Solutions to Linear Algebra coursework 2

In the following notes, we give worked solutions to each of the questions on the second
coursework. Comments in italics are not part of the solutions, but advice on method and
Some COMMON EITors.

Most students find the second half of the course rather easier than the first half, as the
questions (being about actual matrices rather than general vectors) are more computational
and less abstract. However, we do need some of the basic ideas from the first half (e.g. linear
independence, bases...) to do some of the questions.

Question 1: Eigenvalues and eigenvectors I

Eigenvalues of a matrix A are solutions of the equation det(A — M) = 0. Note that this is
not the definition of an eigenvalue, but it is the easiest way to calculate them for a given
matriz. If you are asked to define the eigenvalues of a matriz, you should use Definition 3.1
from the course notes (and hence first define eigenvectors).

We have

=17 0 8
2

det(A — \I) = —6 1-A
—48 0 23— A

=—(-DA+DA-7)

and hence the eigenvalues of A are A = +1 and A = 7. To save space I have omitted the
intermediate steps of this (and later) calculations. In an exam you should include details of
all calculations — if you make a mistake halfway the examiner can then give you some credit
for the part which is correct!

First consider the case A = —1. Recall that x is an eigenvector with eigenvalue A is x is a
solution of the equation Ax = Ax. Thus we need to solve the equation Ax = —x; i.e.
\Hﬂ&_ +m.&w = —I \Hmﬁ_ ATm.aw =0
—6xy 429 423 = —19 or —6xy 4215 +223 =0
—48x, +23x3 = —x3 —48x, +24x3 =0.

Using Gaussian elimination (which by now you should be happy with; certainly most of you
had no problems here. For this reason I shall omit some of the intermediate steps... Remem-
ber though that you are not allowed to use column operations, only rows!) we see that

-16 0 8 |0 -16 0 8 |0
-6 2 2|0 reduces to 02 -1 10
—48 0 24 |0 00 00
and hence that the general solution is 221 = x3 and 2z = x3. Thus the eigenspace Sa(—1)
T 1
consists of all vectors of the form z |; all such vectors are scalar multiples of | 1
2z 2

which thus forms a basis for Sa(—1). Be careful not to get confused when converting the

general solution into a vector. The equations 2z, = x3 and 2xy = x3 correspond to solutions
T 2z
x |, not | 2x |. This was quite a common mistake.
2z T

Next consider the case A = 1. We need to solve the equation Ax = x; i.e.

|Hﬁ8~ +m.\nw =T |Hm&H nTmHu =0
—6x; +xy 213 =29 or —6x, +2z3 =0
—48x4 +23z3 =x3 —48x4 +22x3 =0.
Arguing in the same way as for the case A = —1 you should find that the general solution
to this is ; = x3 = 0 and x> is anything. Thus the eigenspace S4(1) consists of all vectors
0 0
of the form | z |; all such vectors are scalar multiples of | 1 | which thus forms a basis
0 0
for Sa(1).
Finally consider the case A = 7. We need to solve the equation Ax = 7x; i.e.
—17x, +8x3 = Ty —24x, +8x3 =0
\@RJ “+xo +m.ﬂm = ﬂ.&m or \m.&_ \mHm ATM.&Q =0
—48x; +23z3 = Ty —48x +16x3 =0.

Arguing in the same way as for the case A = 1 you should find that the general solution to
this is 3 = 3z, and 2o = 0. Thus the eigenspace S (7) consists of all vectors of the form
T 1
0 |; all such vectors are scalar multiples of | 0 | which thus forms a basis for S4(7).
3z 3

Notice that in each case above the eigenspace was 1-dimensional. Thus we did not have to
check linear independence of basis elements, and it was easy to see that they spanned. This
will not always be the case, as we shall see in the next question. Also note that a basis vector
can never (by definition) equal the zero vector!

Finally, if A is an eigenvalue then there must be some non-zero eigenvector with that eigen-
value. If you cannot find one then you must have made a mistake (either in your calculation
of eigenvalues or of eigenvectors).

Question 2: Eigenvalues and eigenvectors II
As in Question 1, we first need to find all solutions of the equation det(A — AI) = 0. We
have
5—A -2 —2
det(A — ) = 0 3-2 0|=—(A—1)(A—3)?
4 -4 —1-2A

and hence the eigenvalues of A are A =1 and A = 3.




First consider the case A = 1. We need to solve the equation Ax = x; i.e.

mHH \M,Hm \M&w = &,&H \MHm \M.Hm =0
3xzq = Xy or 29 =0
dry, —4dxy —x3 =3 4xry, —4dxy —2x3 =0.

Using Gaussian elimination (or otherwise  you should make sure you can fill in the missing
steps as in Question 1) we see that the general solution is 221 = z3 and 3 = 0. Thus S4(1)

T 1
consists of all vectors of the form 0 }; all such are scalar multiples of | 0 | which
2z 2

thus forms a basis for Sa(1).

Next consider the case A = 3. We need to solve the equation Ax = 3x; i.e.

mHH \MHM \M.ﬁm = WRH MHH \MRN \MHW =0
3xo = 3x2 or 0 =0
%HH \&Hw —x3 = w&.w &HH \&&.m \&Hw =0.

