflect this, we define the threat likelihood of a rule as: 
Definition 1: The threat likelihood of a rule R is the belief in the potential of the occurrence of a 
violation of any of the templates of R that have been currently generated.  
To clarify this definition, consider the case of the following monitoring rule: 
 

Rule-1: 

Happens(E1, t1, ℜ(t1,t1)) ∧ Happens(E2, t2, ℜ(t1,t1+a))⇒ Happens(E3,t3,ℜ(t2,t2+b)) 

The above rule states that when an event E1 occurs at some time point t1 and another event E2 occurs 
at some time point t2 within the time range (t1, t1+a] then a third event of type E3 should take place 
within the time range (t2, t2+b].  In the case of this rule, the likelihood of a threat needs to be 
estimated in the following states of the monitoring process: 

3. when one (or more) events that match E1 but no events that match E2 have been received by 
the monitor 

4. when one (or more) events that match E2 but no events that match E1 have been received by 
the monitor 

5. when one (or more) events that match E1 and one (or more) events that match E2 have been 
received by the monitor 

6. when one (or more) events that match E1 and one (or more) events that match E2 have been 
received by the monitor and an event E has been received from the event captor that should 
send E3 indicating that E3 will not arrive. The absence of the E3 event (or, equivalently, ¬E3) 
can be derived from E in this case if the monitor receives E from the same event captor that 
should sent E3 with a timestamp t’ that is greater than t2+b. This derivation is based on the 
application of the principle of negation as failure (NAF) − since t’ > t2+b the monitor knows 
that it cannot receive any event with a timestamp earlier than t’ and therefore ealier than 
t2+b. Thus, it knows that it cannot also receive an E3 event and, hence, deduces its absence. 

In case (1) above, the threat likelihood for Rule-1 will be a measure of the belief that the event E1 
which has already matched the rule is genuine and an event of type E2 matching the rule will occur 
within the time range (t1, t1+a] and no event matching E3 will occur in the range (t1, t1+b]. In case 
(2), the threat likelihood for Rule-1 will be a measure of the belief that the event E2 which has 
already matched the rule is genuine and an event of type E1 matching the rule has already occurred 
within the time range [max(t2 − a, latestTime(captor(E1))), t2)  but not received by the monitor and 



 
Mechanisms for detecting potential S&D threats 

 

SERENITY - 027587 Version 1.0   Page 38 of 57 

 

an event matching E3 will occur in the range (t2, t2+b]. In case (3), the threat likelihood of Rule-1 
threat will be a measure of the belief that the E1 and E2 events that match the rule are genuine and an 
event of type E3 matching the rule will occur in the time range (t2, t2+b]. Finally, in case (4), the 
threat likelihood of Rule-1 will be a measure of the belief that the E1 and E2 events that match the 
rule are genuine and the event of type E which provided the basis for deriving ¬E3 is genuine and, 
therefore, the application of the NAF principle in deriving ¬E3 is valid. The functions used to 
measure these beliefs are discussed in the following section. 

5.4.  Basic probabilities for event occurrences 
As indicated for the example of Rule-1 in Section 5.3. the calculation of the threat likelihood of a 
rule requires the measurement and combination of beliefs of three basic types: (i) beliefs in the 
genuiness of events that have been recorded in the log of the monitor, (ii) beliefs in the possibility 
of occurrence of an event of a specific type within a time range that is determined by another event, 
(iii) beliefs in the validity of the derivation of the negation of an event when another event’s 
occurrence indicates that the time range whithin which the former event should occurred has 
elapsed. 
The beliefs of the former type can be computed on the basis of the diagnostic information that the 
SERENITY monitoring framework generates for individual events when it needs to diagnose the 
reasons underpinning a rule violation. More specifically, as it has been discussed in [4], the 
SERENITY monitoring framework calculates a belief in the genuineness of an event as a belief that 
there is at least one explanation of this event and this explanation has expected consequences which 
are confirmed by matching other runtime events recorded in the log of the framework. The 
framework for the calculation of beliefs in the genuineness of individual events in SERENITY is 
that of the Dempster Shafer theory of evidence [3], referred to as “D-S theory” in the following. 
The adoption of the D-S theory for this purpose has been dictated by the need to reason on the basis 
of uncertainty about the occurrence or not of events which have not been recorded yet in the log of 
the monitoring framework. The same need arises in the case of threat beliefs and therefore the D-S 
theory has been selected as the belief computation framework for threats.  
The definition and combination of beliefs in the D-S theory requires the existence of a frame of 
discernment representing a set of mutually exclusive propositions that beliefs will need to be 
computed for. Given such a frame of discernment θ, a basic probability assignment (BPA) or mass 
function in the D-S theory is a function from the powerset of θ, ℘(θ),  to the range [0…1] or, 
equivalently, a function m of the following form: 

(a1) m: ℘(θ) → [0…1] 

A function m of this form provides a measure of basic belief in the truth of the disjunction of the 
propositions in different subsets of θ (i.e., elements of its powerset ℘(θ)) which cannot be 
attributed directly (splitted) to any of these propositions individually. Formally, a function m of the 
above form is a basic probability assignment only if it also satisfies the following two axioms: 

(a2) m(∅) = 0 

(a3) ΣP⊆θ m(P) = 1 

The first of these axioms prevents basic probability assignments from assigning a non zero basic 
beliefs to an empty proposition set. The second axiom requires that the sum of the basic beliefs 
which are assigned by a function m to different subsets of a frame of discernment θ must be equal to 



 
Mechanisms for detecting potential S&D threats 

 

SERENITY - 027587 Version 1.0   Page 39 of 57 

 

1. The subsets P of θ for which m(P) > 0 are called “focals” of m and the union of these subsets is 
called “core” of m. 
Each basic probability assignment function m in the D-S theory induces a unique “belief” function 
Bel which is defined as: 
(a4) Bel: ℘(θ) → [0…1] 

(a5) Bel(A) = ΣB ⊆ A m(B)  

A belief function Bel measures the total belief that is committed to the set of propositions P by 
accumulating the basic probability measures which are committed to the different subsets of P. 
Belief functions must also satisfy the following axioms: 
(a6) Bel(∅) = 0 

(a7) Bel(θ) = 1 

(a8) ΣI ⊆ {1,...,n}, and I ≠ θ (–1)|I|+1Bel(∩ i ε I Pi) ≤ Bel(∪i=1, …, n Pi) where n = |℘(θ)| and P ⊆ θ , (i=1,…,n) 

In the D-S theory, two basic probability assignments m1 and m2 can be combined according to the 
rule of the "orthogonal sum": 
(a9) m1 ⊕ m2 (P) = (ΣX ∩ Y = P m1(X) × m2(Y)) / (1 – k0) 

where k0 = ΣV ∩ W = ∅ and V ⊆ θ and W ⊆  θ m1(V) × m2(W)  

k0 in (a9) is a normalising parameter used to increase the belief assigned to the non-empty 
intersections of the focals of m1 and m2 in proportion to the belief that would be assigned to the 
empty intersections of these focals. 

