Linear Algebra Coursework 2

 ${\bf 21st\ January}.\ {\bf Late\ submissions\ will\ be\ penalised}.$ should be handed in to the mathematics general office (CM520) by 4:00pm on Monday This is an assessed coursework, and will count towards your final grade. Solutions

1. Find the eigenvalues of

$$\begin{pmatrix} -1 & 0 & 0 \\ -6 & 1 & 2 \\ -48 & 0 & 23 \end{pmatrix}$$
.

For each eigenvalue find a basis for the corresponding eigenspace.

[15]

2 Let A be the matrix

$$\left(\begin{array}{ccc} 5 & -2 & -2 \\ 0 & 3 & 0 \\ 4 & -4 & -1 \end{array}\right).$$

By finding a basis of eigenvectors, determine invertible matrices P and P^{-1} such that the matrix $P^{-1}AP$ is diagonal. Hence calculate the value of A^{10} .

[20]

- 3. For each of the following functions, determine whether they give a real inner product Give reasons for your answers.
- (a) $\langle -, \rangle$ on \mathbb{R}^3 given by $\langle \mathbf{x}, \mathbf{y} \rangle = x_1 y_1 + x_3 y_3$. (b) $\langle -, \rangle$ on \mathbb{R}^3 given by $\langle \mathbf{x}, \mathbf{y} \rangle = x_1^2 y_1^2 + x_2^2 y_2^2 + x_3^2 y_3^2$. (c) $\langle -, \rangle$ on M(2, 2) given by $\langle A, B \rangle = \det(BA)$.

- (d) $\langle -, \rangle$ on M(2, 2) given by $\langle A, B \rangle = \text{tr}(AB)$. (e) $\langle -, \rangle$ on P_2 given by $\langle p, q \rangle = p(0)q(0) + p(\frac{1}{2})q(\frac{1}{2}) + p(1)q(1)$.

[15]

4. Verify that the set

$$\{(\frac{1}{\sqrt{3}},0,\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}}),(\frac{-1}{\sqrt{15}},\frac{3}{\sqrt{15}},\frac{2}{\sqrt{15}},\frac{-1}{\sqrt{15}}),(\frac{3}{\sqrt{15}},\frac{1}{\sqrt{15}},\frac{-1}{\sqrt{15}},\frac{-1}{\sqrt{15}}),(0,\frac{1}{\sqrt{3}},\frac{-1}{\sqrt{3}},\frac{1}{\sqrt{3}})\}$$

of elements from \mathbb{R}^4 form an orthonormal basis with respect to the usual scalar (i.e. "dot") product $\mathbf{x} \mathbf{y}$. Write the element (2,-3,4,-5) as a linear combination of these

[Continued overleaf]

5. Use the Gram-Schmidt method to form an orthonormal basis for M(2,2) with inner product $\langle A,B\rangle=\operatorname{tr}(B^TA)$ from the set of basis elements

$$\left\{ \left(\begin{array}{cc} 1 & 1 \\ 0 & 0 \end{array}\right), \left(\begin{array}{cc} 1 & 0 \\ 1 & 0 \end{array}\right), \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right), \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right) \right\}.$$

[20]

Let A be the matrix

$$\begin{pmatrix}
2 & 0 & 0 \\
0 & 1 & 3 & 3 \\
0 & 2 & 2 & 1 \\
2 & 2 & 2
\end{pmatrix}.$$

such that the matrix P^TAP is diagonal. By finding a suitable basis of eigenvectors, determine orthogonal matrices P and P^T

[20]