Solutions to Linear Algebra coursework 1

In the following notes, we give worked solutions to each of the questions on the first
coursework. Comments in italics are not part of the solutions, but advice on method and
some COMMON EITors.

Question 1: Subspaces
In questions such as this one, it is often a good idea to write down the relevant definition
to remind yourself what has to be checked. A subspace U of a vector space V over F is a
subset U of V such that

1.0eU.

2. For allu,v € U we have u+v € U.

3. Forallue U and A € F we have Au € U.

(a) Let U = {(z1,22,...,2,) : 21 + 22 = 0}. We will check each of the subspace conditions
for U in turn. Notice the notation used for vectors and their coordinates; it is important not
to get confused between the two. Also the vector is not the same as the condition x1+x3 = 0,
so writing x = x1 + x2 = 0 or some such is meaningless.

0=(0,0,...,0), so the sum of the first two coordinates is 0 + 0 = 0 and we see that 0 € U
as required.

Let x = (z1,%2,...,2y) and ¥y = (y1,¥2,-..,yn) be in U. Then z1 + o = y1 + yo = 0. We
have x +y = (21 + 41,22 + Yo2,...,%n + Yn), and the sum of the first two coordinates is
i+ + T2 +ys = (21 +22) + (y1 +42) =0, 50 x+y € U as required.

Let x = (21,%2,...,%,) € U (s0 21 + 29 = 0). We have A\x = (\z1, \z,...,Az,) and the
sum of the first two coordinates is Az; + Aza = A(z;+z2) = 0. Therefore Ax € U as required,
and U is a subspace of R”.

(b) Let U = {(z1, 2, . ..,2n) : 22 — 29 = 0}. In order to show that a set is not a subspace,
it is enough to find one of the three conditions that fails. To do this, it is in turn enough to
find a single example for which the condition fails. Thus for this question, one can either try
each condition in turn with a general vector x, or pick an example for which it fails. Both
methods are valid, but we will carry out the latter here.

Consider x = (1,1,0,...,0) and y = (-1,1,0,...,0) in U. The sum x +y = (0,1,0,...,0)
has 02 — 1 = —1 # 0 and hence does not lie in U. So U is not a subspace of R*. For those
who prefer not to guess examples, we could have used arbitrary x and'y in U and observed
that (z1 +y1)? — (To + yo) # 22 — 22 + y? — yo in general.

(c) Let U = {(z1,2a,...,2,) : 21 — 2o + 23 > 0}. As in part (b), we will give an example to
show the subspace conditions fail.

Let x = (1,0,0,...,0); clearly this is a vector in U. But for A = —1 € R we have A\x =
(-1,0,0,...,0) and =1 — 0+ 0 < 0. Thus Ax ¢ U, and so U is not a subspace.

(d) Let U = {(z1,%2,...,&y) : &1 = 0 or 3 = 0}. Many of you were confused by the word
“or” here. Recall that in mathematics the phrase “A or B” means that at least one of A or
B (and possibly both) is true. Those who took “or” to mean “A or B but not both” lost some
(but not all!) of the available marks, as 0 is in U with the above definition.

Let x = (1,0,0,...,0) and y = (0,1,0,...,0) € U. We have x+y = (1,1,0,...,0) ¢ U,
and so U is not a subspace of R".

Question 2: Bases of P,

There are several ways to approach this question, depending on whether one can remember
the various results from the lectures. We will indicate a variety of methods. A basis for a
vector space V over F is a set of vectors that are linearly independent and that span V.

A set of vectors {vi,..., vy} is linearly independent if, whenever we have > ;' | A;v; =0
with A; € F for all ¢, then Ay =X =... = A, =0.
A set of vectors {vi,...,v,} spans V if for every vector v € V we can find \; € F for

1 <i<mnsuch that v=>7" \v,.

