Linear Algebra: Exercise Sheet 3

- 1. For each of the following maps, either prove that it is linear or give an example to show where linearity fails.
 - (a) $f: \mathbb{R}^2 \longrightarrow \mathbb{R}: (x,y) \mapsto 3x + 2y$
 - (b) $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2 : (x, y) \mapsto (xy, 0)$
 - (c) $f: P_n \longrightarrow P_{n+1}: p(x) \mapsto (x+1)p(x)$
 - (d) $f: P_n \longrightarrow \mathbb{R}: p(x) \mapsto \int_0^1 p(x) dx$
 - (e) $f: P_n \longrightarrow P_n: p(x) \mapsto \frac{d}{dx}(p(x)) + (5x+2)$
 - (f) $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3 : (x, y, z) \mapsto (y + z, x + z, x + y)$
 - (g) $f: M(n,m) \longrightarrow M(m,n) : A \mapsto A^T$
 - (h) $f: M(n,n) \longrightarrow \mathbb{R}: A \mapsto \det(A)$
- 2. Is there a linear map $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ such that f(1,0) = (3,2,1), f(1,1) = (-1,0,1) and f(3,1) = (5,0,-2)?
- 3. For each of the following linear maps, determine whether they are injective, surjective, both or neither.
 - (a) $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2 : (x, y, z) \mapsto (x + y, z)$
 - (b) $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3 : (x, y, z) \mapsto (y + z, x + z, x + y)$
 - (c) $f: M(2,2) \longrightarrow \mathbb{R}: \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto a+b+c+d$
 - (d) $f: P_1 \longrightarrow P_2: a_0 + a_1 x \mapsto a_0 x + a_1 x^2$
 - (e) $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3 : (x, y, z) \mapsto (y, y, y)$
 - (f) $f: P_n \longrightarrow P_n: p(x) \mapsto p(x) p(0)$
- 4. Find a basis for the image and the kernel of each of the linear maps in question 3 (a)–(f). (You may use the Rank-Nullity theorem).
- 5. (optional) Can you find linear maps $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ such that
 - (a) $\operatorname{Im} f \subsetneq \operatorname{Ker} f$?
 - (b) $\operatorname{Ker} f \subsetneq \operatorname{Im} f$?
 - (c) $\operatorname{Ker} f = \operatorname{Im} f$?
- 6. **(optional)** Let $f: U \longrightarrow V$ and $g: V \longrightarrow W$ be linear maps between vector spaces over the same \mathbb{F} . Consider the composition $(g \circ f): U \longrightarrow W$. Show that $\operatorname{Ker}(f) \subseteq \operatorname{Ker}(g \circ f)$. Deduce that $\operatorname{Rank}(g \circ f) \leq \operatorname{Rank}(f)$.