In the case of rule threats, a frame of discernment needs to describe all the different combinations of 
occurrences and non occurrences of the events involved in a rule. For a rule with n different events, 
these combinations can be described by using a vector of n Boolean variables  <e1, e2, …, en> where 
the variable ei denotes whether or not the event Ei in the rule has occurred or not by taking the 
values 1 and 0, respectively. A vector of such variables will (by convention) denote the conjunction 
of the elementary propositions denoted by the values of its variables. For a rule with n different 
events there will be 2n different such vectors, which will constitute the frame of discernment θ of 
the rule, and the powerset of this frame will have 22n

 elements. 

Thus, in the case of Rule-1 above, for example, the frame of discernment will contain the following 
vectors: 
θR = {<e1,e2,e3>, <e1,e2,e3>, <e1,e2,e3>, <e1,e2,e3>, <e1,e2,e3>, <e1,e2,e3>, <e1,e2,e3>, <e1,e2,e3>}6 

and the powerset of θR will contain all the possible subsets of it − 256 (223
) elements in total. 

Certain elements of this powerset will represent complex propositions which will be relevant to the 
estimation of threat likelihood whilst others not. For example, 

 the proposition that the event E1 has occurred will be represented by the set 
 {<e1,e2,e3>, <e1,e2,e3>, <e1,e2,e3>, <e1,e2,e3>}, and 

                                                
6 Underlined variables are variables having a 0 value and non underlined variables are variables having 1 as a 
value. 



 
Mechanisms for detecting potential S&D threats 

 

SERENITY - 027587 Version 1.0   Page 40 of 57 

 

 the proposition that the event E1 has occurred along with an E2  event in the time range that 
it determines will be represented by the set 

 {<e1,e2,e3>, <e1,e2,e3>}. 

Given the frame of discernment θR for a rule R, we define the basic probability assignments for the 
events of the rule as follows: 

Definition 2: The basic probability assignment mi of an event Ei is defined as: 
               ki = ΣJ⊆{1,…,L} and J≠∅(−1)|J|+1{Π j∈J mij(Valid(Φij))} if X = {<e1, e2, …, en> | ei = 1} 

mi(X) =   ki’ = Π j=1,…,L  mij(¬Valid(Φij)) if X = {<e1, e2, …, en> | ei = 0} 

 | 1 − ki − ki’  if X = θ  
               0 Otherwise      

where 

 Φij (j=1,…,L) are the alternative explanations that can be constructed for the event ei 

based on the approach that we have described in [4]; 

 Valid(Φij) denotes whether the explanation Φij is valid; and 

 mij(Valid(Φij)) is the basic probability assignment in the validity of an explanation Φij, 
which, as we discuss in [4] (see definition 2, pg. 31), is defined as 

 mij(Valid(Φij)) = #observed-consequences-of-Φij / #expected-consequences-of-Φij 

According to the above definition, the basic probability assignment in an event Ei which has been 
recorded in the log of the monitor is defined as the basic belief in the existence of at least one valid 
explanation for Ei. Thus, our approach is to question the validity of each of the events which have 
appeared in the event log and accept as valid only those events for which at least one explanation 
can be found, and this explanation is confirmed by the presence of other events in the log that match 
its expected consequences. It should be noted that the validity of explanations is also assessed 
probabilistically using the basic probability assignment mij in Definition 2. This basic probability 
assignment measures the likelihood of the validity of an explanation as the proportion of the 
expected consequences of the explanation which match events recorded in the log of the monitoring 
framework.  

The second type of basic probability assignments that we use for the assessment of the likelihood of 
threats are assignments that provide belief measures in the occurrence or not of an event ei when 
another event ej has occurred. These assignments are similar to conditional probabilities in the 
classic probability theory but in our framework are treated as basic belief functions which are 
defined as follows: 
Definition 3: The basic probability assignment mi|j in the occurrence of an event Ei within the time 
range determined by another valid event Ej is defined as: 

 kij = Σe∈Log(Ej)m(e){ΣI⊆ Log(Ei | e) and I≠∅(−1)|I|+1{ΠEi∈Imi(Ei))}}/Σe∈Log(Ej)mj(e) 

|  if X ={<e1,e2,…,en> | ej = 1 and ei=1} 
mi|j(X) =  kij’ = Σe∈Log(Ej)m(e){ΠEi∈ Log(Ei | e)mi(¬Ei))}}/Σe∈Log(Ej)m(e)  

 |  if X ={<e1,e2,…,en> | ej = 1 and ei=0} 



 
Mechanisms for detecting potential S&D threats 

 

SERENITY - 027587 Version 1.0   Page 41 of 57 

 

 | 1 − kij − kij’  if X = θ  

               0 Otherwise 

where 

 Log(Ej) is the set of the events of type Ej in the event log up to the time point when mj|i is 
calculated 

  Log(Ei|e) is the set of the events of type Ei in the event log that have occurred within the 
time period determined by e and up to the time point when mi|j is calculated 

 m(e) is the basic probability assignment mj(e) defined by Definition 2 in the case of non 
negated events Ej or the basic probability assignment mNAF

j|u defined in Definition 4 for 
negative events ¬Ej 

mi|j(X) measures the belief in the occurrence of a valid event of type Ei within the time range 
determined by events of type Ej, as the average belief of seeing a valid event of type Ei within the 
time range determined by a valid event of type Ej. More specifically, for each occurrence of an Ej 
event, mi|j(X) calculates the basic probability of seeing at least one valid event of type Ei within the 
period determined by the Ej event. Assuming that the set of such Ei events is Log(Ei|e), this basic 
probability is calculated by the formula ΣI⊆Log(Ei|e) and I≠∅ (−1)|I|+1{ΠEi∈Imi(Ei))}. This formula 
measures the basic probability of at least one of the events in Log(Ei|e) being a valid event, i.e., 
being an event that has at least one explanation confirmed by other events in the log of the system, 
and uses the basic probability assignments of individual events mi(Ei) defined in Definition 2 above 
for positive events or the basic probability assignment mNAF

j|u for negative events ¬Ej which are 
themselves established by a third event Eu (see Definition 4 below). Thus, mi|j(X) discounts 
occurrences of events of type Ei which are not assessed as valid. Also, according to the definition of 
mi|j(X), the more the occurrences of valid events of type Ei within the period determined by an Ej 
event, the higher the belief in the occurrence of at least one such valid event in the relevant period 
will be. Finally, it should be noted that mi|j(X) takes also into account the basic probability of the 
validity of each occurrence of an event of type Ej (i.e., mj(e)) and uses it to discount the evidence 
collected from cases of Ej events which are not genuine (i.e., they do not have at least one 
confirmed explanation themselves).  
The basic probability assignments that we have introduced above provide beliefs in the occurrence 
or not of an event that has occurred or that depends on another event which has happened. They do 
not cover, however, the case where the absence of an event is deduced by the NAF principle. As we 
discussed earlier, the SERENITY monitor uses this principle to deduce the absence of an event E 
(i.e. ¬ E) that is expected to occur within a specific time range [tL, …, tU] when it receives another 
event E’ from the same event captor that should sent E with a timestamp t’ that is greater than  tU (t’ 
> tU) and has not received E up to that point. Considering, however, that the event E’ which triggers 
the application of the NAF principle might not be a genuine event itself, in such cases it is 
necessary to estimate the belief in ¬E. This belief is provided by the following basic probability 
assignment: 
Definition 4: The basic probability assignment mi|j in the absence of an event Ei or, equivalently, 
¬Ei due to the application of the NAF principle when another event Ej occurs is defined as: 

  mj(Ej) if X ={<e1,e2,…,en> | ej = 1 and ei=0} 

mNAF
i|j(X) =   1 − mj(Ej) if X = θ  

                0 Otherwise 



 
Mechanisms for detecting potential S&D threats 

 