(a) Let S = {1+ z,z + z°}. Short answer: The vector space P, has dimension 3, and we
know that any basis of an n-dimensional space must contain exactly n elements. Thus S
cannot be a basis of P,. Therefore it cannot both be linearly independent and span. We also
know that every spanning set contains a basis, and therefore S cannot span P, (as S does
not contain 3 distinct vectors). So we only have to check whether S is linearly independent
or not.
(*) Suppose A (1 +z)+ Ag(z +22) = 0. Then we have Ay + (A +X9)z + Agz? = 0+ 0z + 022,
By comparing the coefficients on each side we see that Ay = 0 and Ay = 0, as required.
So S is not a basis for P, as it is linearly independent but does not span.
Long answer (for those who find the theorems on bases in Chapter 1 confusing!): We have
to check if S is linearly independent. For this we use the argument given at (*) above. Now
(as we are not quoting any theorems) we have to check whether S spans P,.
Given v € P,, we need to find A; and A, € R such that v = A(1 +2) + Aoz + 2%). Any
v € P, can be written in the form v = vy + v,z + vo2? for some v; € R. So we have to solve
the equation

A+ (A1 + A)z + Xo? = v + 1T + voz?

This example is easy enough to do by hand, but we could also use Gaussian elimination. For
practice, we will take the latter approach. We have to solve the system of equations

)\1 =1 10 Vg
A +A =v; or 11 |vn
A =1y 01 |v

Using Gaussian elimination we get

10 Vo 10 Vg
01 |vg—wg and then 01 |vy—wg
01 |v 0 0 |vo—v+w

This is impossible to solve when vy — v1 + vg # 0, and so the set S does not span P,.
So S is not a basis for P, as it is linearly independent but does not span.

(b) Let S = {222—1, 143z —42?, 1+z+x*}. Short answer: The vector space P, has dimension
3, and we know that any basis of an n-dimensional space must contain exactly n elements.
Thus S could be a basis of P,. We also know that every set of n linearly independent vectors
in an n-dimensional space is a basis (and similarly that every n spanning vectors form a
basis), so we only need to check linear independence (or just check spanning). These are




both done in the long answer below; one only needs to be copied here...
Long answer (and completion of short answer): We first check if S is linearly independent.
Suppose that Aj, Az, A3 € R are such that

M(27% — 1) + Ao (1 + 3z — 42?) + A3(1 + 2 + 27) = 0 + 0z + 02
By equating coefficients of powers of  we see that we must solve
“M 4+d +X3 =0 -1 11 ]o0
3 +A3 =0 or 0 3 1|0
220 —4X +A3 =0 2 -4 1|0

Using Gaussian elimination we get

-1 11]0 -1 1 1]0
0 3110 and then 01 3|0
0 -2 3|0 00 3% |0

which implies that A3 = Ay = A\; = 0. So S is linearly independent. This completes the
“short” answer.

We next check if S spans P,. Arguing as in part (a), we have to find for each triple of real
numbers vg, vy, Vo elements Ay, Ag, A3 € R such that

A2z = 1) + Ao(1 + 3z — 4a?) + As(1 + = + 27) = vo + viz + voz®

By equating coefficients of powers of  we see that we must solve

-A A HA =1y -1 T 1 v
32 +A3 =wv; or 0 31 |vu
201 —4Xa +A3 = 2 —4 1 |vg
Using Gaussian elimination we get
1 11 | 11 1 |y
0 3 1 |uy and then 01 % 301
0 -2 3 |v+ 2y 0 0 3% |vo+2v0+ 30,

This can be solved for A;, As, A3, and so the set S spans P,.

Thus S is a basis for P, as it is linearly independent and spans. Notice how similar the
two calculations of linear independence and spanning are; we have to carry out Gaussian
elimination on two very similar augmented matrices.

(c) Let S = {1+ 22 + 22,1 — 2 — 42,2 — 22,1 + 3z}. By now the method of Gaussian
elimination should be familiar, so we shall just give the “short” answers to the remaining
two parts. For the “long” answers, check linear independence and spanning separately. The
vector space P, has dimension 3, and we know that any basis of an n-dimensional space
must contain exactly n elements. Thus S cannot be a basis of P,. Therefore it cannot both
be linearly independent and span. We also know that it cannot be linearly independent, as
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any linearly independent set has no more elements than any spanning set (and there is a set
of three vectors which span P,). So we only have to check whether S spans or not.
Arguing as in part (a), we have to find for each triple of real numbers vg, vy, v2 elements
)\]7 /\2, /\3, /\4 € R such that

