Matrices and linear equations

Basic properties of matrices

In the first year you have seen how to manipulate matrices, and use them to solve systems
of simultaneous equations. This handout is a brief review of some of that material.

Recall that we are taking F to be either R or C. An m x n matrix over F is a
rectangular array of elements from F (we call elements of F scalars) with m rows and n
columns. For a matrix A, we label the element in the ith row and the jth column by a;.
If m = n we call A a square matrix; if A is an m x 1 (respectively a 1 x n) matrix we
call A a column (respectively row) vector. We usually denote row and column vectors
by lower-case boldface letters (e.g a) — this corresponds to underlining vectors as in the
lectures. (Indeed, underlining is the traditional way in a handwritten manuscript to show a
printer which parts are intended to be in boldface type.)

Given two m x n matrices A and B, we define their sum A + B to be the m X n matrix
C with ¢;; = a;; + by;. We can also multiply a matrix by a scalar: AA is the matrix C'
with ¢;; = Aay;. Further, if A is an [ x m matrix over F and B is an m x n matrix over F,
then we define their product AB (an [ x n matrix over F) to be the matrix C, where

m
cij =Y aixby.
k=1

Recall that the order of the product matters; in general AB # BA (indeed, one of the two
products might not even be defined!).

The n X n matrix

100 0
010 - 0
0 1 - 0
000 -1

is called the identity matrix I,,. We have for all n X n matrices A that Al = IA = A, and
I is the only such matrix with this property.

Given A, an n X n matrix over F, we say that an n X n matrix B is the inverse of A if
AB = I,. Such a matrix also satisfies BA = I,,. Given A, if such a matrix B exists then it is
unique; we will denote this inverse matrix by A~!. It is easy to check that (AB)~! = B~1A~1.
We can also take the transpose A’ of any m x n matrix A. This is the n X m matrix C
with ¢;; = aj; (i.e., the matrix obtained by interchanging the rows and columns of A). We
have (AB)! = B" A" whenever the product AB exists. It is also possible to show that
(AT = (A")"'. The trace of an n X n matrix A is the sum of the elements along the

diagonal; that is
n
tI‘(A) = Za,-,-.
i=1

The determinant of a (square) matrix

We can relate to each n X n matrix A over F an element det(A) in F, called the deter-
minant of A. There are various ways to define this, and to calculate it for any given matrix.
On this sheet I will describe one possible definition; if this differs from the way that you
are familiar with, check instead that you are happy with the definition that you are familiar
with, and then concentrate on the properties of the determinant that T will later go on to
describe.

A permutation of the integers {1,...,n} is an arrangement of these integers in some
order with no repetition or eliminations. For example, the permutations of {1, 2,3} are

(1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,1).

Given such a permutation o we set 0(7) to be the ith element of the permutation; for example,
if o = (3,1,2) then o(1) = 3, 0(2) = 1, and o(3) = 2. We denote the set of permutations of
n by X,.

An inversion occurs in a permutation o whenever a larger integer precedes a smaller
one. For example (3,2,1) contains three inversions: 3 before 2, 3 before 1, and 2 before 1.
We say that a permutation is even if it contains an even number of inversions, and odd
otherwise; for example (3,2, 1) is an odd permutation. Let /(o) be the number of inversions
in the permutation o; in our example we have {((3,2,1)) = 3.

We now define the determinant of an n X n matrix A to be

det(A) = Z (—1)'a15(1)20(2) - - - Gnar(m)-

0CEn
For example, for A a 2 X 2 matrix we have
det(A) = ar1a2 — azan
while for B a 3 x 3 matrix we have
det(B) = biibaabss + biabasbs1 + bisbaibsy — bisbasbsi — biabaibss — bi1basbss-

Calculating the determinant of a square matrix in this manner can become a lengthy
procedure if the number of rows and columns is large. For this reason it is convenient to
have a number of alternative ways to calculate it. Most of these rely on the fact that for any
two n X n matrices A and B we have

det(AB) = det(A) det(B).
For our purposes, the importance of the determinant function is

Theorem 1 An n X n square matriz A is invertible if and only if det(A) # 0.