SERENITY - 027587 Version 1.0   Page 42 of 57 

 

where 

 mj(Ej) is the basic probability assignment in the genuineness of the event Ej  defined by 
Definition 2. 

According to this definition, the basic probability of the genuineness of the event Ej which has 
triggered the application of the NAF principle becomes also the basic probability of the absence of 
Ei. Note, however, that according to Definition 4, the probability that mj(Ej) generates for the non 
genuineness of the event Ej is not evidence in favour or against Ei. This is because believing that Ej 
is not a genuine event is equivalent to believing that Ej has not occurred and in this case, although 
¬Ei cannot be derived by the NAF principle there is uncertainty regarding the occurrence of Ei. 
Hence, mNAF

i|j(X) assigns the remaining belief 1 − mj(Ej) to the entire frame of discernment θ which 
represents the proposition Ei ∨ ¬Ei. 

 

5.5.  Combination of basic probability assignments through DS belief 
networks 

In Section 5.4.  we have defined the general functions which are used for the calculation of the basic 
probability assignments for event occurrences. The exact functions, however, that will be required 
in the case of each rule need to be determined by analysing the time dependencies between the 
events involved in the rule. This involves both the functions that will be required for the calculation 
of basic probabilities in the genuineness of individual events and the functions required for the 
calculation of basic probability assignments to expected occurrences of events which are 
constrained by other events in a rule. To clarify this point, consider again Rule-1. As we discussed 
in Section 5.3. the assessment of the threat likelihood of this rule will need to be carried out in the 
following states of the monitoring process: 

 Case 1: when one (or more) events that match E1 but no events that match E2 have been 
received by the monitor 

 Case 2: when one (or more) events that match E2 but no events that match E1 have been 
received by the monitor 

 Case 3: when one (or more) events that match E1 and one (or more) events that match E2 
have been received by the monitor 

 Case 4: when one (or more) events that match E1 and one (or more) events that match E2 
have been received by the monitor and ¬E3 is derived by the NAF principle due to another 
event Eu. In this case an estimation of the threat likelihood will still be necessary due to the 
uncertainty about the genuineness of the event Eu.that has led to the derivation of ¬E3. 

Thus, it will be necessary to use and combine the following basic belief functions for this rule: m1, 
m2, m3, m1|2, m2|3, m2|1 and mNAF

3|U These functions will need to be combined in the above cases as 
follows: 

 In Case 1: (m1 ⊕ m2|1) ⊕ m3|2 

 In Case 2: (m2 ⊕ m1|2 ) ⊕ m3|2 

 In Case 3: (m1 ⊕ m2 ) ⊕ m3|2 

 In Case 4: (m1 ⊕ m2 ) ⊕ mNAF
3|u 



 
Mechanisms for detecting potential S&D threats 

 

SERENITY - 027587 Version 1.0   Page 43 of 57 

 

The combinations of the above basic probability functions can be obtained through the application 
of the rule of the orthogonal sum of the D-S theory (see formula (a9)). The different cases of 
combining event evidence along with the basic probability functions that will be used in each of 
them can be determined by analysing the time dependencies between the events of a rule. To 
represent these cases for a monitoring rule, we construct a graph with the different events as 
vertices and directed, labelled edges among them indicating dependencies between their time 
variables. These edges can be derived from the time variables which constrain the occurrence of an 
event, and indicate how evidence can be propagated at runtime by combining the different basic 
probability assignments that are associated with the observed events. This graph is called “rule 
belief graph” and the algorithm for constructing it is listed in Figure 20. 
According to this algorithm, the events of the given input rule R (i.e., the negated form of a rule R 
or an attack signature which has been derived from the negated form of a monitoring rule as we 
discussed in Section 4. are identified initially and a node is constructed to represent the starting 
point of the accumulation of evidence at runtime (see line 2). Then for each event, the algorithm 
constructs a node to represent its occurrence at runtime (line 4) and identifies the dependencies of 
the event to other events (line 5). At this step an event Ej is taken to depend on all other events Ei 
whose time variables appear in the expressions that define the lower and upper bound of the time 
variable of Ej. 
After identifying these dependencies, the algorithm creates a directed edge from all the events Ei 
that an event Ej depends on to Ej (see line 9). These edges indicate the paths for obtaining a basic 
probability for Ej when any of the events Ei is observed. Also an opposite edge from Ej to each of 
the events Ei is created if Ej is not a negated event (see lines 10-12). These edges will be used when 
Ej  is observed before Ei in order to indicate how the basic probability of Ei can be computed given 
Ej (see Case 2 above). Note that no backward edges are constructed from an event Ej to the events 
that it depends on, if Ej is a negated event (see condition in line 10). This is because, in the 
monitoring framework of SERENITY, negated events can only be derived through the application 
of the NAF principle when their ranges have fully determined boundaries (an event expected in a 
fully determined time range [a,b] is known to not have happened when the monitor receives the first 
event from its captor with a time stamp t > b without having received the event itself up to that 
point). Fully detemined boundaries, however, will not be possible to have for Ej unless Ei has 
already occurred. Hence, it will not be possible to derive the truth value of Ej before that of Ei and 
therefore compute a basic probability assignment for the latter event based on the basic probability 
of the former. The label attached by the algorithm on an edge from an event Ei to an event Ej will be 
mi|j, i.e., it will represent the basic probability assignment of observing (or not) Ej given that Ei has 
already been observed (note that this is different to mj|i). 

Following the generation of edges between events, the algorithm constructs edges to link the Start 
node of the graph with the nodes representing the different non negated events of the rule (see lines 
14−20). These edges are labelled by the basic probability assignment corresponding to the event Ei 
that they point to (i.e., the basic probability assignment mi). Negated events, on the other hand, are 
linked with the Start node only if they have a time range defined by constant values at the time of 
application of the algorithm (i.e., prior to runtime) and, therefore, it will be possible to establish 
their absence or not prior the seeing any other event at runtime (see conditions in lines 14 and 17) 7. 