ML+ 22 +22) + A (1 — 2 — 42%) + A3(z — 22) + Ay(1 + 37) = vo + vy 2 + Va2

By equating coefficients of powers of z we see that we must solve

Al *4A2 *)\3 = U 1 -4 -1 0 Vg
2\ =Xy A3 43N =wv; or 2 -1 1 3 v
)\1 Jr)\g +)\4 = Vg 1 1 1 (%]
Using Gaussian elimination we get
1 =4 -1 0 |v 1 -4 -1 0 |wvo
0 7 1 3 |v—2y and then | 0 1 i § (v — 2vp)
0 5 10 |va—wg 0 0 2 =B |u—vg— 3(v1 — 2up)

This can be solved for Aj, A9, A3, A4, and so the set .S spans Ps.

Thus S is not linearly independent, but it does span P,. Notice that the solutions to the final
set of equations (for spanning) are not unique. This does not matter — for a set of vectors
to span they merely have to have some combination equalling each vector in the space, not
necessarily a unique combination.

(d) Let S = {3+4z+2?% 1+z+12?% 7+10z+2?}. The vector space P, has dimension 3, and
we know that any basis of an n-dimensional space must contain exactly n elements. Thus S
could be a basis of P,. We also know that every set of n linearly independent vectors in an
n-dimensional space is a basis (and similarly that every n spanning vectors form a basis), so
we only need to check linear independence (or just check spanning). If they are not linearly
independent they cannot span, as such a spanning set would be a basis. Thus we check if S
is linearly independent. Suppose that A;, Ay, A3 € R are such that

M (34 4z + %) + Ao(1 + 2 + 22) + A3(7 + 10z + 2%) = 0 + 0z + 022

By equating coefficients of powers of  we see that we must solve

3\ +A 4T3 = 31 7|0
40 X H10N = or 4 1 10 |0
A+ +A3 = 11 110

Using Gaussian elimination we get

11 110 1 1110 1 1110
31 7|0 and then 0 -2 4|0 and then 0 -2 410
4 1 10 |0 0 -3 6 |0 0 0010

which implies that we can find A, Ag, A3 # 0 satisfying our equation above (e.g. A} = —3,
A2 =2, A3 =1). So S is not linearly independent, and hence does not span either.
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Question 3: Linear maps
Once again, it can be helpful to begin with the definitions to be used in answering the question.
A function f : U — V between two vector spaces over F is called linear if

1. For all u,v € U we have f(u+v) = f(u)+ f(v).

2. For allu € U and X € F we have f(Au) = Af(u).

(a) Let f: R® — RS with f(z,y,2) = (2z—y—2,2+2,y). We will check each of the linearity
conditions in turn. Be careful not to confuse “linear maps” with “linearly independent”!
Some of you tried to show linear independence, which has nothing to do with this particular
question.

Let u = (uy,ug,u3) and v = (v1, v2,v3) € R%. Then u+ v = (u; + v1,us + v2,u3 + v3) and

flu4+v) = (2w +v1) = (ug + v2) — (uz + vs), (w1 +v1) + (uz + v3), (ug +v2))
= (2ug — ug — uz, uy + usz, uz) + (2v; — vg — v3, vy + V3, V2)

= f(u) + f(v)

as required. Notice the way in which vectors are written; it is important not to omit the
first and last brackets. Many of you showed that f(u+v +w) = f(u) + f(v) + f(w) which
is more complicated (and not what the definition asks for). Also, we have not yet finished
showing f is linear — some of you stopped at this point. We still need...

Let u = (uy,ug,u3) € R® and A € R. Then Au = (Auy, Aug, Auz) and so

f(/\l.l) = (2)\U1 — A\ug — )\Ug, Aug + )\U3, )\Ug) = )\(211,1 — Up — uz, Uy + Uz, ug) = /\f(ll)

We have checked that conditions (1) and (2) hold, and so f is a linear map.