Matrices and linear equations

You have already seen how we can use matrix methods to solve systems of linear equa-
tions. Given such a system

anzy  +aieTy +-- AT, =b
anT1  +apTy +- Far, =b
U1 T1 FAmaT2 +c FOppTn = by

we can rewrite it in the form
n
Zai]-a:j:b,- (j:l,?,...,m)
j=1

which is equivalent to the matrix equation
Ax =b.

The matrix A is called the coefficient matrix of the system of equations, and the
m X (n+ 1) matrix given by adjoining the column vector b to the right-hand side of A —
which we will denote by (A[b) — is called the augmented matrix of the system. Last year
you have seen that this augmented matrix contains all the information needed to understand
our system of equations.

One way to solve such a system of equations is to use elementary row operations to
perform Gaussian elimination. Clearly the set of solutions of our equations is unchanged
if we

1. Swap the positions of a pair of equations.

2. Multiply both sides of an equation by a non-zero scalar.

3. Add one equation to another.

These correspond to the following elementary row operations on the matrix A’ =
(Ab): - -

1. Replace A’ by H" A', where H"/ is the n X n matrix which exchanges rows ¢ and j.

2. Replace A’ by HiA', where Hi is the n X n matrix which multiplies row i by A # 0.

3. Replace A’ by M* A’ where M™ is the n X n matrix which adds rows j to row i.

[ Make sure you know what the matrices HJ, Hi and M look like in terms of their entries;
they are very simple matrices.|

Now the method of Gaussian elimination for solving systems of linear equations corre-
sponds to transformation of the augmented matriz by elementary row operations into Echelon
form. Recall that a matrix A is in Echelon form if all the entries below the first non-zero
entry in each row are zero. We call the first non-zero entry of each row the distinguished
element of that row. Then a matrix in echelon form is said to be row reduced if: i) all of

the distinguished elements equal 1, and ii) each is the only non-zero element in its respective
column. For example, if A and B are given by

71035 10040
02220 0102¢0
A=]100101 B=]100100
0000O0CT1 000GOCT1
00O0O0O0 00O0O0O

then both A and B are in echelon form, but only B is row reduced. It is possible to show
that the row reduced echelon form of a matrix is unique.

[Make sure that you are happy that Gaussian elimination corresponds to using elementary
row operations to put the augmented matriz in Echelon form.]

The determinants of the matrices corresponding to elementary row operations are easy
to calculate: - . -
det(HY) = -1 det(H)) = A det(M"Y) = 1.

Calculating the determinant and inverse of a matrix

The determinant of a matrix can be calculated using the Laplace transformation for
det(A) which, when used with elementary row operations, can greatly simplify the calcula-
tion. Given a n X n matrix A, the minor of a;;, denoted M;;, is the determinant of the
matrix obtained from A by deleting the ith row and jth column. The cofactor of a;; is the
scalar Cy;, where C;; = (—1)"M;;.

Now we can give the Laplace expansion for det(A4). For any ¢ between 1 and n we
have

det(A) = Z ai]-Ci]- = Z ll]'iC]'i.
j=1 j=1

If we use elementary row operations to reduce the matrix to one where the first row (say)
has one non-zero entry  keeping track of the change this makes to the determinant!
then the problem of determining the determinant of the matrix can be reduced (using the
Laplace transformation) to that for a smaller (and hence simpler) matrix.

We can also use the cofactors to write down the inverse of an invertible matrix A, in the
following manner. The adjoint of A (written adj (A)) is the transpose of the matrix formed
by replacing each a;; with its cofactor. That is, it is the matrix B where b;; = C};. Last year
you should have seen that, when A is invertible, we have

1
A7l = ———adj(A).
der(a) i 4)

The above formula gives us a method for calculating the inverse of a matrix, but it can
be quite lengthy to implement. It is often simpler to use elementary row operations to reduce
the augmented matrix (A|l,) to the form (7,|B); if this is possible then A is invertible, and
its inverse is B.