                                                
7 Such events may typically appear in rules of the form ¬Happens(e1,t1,R(a,b)) ⇒ 
Happens(e2,t2,R(t1,t1+c)). The event ¬Happens(e1,t1,R(a,b)) in this rule has a time range with fully 



 
Mechanisms for detecting potential S&D threats 

 

SERENITY - 027587 Version 1.0   Page 44 of 57 

 

The edge linking the Start node with a negated event  Ei is labelled by the basic probability function 
mNAF

i|<x>. This function is partially determined as it includes the placeholder <x>. At runtime this 
placeholder will be bound to the identifier of the event Ej  that triggers the application of the NAF 
principle to derive the absence of Ei  creating a fully determined basic probability function  mNAF

i|j 
which will be used to estimate the basic probability of  ¬Ei. 

 

Construct_DS_Belief_Graph(R, DSGR) 

1. Find all n events ei in R /* R is assumed to be the negated form of a monitoring rule or an attack signature */ 

2. Construct a node representing the starting point in the assessment of the threat likelihood of R, called “Start” 
node. 

3. For each event ei (i ≤ n)  do: 

4.  Construct a node for ei and store the mapping of the time variable of this event as M(ti)= ei (i.e. store the 
 fact that time variable ti has been used to declare the time of occurrence of event ei.) 

5.  Build a list TVARSi of all time variables tk appearing in the lower and upper bound of the time variable ti of 
 ei. 

6. end for 

7. For each event ei (i ≤ n)  do: 

8.  For each time variable t ∈ TVARSi such that t ≠ ti do: 

9.   Construct an edge to ei from ep=M(t), labelled by mi|p, i.e., the basic probability of observing (or not) ei 
  given ep. 

10.   If ei is not a negated event Then 

11.    Construct an edge from ei to ep=M(t), labelled by mp|i, i.e., the basic probability of observing (or not) 
   ep  given ei. 

12.   end if 

13.  end for 

14.  If ei  is not a negated event then 

15.    construct an edge from the “Start” node to ei, labelled by the basic probability mi of ei. 

16.  else /* negated events */ 

17.    if ei  has a time range defined by constant values then 

18.     construct an edge from the “Start” node to ei, labelled by the basic probability mNAF
i|<x> of ei 

19.    end if 

20.  end if 

21. end for 
end Construct_DS_Belief_Graph 

Figure 20. Algorithm for constructing DS belief graphs 

 

                                                                                                                                                            
determined boundaries (a and b) prior to runtime and will remain as a negated event in the negated form of 
the rule, i.e., ¬Happens(e1,t1,R(a,b)) ∧ ¬Happens(e2,t2,R(t1,t1+c)) 



 
Mechanisms for detecting potential S&D threats 

 

SERENITY - 027587 Version 1.0   Page 45 of 57 

 

An example of a DS belief graph is shown in Figure 21. This graph has been built for Rule-1 above. 
The graph reflects that the occurrence of E2 in the rule depends on the occurrence of E1 since the 
range of the time variable of E2 (i.e., ℜ(t1,t1+a)) refers to the time variable of E1 but not vice versa 
(the range ℜ(t1,t1) of t1 indicates that E1 is an event with a not constrained time variable). Thus, an 
edge from E1 to E2 labelled by m2|1 has been inserted in the graph as well as another edge from E2 to 
E1 labelled by m1|2. Similarly, as the time range of the event ¬E3 (i.e., ℜ(t2,t2+b)) refers to the time 
variable t2 of the event E2, the graph contains an edge from E2 to E3. It does not contain, however, 
an edge from ¬E3 to E2 as the former event cannot be derived by NAF unless E2 is seen first. 
Finally, the graph includes edges from the starting node to E1 and E2 which complete the graph. 
These edges are labelled by m1 and m2 representing the basic probability functions that are to be 
used when the occurrence or absence of the events E1 or E2 is established from the starting node. 
 

 

Figure 21. D-S belief graph for Rule-1 

The effect of observing the presence or deducing the absence of new events during monitoring is 
propagated through the DS belief graph of a rule in order to compute the current threat likelihood of 
the rule. This computation is carried out using the algorithm of Figure 22. More specifically, given 
a new event E that can be unified with a rule R or can trigger the derivation of a negated event in R 
by NAF and the DS belief graph for the rule (DSGR), this algorithm initially identifies the known 
(KE) and unknown (UE) events in the belief graph DSGR (see line 1). Then it combines the basic 
probability assignments of the known events (see lines 4-7), finds the paths from E to the unknown 
events UE in DSGR which do not include any events in KE (see line 9), and combines the basic 
probability assignments identified by the labels of the edges of these paths that have not been 
combined so far (see lines 12-15). Finally, the algorithm returns the belief assigned to the events in 
the negation of the rule and the events in the rule (see line 19).  

 
Using the Compute_Threat_Likelihood algorithm with the DS belief graph of Rule-1, when an 
event E1 becomes known and there are no other known events in graph, the possible paths to 
unknown events in the network of Figure 21 will be E1→E2 and E1→E2→¬E3. Given these paths, 
the threat estimation will derived from the combination of the following basic probability 
assignments: 

Start 

E1 
E2 

¬E3 

m2|1 

m1|2 

m3|2 

m1 
m2 



 
Mechanisms for detecting potential S&D threats 

 

SERENITY - 027587 Version 1.0   Page 46 of 57 

 

Threat = (m1 ⊕ m2|1) ⊕ m3|2 (E1 ∧ E2 ∧ ¬E3) 

 

Compute_Threat_Likelihood(Ei, DSGR, R) 

1. Find the sets of the known events KE and the set of the unkown events UE in DSGR; 

2. m = basic_probability_assignment(<start, Ei>) 

3. CombinedBPA = {} 

4. For each Ek in KE Do /* combine the BPAs of events in KE */ 

5.  m = m ⊕  basic_probability_assignment(<start, Ek>) 

6.  CombinedBPA = CombinedBPA ∪ basic_probability_assignment(<start, Ek>) 

7. end for 

8. For each ej ∈ UE do  

9.  find all the paths from ei to ej, which do not include any event in KE and insert them in Pij 

10.  For each p ∈ Pij do 

11.   For each edge L in p Do /* combine the BPAs of paths to unkwown events */ 

12.    If basic_probability_assignment(L) ∉ CombinedBPA then 

13.     m = m ⊕  basic_probability_assignment(L) 

14.     CombinedBPA = CombinedBPA ∪ basic_probability_assignment(L) 

15.    end if 

16.   end for 

17.  end for 

18. end for 

19. mark Ei as a known event in DSGR 

20. return (m(events(¬R), m(events(R))) 

End Compute_Threat_Likelihood 

Figure 22. Algorithm for computing threat likelihood 

 

In the case where the event E2 becomes known first, the set of the unknown events in the network 
will include the events E1 and E3 and, therefore, there will be two possible paths, E2→E1 and 
E2→E3. As the basic probabilities that label the edges in these paths are m1|2 and m3|2 respectively, 
the threat estimation will be derived from the combination of the following functions: 

Threat = m2 ⊕ m1|2 ⊕ m3|2 

There are other cases where more than one event is adding evidence on the possible existence of 
another event. If in the network of Figure 21, for example, when the event E2 occurs E1 is also 
known then the unknown event will be ¬E3 and the only path to it will be E2→E3. Thus, the threat 
likelihood will be computed by the following combination of basic probability assignments: 

Threat = (m1 ⊕ m2 ) ⊕ m3|2 (E1 ∧ E2 ∧ ¬E3) 

A more detailed example of the computation of threat likelihood is also given in the next section.  