(b) Let f : M(2,2) — R?, with f (( (Cz 3 =(a—c+d+ 1,tr< (CL Z )) Again, one
can show this is not linear by checking the axioms. Alternatively, if you see why it is not
linear tmmediately, you may find it easier just to give an example. We do the latter; you
may wish to try writing out the check of condition (1) as above in full instead. Some of you
ignored the symbol tr which appears in the definition of f; this is the trace of a matriz, which
you should have seen last year (and which is defined in one of my handouts).

f((ﬁ é)):(0—0+0+1,0):(1,0),andsof(<g é))ﬂf((g é))z(gvo)_

However,f(<g é)+(g é)):f((g g)):(070+0+1,0):(1,0);é(2,0).

Thus we see that f is not a linear map, as condition (1) does not hold.

(c) Let f : P, — Py, with (f(p))(z) = p(x + 1) + 2Lp(x). This question confused many
people, who either did not know how to manipulate polynomials (can you write p(xz + 1) as
p(x) +p?) or were confused as to what was the variable (do you check linearity by adding p
and q or x and y?). In lectures, we saw a quick way to manipulate polynomials like p(x +1),
but this seems to have been confusing. Thus I will give a different method here which, though
longer, is more likely to avoid errors.

Any polynomial in P, can be written in the form p(z) = ag + 17 + axx? with ag,a1,a2 € R.
We first need to calculate what the image of such a polynomial is under f. Now p(z + 1) is
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just the polynomial ag + a;(z + 1) + ag(x + 1)2, but we need to write this as sums of powers
of z. We have

ag + a; (1’ + 1) + az($ + 1)2 = (ao +a; + az) + (a1 + 2a2)17 + agz?.

Also, the derivative of p is the polynomial a; +2asz, and so we see that f(p) is the polynomial
of the form

flp)(z) = (ag+ a; + az) + (a1 + 2az)x + azz? + 2(a; + 2a,7)
= (ag + 3a1 + az) + (a; + 6az)x + aza?.

Now we can check linearity. Note: we are working with polynomials p,q etc., and not the
variables x,y etc., and so we have to vary p, not x.

Let p(z) = ag + a17 + ag2? and q(z) = by + b1z + box?. Then (p+ ¢)(z) = (ag + bo) + (a1 +
b1)z + (ag + ba)z?, and we can see that

fle+a) () = ((ao +bo) + 3(ar + b1) + (a2 + b2)) + ((@1 + b1) + 6(az + b2))z + (a2 + ba)a?
= (ao + 3a; + ag) + ((11 + 6(12)32 + a2x2 + (b() + 3b1 + bg) + (bl + 6b2)1' + b2I2
= f)(z) + f(d) (=)

as required. With p(z) as above we see that Ap(z) = Aag + Aa1z + Aagz? and hence
FOW)(x) = (Aag + 3Aa; + Aag) + (Aay + 6Aag)z + Aazz? = A f(p)(z)

as required.

We have checked that conditions (1) and (2) hold, and so f is a linear map.

A final warning: In general we have that p(x + 1) # p(z) + p(1). For ezample if p(z) = 22
then p(z+1) = 22 +2x +1 # 22 + 1. This was a common mistake in the answers submitted.

(d) Let f : C — C2, regarded as complex vector spaces, with f(21,25) = (%, 2 + 22)
(where z is the complex conjugate of z). This was the question that was most likely to cause
problems, and indeed it did for most people. The point is that now we must take our scalars
A to be complex numbers, as we are now working with complex vector spaces. And because
of this, we have that X\ # X in general — which is the key to this question.

We give an example to show f is not linear. Take z = (0,1) € C* and A =1+ € C. Then

FO8) = FO,1+1) = (1 i, 14+4) £ (L+)(1,1) = Af(2).
So condition (2) fails to hold, and f is not a linear map.

Question 4: Images and kernels

This question is rather similar to question 2, in that there are a variety of ways to approach
it, depending on which results you quote from the lectures. We will concentrate on the one
which minimises the number of calculations (but will indicate other methods from time to
time).

Given a linear map f : U — V, the kernel of f is

ker(f) ={ueU: f(u) =0}
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and the image of f is
im(f) ={veV:f(u) =v for some uec U}

(a) Let f: R® — R®, with f(z,y,2) = (22 — y,2, 2z + 22 — y). We will first determine the
kernel of f.

Suppose x = (21, 2, 23) € ker(f). Then we have (2z; — x9, 23,221 + 223 — 25) = (0,0,0).
Thus we want to solve the system of equations:

= 2 -1 0 |0
xzz3 =0 or 0 0110
2 -1 2 |0

This is very easy to solve by inspection (or use Gaussian elimination) and we get 2z, = x»
and z3 = 0. Thus a general element in the kernel of f is of the form (z,2z,0) with z € R.
It is easy to see that these are all vectors of the form z(1,2,0) with z € R; i.e. that (1,2,0)
spans the kernel. Also any single non-zero vector forms a linearly independent set, and so
(1,2,0) is a basis of ker(f).

The rank-nullity theorem states that if f : U — V' is a linear map between finite dimensional
vector spaces, then

dimU = dimker(f) + dimim(f).

Applying this to our example, where dim U = 3, we see that dim im(f) must equal 3—1 = 2.
Thus any basis for im(f) must contain precisely two elements. We also know that in an n
dimensional space, any n linearly independent vectors must form a basis. So it will be enough
to find 2 linearly independent vectors in im(f). If we did not want to use the rank-nullity
theorem, then we would have to find such a set of independent vectors, and then also show
that they span the image. We will not do this here.

We proved in the lectures that the set of images of basis vectors under f will contain a basis
for the image of f. This was not stated directly, but clearly follows from statement (*) in
the proof of the rank-nullity theorem. So all we have to do is find two vectors in U whose
images under f are linearly independent.

At this point there are various possibilities: (i) Pick vectors in U at random and see if their
images work. (ii) Pick standard basis elements, and see if their images work. (iii) Pick
vectors such that the coordinates in their images are simple to work with — e.g. ones with
lots of zeros in — and see if they work. It does not matter which method you use; we will do
(i) (and as it happens our choice will be good as an example of (iii)).

We have f(1,0,0) = (2,0,2) € im(f) and f(0,0,1) = (0,1,2) € im(f). If these are linearly
independent then we are done.

Suppose that Ai(2,0,2) +A2(0,1,2) = (0,0,0). Then we have (21, A2, 2X\; + 2X2) = (0,0, 0),
and by comparing coordinates we see that A\; = 0 and Ay = 0. Thus (2,0,2) and (0,1, 2) are
linearly independent, and hence (as the image is 2 dimensional) form a basis of imf.

Notice how easy this last calculation was; as we chose image vectors with zeros in different
places, we did not need to bother with Gaussian elimination or similar. Don’t forget that if
we had not used some theorems, then we should have to check spanning also.

(b) Let f: R® - R, with f(z,y,2) = (z +2y — 2,2 —  — 2y,0). We will first determine
the kernel of f.

Suppose x = (1, T, x3) € ker(f). Then we have (z1 + 225 — 73, 3 — 71 — 229,0) = (0,0, 0).
Thus we want to solve the system of equations:

1 +2x9 —xz3 =0 1 2 -1 |0
0 =0 or 0 0 0|0

—r; —2z9 +x3 =0 -1 -2 1|0
This is very easy to solve by inspection (we hardly even need the right-hand version, yet
alone Gaussian elimination) and we get 3 = x1 + 2z,. Thus we can choose z; and z,
freely, and a general element in the kernel of f is of the form (z,y,z + 2y) with z,y € R
Taking z = 1 and y = 0 we have (1,0,1) € ker(f), and taking z = 0 and y = 1 we have
(0,1,2) € ker(f). We will show that these form a basis for the kernel. We could have made
other choices — there are many possible bases for the kernel. But as in part (a) this choice
is simple and easy to calculate with.
For linear independence, suppose that A(1,0,1) + A2(0,1,2) = (0,0,0). Then we have
(A1, A2, A1 + 2A9) = (0,0,0), and by comparing coordinates we see that A\; = 0 and Ay = 0.
Thus (1,0, 1) and (0,1, 2) are linearly independent.
For spanning, suppose that u € ker(f). By our calculations above, we know that u is of the
form (z,y,x + 2y) with z,y € R. But then u = z(1,0,1) + y(0,1,2) is a linear combination
of our two vectors, and so the vectors (1,0,1) and (0,1, 2) span the kernel of f. Notice how
our choice of vectors made the verification of spanning very easy.
We have seen that the vectors (1,0,1) and (0,1,2) are linearly independent and span the
kernel of f. Thus they form a basis of ker(f).
Now the rank-nullity theorem implies that im(f) has dimension 1, so we just have to find
some non-zero vector in im(f), and that will be a basis for it. We try f(1,0,0); this equals
(1,—1,0), and so a basis for the image is given by the vector (1,—1,0).
Notice that this final vector must be non-zero — some of you had zero vectors in your
supposed bases. This can never happen! If we had not used the rank-nullity theorem, we
would still have to check that our image basis vector did in fact span the image. Also, rather
than try to find two basis elements for the kernel first, we could have started with the image,
shown it was one dimensional, and then (by the rank-nullity theorem) just found two linearly
independent vectors in the kernel. Pick whichever method you find easiest.