 



 
Mechanisms for detecting potential S&D threats 

 

SERENITY - 027587 Version 1.0   Page 47 of 57 

 

5.6.  Example of threat likelihood evaluation 
As an example of estimating threat likelihoods at runtime consider the attack signatures that were 
derived using our abduction based generation algorithm in Section 4.3. represented by the EC 
formulas R9 and R10. Whilst the attack signature that was derived for the monitoring rule MR in 
that section was formulated as a disjunction of these two EC formulas (i.e., R9 ∨ R10), for 
simplicity, we will only concentrate on the formula R9 in our example below assuming that this 
formula constitutes the entire attack signature for the MR rule. This formula can be re-written as 
indicated below to express the constraints of the different time variables using the range based EC 
notation of the SERENITY monitoring framework: 

R9’: (∃ _ag : Doctor; _a: Patient;  t, t1, t2: Time)   

 Happens(GetPD(_ag, _a, PD1), t, R (t, t)) ∧ 

 Happens(GetPD(_ag, _a, PD2), t1, R(0,t-1)) ∧  

 ∧ ¬Happens(AuthorisedAccess(_ag, _a), t2, R(0,t-1))  

Given this formula, the algorithm of Figure 20 will produce the D-S belief graph shown in Figure 
23. This graph assumes that the predicates in R9’ map onto the following events: 

 E1:  Happens(GetPD(_ag, _a, PD1), t, R (t, t)) 
 E2:  Happens(GetPD(_ag, _a, PD2), t1, R (0, t −1)) 
 ¬E3:  ¬Happens(AuthorisedAccess(_ag, _a), t2, R(0, t −1)) 

The edges in the graph represent the time dependencies between the different events of the attack 
signature, i.e., that the events E2 and E3 should occur before E1 but they are not time-ordered 
themselves (this is indicated by the absence of an edge between them). Also the presence of edges 
from the Start node of the network to E1 and E2 signifies the possible ways of triggering the 
estimation of the likelihood with respect to R9’, i.e., when events that match E1 and/or E2 have been 
received by the monitor. 

.  

 

Figure 23. A simple D-S network for the attack signature R9’ 

Start 

E2 

E1 

¬E3 

m2|1 

m1|2 

m3|1 

m1|3 

m2 
m1 

Key: 
E1:   Happens(GetPD(_ag, _a, PD1), t, R (t, t)) 
E2:   Happens(GetPD(_ag, _a, PD2), t1, R (0, t −1)) 
¬E3:   ¬Happens(AuthorisedAccess(_ag, _a), t2, R(0, t −1))  
 
 



 
Mechanisms for detecting potential S&D threats 

 

SERENITY - 027587 Version 1.0   Page 48 of 57 

 

Suppose that the following events arrive at the monitor in the order listed below: 

 EV2: Happens(GetPD(p1, p2, PD2), 10, R (10, 10)) 
 EV1: Happens(GetPD(p1,p2, PD1), 15, R (15, 15)) 
 EVx: Happens(AuthorisedAccess(p1, p2), 18, R(18, 18)) 

and that EV1 and EV2 are produced from the same event captor whilst EVx is produced by a 
different captor that is the same as the captor of the events of type E3 in the rule. 
Given the graph of Figure 23, when EV2 arrives the computation of the threat likelihood for the 
attack signature will be based on the combination of the basic probability functions: (m1 ⊕ m2|1) ⊕ 
m3|2. 

Based on the generic definitions of these functions, in Section 5.4. (see Definition 2 and 3), it can be 
shown that the application of the rule of the orthogonal sum will result in the following functional 
form for (m1 ⊕ m2|1) ⊕ m3|2: 

(m1 ⊕ m2|1) ⊕ m3|2 (E1 ∧ E2 ∧ ¬E3) = (k32’ k21 k1 + k32’ k1 (1 − k21− k21’) + k32’ k21 (1 − k1− k1’)) / 

 (1 − (k32 k21’(1 − k1’) + k32’k21’(1 − k1’)) 

Then assuming the following basic probability assignments: 
    k1 = 0.8     if X = {<e1, e2, e3> | e1 = 1} 

m1(X) =  k1’ = 0.1    if X = {<e1, e2, e3> | ei = 0} 

   | 1 − k1 − k1’ =  0.1  if X = θ  

    0       Otherwise 

 
   k21 = 0.6    if X ={<e1,e2, e3> | e1 = 1 and e2=1} 

m2|1(X) = k21’ = 0.4    if X ={<e1,e2, e3> | e1 = 1 and e2=0} 

   | 1 − k21 − k21’ = 0 if X = θ  

   0       Otherwise 

and 

   k32 = 0.2    if X ={<e1,e2, e3> | e2 = 1 and e3=1} 

m3|2(X) = k32’ = 0.6    if X ={<e1,e2, e3> | e2 = 1 and e3=0} 

   | 1 − k32 − k32’ = 0.2 if X = θ  

   0       Otherwise 

 

the threat likelihood will be estimated at: 
(m1 ⊕ m2|1) ⊕ m3|2 (E1 ∧ E2 ∧ ¬E3) = (0.6*0.6*0.8 + 0.6* 0.8*0 + 0.6* 0.6*0.1) / 

 (1 − (0.2*0.4*0.9 + 0.6*0.4*0.9) 
 = .45   

Subsequently, when E2 arrives the threat likelihood will be estimated by the combination 



 
Mechanisms for detecting potential S&D threats 

 

SERENITY - 027587 Version 1.0   Page 49 of 57 

 

(m1 ⊕ m2) ⊕ m3|2 (E1 ∧ E2 ∧ ¬E3) = (k32’ k2 k1 + k32’ k1 (1 − k2− k2’) + k32’ k2 (1 − k1− k1’)) / 

 (1 − (k32 k2’(1 − k1’) + k32’k2’(1 − k1’)) 
 

Thus, if m2 is  
    k2 = 0.8     if X = {<e1, e2, e3> | e2 = 1} 

m2(X) =  k2’ = 0.2    if X = {<e1, e2, e3> | e2 = 0} 

   | 1 − k2 − k2’ =  0  if X = θ  
    0       Otherwise 

the threat likelihood will be estimated at: 
(m1 ⊕ m2) ⊕ m3|2 (E1 ∧ E2 ∧ ¬E3) = 0.504 

The increase in the threat likelihood in this case is due to the fact that the basic probability of E2 
given by m2(X) is higher than the basic probability of  E2 that is computed by the combination m1 
⊕ m2|1 (0.8 vs. 0.53).  