Question 5: Vectors in coordinate form

The only serious problem that this question caused was some confusion as to which vector(s)

had to be written in terms of the new basis. The question asked that each of e, e and e;

be so expressed, not that the sum e, + e + e3 be expressed thus.

We have to write e;, e, and e; in coordinates with respect to the basis {e; + 2es, e +
a

2e3,e; + ez — e3}. That is, we have to write each vector e; in the form b where
4

e; = a(er + 2e;) + b(es + 2e3) + c(e1 + e, — e3). First consider e;. We must have

e; =a(e; +2ey) + b(es + 2e3) + c(eg + e — e3)
=(a+cle; + (2a+b+c)ey + (2b — c)es

and so we must solve the system of equations

a +c =1 10 1|1
2a +b +c =0 or 21 110
2b —c¢ =0 02 -1 |0
Using Gaussian elimination we get
10 1|1 10 1|1
01 -1 |-2 and then 01 -1 |-2
02 -1 |0 00 1|4
which implies that c =4, b =2 and a = —3.
Similarly, for e; we must solve the system of equations
a +c =0 10 110
2a +b 4+c¢ =1 or 2 1 1 |1
2b —c =0 02 -1 |0
Using Gaussian elimination we get
10 110 10 0
01 -1 |1 and then 01 -1 |1
02 -1 |0 00 1 |-2
which implies that ¢ = -2, b = —1 and a = 2.
Finally, for e3 we must solve the system of equations
a +c =0 10 110
2a +b 4+c¢ =0 or 21 110
26 —c =1 02 -1 |1
Using Gaussian elimination we get
10 110 10 0
01 -1 |0 and then 01 — 0
02 —1 |1 00 1|1

which implies that c =1, b=1 and a = —1.

-3 2 -1
Thus ey, ez, and e3 are represented by 2 1, -1 | and 1 | respectively.
4 -2

Question 6: The matrix of a linear map

Most attempts at this question were successful. One just has to apply the formula given in
the lectures, and not confuse the various different bases. The easiest way to do this is to use
the same symbols as were used in the lectures.

Let f: R?2 — R® be the linear map given by f(e;) = e, + 3e; and f(e;) = 2e, + 3e, + 5es.
We take as a basis for U = R? the elements u; = 2e; + 3e; and uy = e; — e,, and as a basis
for V. =TR3 the elements v = e;, vy = €; +€; and v3 = e; + €; + e3.

The matrix representing f with respect to these bases is A = (a;;) defined by the equations

3
f(uz) = Zaj,-vj for 1 <i<2.

j=1

It is important to get the indices in the right order here! Now

fw) = f(2e1 +3ez) = 2f(e1) +3f(e2)
= 2(ez + 3e3) + 3(2e; + 3ez + 5e3)
= 6e; + 1les + 21es
= anVvi + aava + azvs.

Thus we have to solve the equation
6e; + 11ley + 21e; = ajie; + az(e; + €2) + azi(e; + ex + €3).

As in the preceding question, we use Gaussian elimination (or just inspect the equations) to
solve this and get that as; = 21, as; = —10, and a; = —5.

A similar calculation for f(u,) gives that a1» = as» = 0 and az2 = —2. Thus we deduce that
-5 0
A= —-10 0
21 -2

As long as the various u’s and v’s are not confused, this is one of the easier questions to
complete — and most of you solved it correctly. The most common mistake was to write
down the transpose of A rather than A itself.
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