Finally, when EVx arrives ¬E3 will be established by the monitor through the NAF principle and 
the threat likelihood will be estimated by the combination 

(m1 ⊕ m2) ⊕ mNAF
3|EVx (E1 ∧ E2 ∧ ¬E3) = k1 k2 k3|EVx’ 

Thus, assuming that k3|EVx’ = 0.9, we will have that (m1 ⊕ m2) ⊕ mNAF
3|EVx (E1 ∧ E2 ∧ ¬E3) = 

0.576 



 
Mechanisms for detecting potential S&D threats 

 

SERENITY - 027587 Version 1.0   Page 50 of 57 

 

6.  Integration with SERENITY Framework 
In the previous sections, we have presented in detail the design and functionality of the three 
components that constitute the threat detection mechanisms in SERENITY namely,  the Template 
instantiator, Attack Signature Generator and Threat Evaluator. This section discusses how these 
three components are related with the overall SERENITY framework.  
The SERENITY framework is subdivided into the SERENITY Development Framework (SDF) and 
Run-time Framework (SRF). Figure 24 shows how the three components that realise the threat 
detection mechanisms are related to either SDF or SRF and other components within these two 
parts of the SERENITY framework. 

SRFSDF

Monitoring 

Templates

Template 

Instantiator

Generates

S&D 

Patterns

reads

SERENITY Monitor

Attack Signature 

Generator

Monitoring 

Specification

Attack 

Signature

updates

Generates uses

Threat 

EvaluatorDiagnostics

 
Figure 24. Threat detection mechanisms  and the overall SERENITY framework. 

 
More specifically, as shown in Figure 24, 

1. The Template Instantiator is part of the SDF. As the primary functional purpose of this 
component is the generation of monitoring policies within SERENITY S&D patterns by 
instantiating abstract monitoring templates for particular security objectives, this 
component takes  as input  S&D patterns which do not have monitoring policies yet and 
supports the developers of these patterns to generate these polcies (the template instantiator 
generates a so-called monitoring specification which acquires the status of a monitoring 
policy and when S&D developers decide to include them in an S&D pattern). Note that, as 
shown in the figure, the Template Instantiator takes also as input a predefined catalogue of 
monitoring templates. This catalgue can be expanded by developers of S&D solutions if the 
latter wish to do so.  



 
Mechanisms for detecting potential S&D threats 

 

SERENITY - 027587 Version 1.0   Page 51 of 57 

 

2. The Attack signature generator can be used by both the SDF and the SRF. Recall that the 
purpose of this component is to generate an attack signature expressing all the different 
ways in which a given monitoring rule may be violated given a set of assumptions about the 
system that is being monitored. The difference between a monitoring rule and an attack 
signature generated from it is that the latter expresses the former only in terms of the 
different combinations of runtime events that may violate it and without any reference to 
system states. Thus, at runtime it is possible to monitor the rule by merely observing the 
events sent to the monitor and without the need to deduce any information about the state of 
the system on the basis of these events. At development time, the use of the Attack 
Signature Generator can help developers produce, where possible, monitoring 
specifications for S&D patterns that do not incorporate any assumptions and use them as 
monitoring policies within S&D patterns. This removes the need to perform deduction at 
runtime and enables the estimation of threat likelihood according to the scheme introduced 
in Section 5. However, the Attack Signature Generator is also accessible by the 
SERENITY monitor. This is in order to transform monitoring rules, whose checking 
requires assumption-based deductions at runtime, into attack signatures which can 
subsequently be used both for monitoring without deduction and for the estimation of the 
threat likelihood of rules. 

3. The Threat Evaluator is part of the SERENITY monitoring framework and the SRF. At 
runtime, this component runs in parallel with the SERENITY Monitor aggregating 
historical data that are required for the evaluation of threat likelihood (e.g., the computation 
of the basic probability assignmenets mi|j(X) in Section 5. and estimating the threat 
likelihood wrt different monitoring rules. 

 



 
Mechanisms for detecting potential S&D threats 

 

SERENITY - 027587 Version 1.0   Page 52 of 57 

 

7.  Related work 
Our approach to threat detection is related to intrusion detection (ID) [8][31][32]. The goal of 
intrusion detection is to characterise attack manifestations to positively identify all true attacks 
without falsely identifying non-attacks [35]. Intrusion and threat detection systems continuously 
monitor some dynamic behavioural characteristic of a computer system to determine if an intrusion 
has occurred or is about to occur [36]. 

Most intrusion detection systems, however, only detect malicious actions that have already 
happened (intrusions), which is what the SERENITY monitor does (by detecting violations of S&D 
rules in patterns). Our approach to threat detection expands this basic capability by trying to predict 
malicious actions before they actually occur.  

There are many ways to classify intrusion detection systems (IDSs) and their underlying 
approaches. One such classification concerns the source of events analysed by an IDS [39][40]. IDs 
that analyse the traffic exchanged on a network at the level of packets is called network-based [45]. 
An IDs can also target data produced locally at a host and it is therefore called  host-based. The data 
analysed by a host-based system can be on different levels of abstraction, from below the OS level 
to the level of application running on top of an operating system. IDs that analyse data coming from 
higher-level applications are called application-based [40]; they not designated host-based because 
the applications being monitored may have a distributed nature. The data being sensed by the 
SERENITY monitor is application-based. Therefore, the following gives more focus to application-
based approaches. 

The most common discriminator in classifying ID concerns the strategy adopted towards detection. 
There are two main categories of detection approaches in ID: anomaly-based and misuse-based 
[31]. Anomaly-based approaches [8][34][36][43] assume that attacks will involve, somehow, 
abnormal behaviour of the system, and threats and intrusions are detected as deviations from 
normality. Misuse-based approaches [37][41][38], on the other hand, are based on models of known 
attacks, intrusions are detected by matching observations against representations of known attacks. 
The threat detection approach presented in this report is essentially anomaly-based, but it also has 
characteristics of misuse-based approaches. The next two sections review work related with these 
approaches in detail. 

7.1.  Anomaly-based approaches 
There are, however, various strategies to follow in an anomaly-based approach. We consider two 
categories of strategies: profile-based and specification-based. 

Profile-based strategies were introduced in the seminal work of Denning [8]. This strand of work 
considers that attacks come from subjects (users, groups, remote hosts, etc) and so it maintains 
profiles of normal subject behaviour. Intrusions are detected as departures from normality based on 
the profiles that characterise normality. In statistical approaches [8][41], a profile is described in 
terms of a set of intrusion-detection measures, and deviation-detection is based on statistics. Rather 
then building profiles of external subjects, [43] builds profiles of the software being monitored, and  
uses neural networks to train the IDs to know what is normality and then use the learned neural 
network to detect abnormality. Other approaches are more low-level, using profiles of sequences of 
system calls; deviations are detected by using immunology inspired algorithms [36].  



 
Mechanisms for detecting potential S&D threats 

 

SERENITY - 027587 Version 1.0   Page 53 of 57 

 

A main source of criticism of profile-based approaches is that they tend to flag as intrusive previous 
unseen, but entirely legitimate behaviour. Model or specification-based approaches try to overcome 
this [34][42]. In this approach, there is a model or specification of the expected behaviour of the 
system or resource being protected, and intrusions are detected as deviations from the normal 
behaviour. This is the approach followed in the SERENITY Monitor proposed here. We have 
monitoring policies that specify the expected system behaviour and we detect threats and intrusion 
at the application level based on violations to the monitoring policy.  

In particular our approach shares with [42] the emphasis on protecting system assets or resources 
and in building security policies with the goal of protecting them.  

7.2.  Misuse-based approaches 
The threat detection approach proposed in this report shares many similarities with misuse-based 
approaches in that it uses attack models to detect threats. The main difference is that our approach 
derives the attack model from a model of the expected behaviour of the system: we try to predict 
what can go wrong in a system and build an attack model to represent it. 
In STAT approach [37][41] describes attack models in terms of attack scenarios, where each attack 
scenario is represented as a sequence of transitions leading from an initial secure state to a set of 
compromised ending states. These attack scenarios are then used to detect intrusions. Our attack 
model differs from the STAT in that it is based on an abstract attack signature describing all 
possible attack scenarios. 

In [38], Kumar and Spafford propose an approach to represent attack models as Coloured Petri 
Automaton (CPA). Intrusions are detected by using the matching mechanisms of CPA. CPA are 
generic descriptions like our attack signatures. Our approach also represents attacks models 
generically, but we use an EC formula to represent an attack signature rather than CPA. 

In [46], Jajodia, Noel and O’Berry propose an approach to model attack graphs based on 
vulnerabilities. As in our approach, their approach derives a signature that concisely represents all 
possible attack paths or scenarios to achieve some goal.  In their approach, however, the goal is 
some attack vulnerabilty whilst in ours the goal is the negation of a monitoring rule. 

7.3.  Other approaches 
Our approach shares many similarities the approach to security-by-design of [33]. In particular, the 
use of security specification patterns selected from some security goal and which are instantiated 
with information coming from object models, and the derivation of attack representations (called 
attack trees in [33]) from security specifications. The most striking difference, however, is that [33] 
is a design approach; feedback coming from attack analysis is fed back into the design. Our 
approach detects threats to S&D requirements at run-time. Other differences include the formalisms 
being used, and the fact that we use belief based reasoning to estimate threat likelihood following 
the derivation of attack signatures. 

 



 
Mechanisms for detecting potential S&D threats 

 

SERENITY - 027587 Version 1.0   Page 54 of 57 

 

8.  Conclusions 
This document presents the mechanisms for detecting threats at run-time in the context of the 
SERENITY framework. These mechanisms are being implemented and in their final version will 
constitute an integrated part of the SERENITY framework serving two main functional objectives 
within it. The first objective is to support the automatic generation of monitoring policies and attack 
signatures that can be used for the detection of runtime violations of S&D properties security. The 
second objective is to estimate the likelihood of potential violations of S&D properties (aka S&D 
threats). 

The generation of attack signatures starts from the specification of a security objective for a specific 
system asset. Starting from a pair of a security objective and an asset, the attack signature generator 
identifies the possible system operations whose execution can potentially violate the required 
security property that underpins the goal. Subsequently, it creates initial monitoring specifications 
using pre-specified monitoring rule templates that cover basic security properties. These initial 
monitoring specifications might not include directly monitorable events and/or make references to 
system states which cannot be directly monitored at runtime. Hence, it is necessary to be 
transformed into attack signatures that can be monitored merely on the basis of runtime events 
received by the monitor during the operation of a system. This transformation is based on planning 
that uses an abductive reasoning procedure and a set of assumptions (EC formulas)  that indicate 
how concrete events that can be monitored during the operation of a system can set and modify 
system states and/or generate other non directly observable events. 

If the generation of monitorable attack signatures is succesfull then the usets of the SERENITY 
monitoring framework can turn them into monitoring policies and use them to detect security 
threats for the system being monitored. It should be noted, however, although the mechanisms that 
we have presented in this report support the generation of attack signatures from security objectives 
and assets there is no guarantee that the specification of a security objective for a specific system 
asset can always lead to the generation of monitorable attack signatures. 

The detection of security threats at runtime is based on the basic monitoring capability of the 
SERENITY monitoring framework. More specifically, as soon as some runtime event instantiates a 
security monitoring rule and can, therefore, possibly lead to a violation of this rule, the event 
constitutes a security threat. To enable, however, the users of the SERENITY monitoring 
framework concentrate on security threats which are more likely to lead to a violation of security 
property in some future state of the system, the framework should calculate the likelihood of a 
violation given the current state of a system. The computation of this likelihood is the second main 
objective of the mechanisms described in this report and the computation of this likelihood is based 
on the Dempster Shafer theory of evidence.  
 

 



 
Mechanisms for detecting potential S&D threats 

 

SERENITY - 027587 Version 1.0   Page 55 of 57 

 

References 
[1] � Androutsopoulos K., Ballas K., Kloukinas C., Mahbub K., and Spanoudakis G, “V1 of Dynamic 

Validation Prototype”, Deliverable A4.D3.1, SERENITY Project. Available from http://www.serenity-
forum.org/IMG/pdf/A4.D3.1_dynamic_validation_prototype_v1.2_final.pdf, 2006 

[2] � Mahbub K., Spanoudakis G., Kloukinas C., “V2 of dynamic validation prototype”. Deliverable 
A4.D3.3, SERENITY Project. Available from: http://www.serenity-forum.org/IMG/pdf/A4.D3.3_-
_V2_of_Dynamic_validation_Prototype.pdf, 2007 

[3] � Shafer G., “A Mathematical Theory of Evidence”, Princeton University Press, 1975 

[4] � Tsigritis T., Spanoudakis G., “1st Version of Diagnosis Prototype”. Deliverable A4.D5.1, SERENITY 
Project. Available from http://www.serenity-forum.org/Work-package-4-5.html, 2008 

[5] � Weiser, M., The Computer for the 21st Century. Scientific American,  265(3). 1991. 

[6] � Sánchez-Cid, F., A. Munoz, D. Serrano, and M. Gago. Software Engineering Techniques Applied to 
AmI: Security Patterns. In Developing Ambient Intelligence. 2006: Springer. 

[7] � Anderson, J.P. Computer Security Threat Monitoring and Surveillance. James P. Anderson Co., 
Technical Report,  

[8] � Denning, D., An Intrusion Detection Model. IEEE Transations on Software Engineering,  13(2): 222-
232. 1987. 

[9] � F. Swiderski and W. Snyder, Threat Modeling. 2004: Microsoft Press. 

[10]� Amálio, N., S. Stepney, and F. Polack. A formal template language enabling meta-proof. In FM 2006. 
2006: LNCS, Springer. 

[11]� Amálio, N., Generative frameworks for rigorous model-driven development. PhD Thesis. Dept 
Computer Science, Univ of York. 2007. 

[12]� Eshghi, K. Abductive planning with Event Calculus. In 5th International Conference on Logic 
Programming. 1988: MIT Press. 

[13]� Levesque, H.J. What is planning in the presence of sensing. In National Conference on Artificial 
intelligence (AAAI'96). 1996. 

[14]� Pearl, J., Probabilistic reasoning in intelligent systems : networks of plausible inference. 1988: 
Morgan Kaufmann. 

[15]� Campadello, S., L. Compagna, D. Gidoin, P. Giorgini, and S. Holtmanns. S&D Requirements 
specification. SERENITY Deliverable, A7.D2.1 

[16]� Campadello, S., L. Compagna, D. Gidoin, P. Giorgini, and S. Holtmanns. Scenario selection and 
definition. SERENITY Deliverable A7.D1.1 

[17]� Denning, D.E. and P.J. Denning, Data Security. ACM Comput. Surv.,  11(3): 227--249. 1979. 



 
Mechanisms for detecting potential S&D threats 

 

SERENITY - 027587 Version 1.0   Page 56 of 57 

 

[18]� Tennent, R.D., The denotational semantics of programming languages. Communications of the ACM,  
19(8): 437-453. 1976. 

[19]� Spanoudakis, G., C. Kloukinas, and K. Androutsopoulos. Towards security monitoring patterns. In 
SAC '07: ACM symposium on Applied computing. 2007: ACM. 

[20]� Kloukinas, C. and G. Spanoudakis. A pattern-driven framework for Monitoring Security and 
Dependability. In TrustBus'07. 2007: Springer. 

[21]� Schoppers, M.J. Universal plans for reactive robots in unpredictable environments. In Proceedings of 
the Tenth International Joint Conference on Artificial Intelligence (IJCAI- 87). 1987. 

[22]� Manna, Z. and R. Waldinger, How to clear a block: a theory of plans. Journal of Automated 
Reasoning,  3: 343-377. 1987. 

[23]� Console, P., L.a. Terenziani, and D.T. Dupre, Local reasoning and knowledge compilation for efficient 
temporal abduction. IEEE Transactions on Knowledge and Data Engineering,  14(6): 1230 -1248. 
2002. 

[24]� Eiter, T. and G. Gottlob, The complexity of Logic-Based abduction. Journal of the Association for 
Computing Machinery,  42(1): 3-42. 1995. 

[25]� Paul, G., Approaches to abductive reasoning: an overview. Artificial Intelligence Review,  7: 109-152. 
1993. 

[26]� Stepney, S., F. Polack, and I. Toyn. A Z patterns catalogue, I. Department of Computer Science, 
University of York, YCS-2003-349 

[27]� Gamma, E., R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable Object-
Oriented Software. Professional Computing. 1995: Addison-Wesley. 

[28]� Yoder, J. and J. Barcalow. Architectural patterns for enabling application security. In PLoP'97. 1997. 

[29]� Cheng, B.H.C., S. Konrad, L.A. Campbell, and R. Wassermann. Using Security Patterns to Model and 
analyze security requirements. In Requirements for high-assurance systems workshop (RHAS'03). 
2003. 

[30]� Fernandez, E.B. and R. Pan. A pattern language for security models. In PLoP 2001. 2001. 

[31]� Lazarevic, A., V. Kumar, and J. Srivastava, Intrusion detection: a survey. In Managing cyber-threats: 
issues approaches and challenges., V. Kumar, J. Srivastava, and A. Lazarevic, Editors. 2005, 
Springer. 

[32]� Lunt, T.F., A survey of intrusion detection techniques. Computers & Security,  12(4): 405-418. 1993. 

[33]� Lamsweerde, A.v., S. Brohez, R.D. Landtsheer, and D. Janssens. From system goals to intruder Anti-
goals: attack generation and resolution for security requirements engineering. In Requirements for 
high-assurance systems workshop (RHAS'03). 2003. 

[34]� C. Ko, M. Ruschitzka and K. Levitt. "Execution Monitoring of Security-Critical Programs in 
Distributed Systems: a Specification-Based approach." Proc. 1997 IEEE Symp. Security and Privacy. 
IEEE CS Press. pp. 175 – 187, 1997,. 



 
Mechanisms for detecting potential S&D threats 

 

SERENITY - 027587 Version 1.0   Page 57 of 57 

 

[35]� John McHugh, Alan Christie and Julia Allen. The role of intrusion detection systems. IEEE Software, 
17 (5): 42–51. 2000. 

[36]� Hofmeyr, S. A., Forrest, S., and Somayaji, A. Intrusion detection using sequences of systems calls. 
Journal of Computer Security, 6(3): 151 – 180. 1998. 

[37]� K. Ilgun, R. A. Kemmerer, and P.A. Porras, State Transition Analysis: A rule-based intrusion 
detection system. IEEE Trans. Software Eng., 21(3): 181– 199. 1995. 

[38]� Kumar, S. and Spafford, E. H., A pattern matching model for misuse intrusion detection. In 
Proceedings of the 17th National Computer Security Conference, pages 11– 21. 

[39]� Christopher Kruegel, Frederik Valeur and Giovanni Vigna., Intrusion Detection and Correlation: 
Challenges and Solutions. Springer. 2005. 

[40]� Magnus Almgren and Ulf Lindqvist. Application-Integrated Data Collection for Security Monitoring. 
In RAID 2001, pages 22–36. Vol. 2212 of LNCS. Springer. 2001. 

[41]� Javitz, H. and Valdes, A. The NIDES statistical component description and justification. Tech. Rep., 
Computer Science Laboratory, SRI International, Menlo Park, Cal, USA. 1994. 

[42]� Suresh N. Chari and Pau-Chen Cheng. Bluebox: A policy-driven, host-based intrusion detection 
system. ACM Trans. Inf. Syst. Secur., 6(2):173–200. 2003. 

[43]� A. K. Gosh, J. Wanken, and F. Charron. Detecting Anomalous and unknown intrusions against 
programs. Proc. Annual Computer Security Application Conference (ACSAC'98), IEEE CS Press. 
259–267. 1998. 

[44]� Richard A. Kemmerer and Giovanni Vigna. Sensor families for intrusion detection infrastructures. In 
[31]. pages 181–219. 2005. 

[45]� Philip K. Chan, Mattheq V. Mahoney and Muhammad H. Arshad. Learning rules and clusters for 
anomaly detection in network traffic. In [31]. pages 81–99. 2005. 

[46]� Sushil Jajodia, Steven Noel, Brian O'Berry. Topological Analysis of network attack vulnerability. In 
[31]. pages 81–99. 2005 

 