Using Gaussian elimination (or otherwise — again you should make sure you can fill in the
missing steps) we see that the general solution is 2; — 22 — 23 = 0. As we have one equation
in three unknowns, we can choose two of them freely (and the third will then be fixed). If
a
we let 2y = a and @y = b then S4(3) consists of all vectors of the form b . We
a—1b
could have made other choices, for example fiving xo and x3, which might lead to different
eigenvectors in the end. But (as long as we did not make a mistake!) these would still give
a valid answer.
We next need to find a basis of Sy
1
b=1) wesee that | 0 | and
1 _

3). Taking a = 1 and b = 0 (respectively ¢ = 0 and

are two vectors in S4(3). We must show they form

—— O

a basis.
There are several important things to note here. First, we could have picked other possible
pairs of vectors. These would also work, as long as we were not unlucky enough to pick two
which were linearly dependent! To avoid this problem (and make the rest of the calculations
easy) we have picked two simple vectors (with small numbers) containing zeros in different
positions. We could however have chosen differently.

Second, we cannot stop here, but must check that we have actually got a basis of Sa(3)!
It is possible that we might have linearly dependent vectors, or that Sa(3) has more than two
vectors in a basis. The latter cannot occur as Sa(3) is a subspace of R®, and does not contain
Sa(1), so must have dimension less than 3 = dimR® by a theorem in the course. But we do
not need to say this it is enough to find a set of vectors which are linearly independent and
span. As a general rule, if you can write an arbitrary vector using k free variables and all
the rest as functions of them (as here, where a and b are chosen freely, while a — b depends
on them) then the vector space has dimension k. You may wish to remember this as a way

to check you have a basis of the right size, but it does not allow you to avoid checking that
your set is actually a basis.

To show that our two vectors form a basis of S4(3), we must show that they are linearly
independent and span. For linear independence, suppose that

1 0 0
v& 0 + v,w 1 = 0
1 -1 0

Then we must have A; = Ay = 0, and hence the two vectors are linearly independent. To
see that they span, we must show that a general vector in S4(3) can be written as a linear
combination of them. Thus we must show that we can find A; and A, such that

1 0 a
Ml O] +X 1] = b
1 -1 a—"b
for any pair of scalars a and b. But clearly A\; = a and A\, = b satisfy this. We have therefore
1 0
shown that | 0 | and 1 | form a basis of Sa(3).
1 -1

To finish the question we must find an invertible matriz P such that the product P~'AP is
diagonal. We know by Theorem 3.8 (the Diagonalisation Theorem) how to do this, but I
think that you should either state this Theorem or just write down P, calculate its inverse,
and check that the product is diagonal. If you do neither, an examiner will not know how
you arrived at P, and hence if you have made a mistake will not be able to give you any
marks for it.

Vectors from distinct eigenspaces are linearly independent. Hence by the Diagonalisation
Theorem (as we have found three linearly independent eigenvectors in a three-dimensional
space) we may form the matrix P whose columns are these eigenvectors and this will be
invertible with P~' AP diagonal. Indeed, the diagonal entries in the product will be the

11 0
eigenvalues of the corresponding eigenvectors. Thus we may take P=| 0 0 1 |. Note
21 -1
that we could have chosen a different P by reordering the columns. By direct calculation
-1 1 1
(Check!) we see that P~! = 2 —1 —1 | and (without having to calculate, since we
0 1 0
100
have quoted the Diagonalisation Theorem) that P-'AP=| 0 3 0 | (= D say).
00 3

It remains to calculate A'°. As A = PDP~! we have

A = (pDP ™Y = pPDP'PD...P7'PDP™' = PD"P!




and hence
11 0 1oo\°/-1 1 1
AV =100 1 030 2 -1 -1
21 -1 00 3 0 1 0
11 0 1 0 0 -1 1 1
=loo0 1 0 59049 0 2 -1 -1
21 -1 0 0 59049 0 1 0
118097 —59048 —59048
= 0 59049 0

118096 —118096 —59047

Question 3: Inner products
As usual, it can be helpful to begin with the definitions to be used in answering the question.
A real inner product on a real vector space V is a function that assigns to each pair of
vectors u,v in V a real number (u,v) such that

1. For all u,v € V we have (u,v) = (v, u).

2. For all u,v,w € V we have (u+v,w) = (u,w) + (v, w).

3. For allu,v € V and A € R we have (Au,v) = AX(u,v).

4. For all u € V we have (u,u) > 0 with (u,u) = 0 if and only if u = 0.

Of the four properties above, the fourth is the most unlikely to hold in any given example.
Thus you may wish to start by checking this one, as if it fails you need not check any more.
In the following solutions we will just show that one of the four fails (if any do) — there may
be others that fail, and you could check those instead. Also, remember that you only need to
find one example of vectors that fail to work; you may find this easier than working with an
abstract vector. Either way is fine though, as long as you get the right answer.

(a) Let {(—,—) on R® be given by (x,¥) = z,y1 + z3y3. We will start (as suggested above)
by checking the fourth condition. Let u = (0,1,0) € R®. Then (u,u) = 02 + 02 = 0 and so
condition (4) fails. Thus this is not an inner product.

(b) Let (—,—) on R® be given by (x,y) = 22y? + x2y? + 23y2. We could again start by
checking (4), but for once this condition holds (you may wish to check this). So to save space
we will jump straight to checking condition (3) (we could also have checked (2) which it also
fails).

Let u = (0,1,0) € R® and A = 2. Then Au,u) = 2(02 + 12 + 0?) = 2, but (Au,u) =
(0% 4+ 22 x 12 4+ 0%) = 4. Therefore A{u,u) # (Au,u) and so condition (3) fails. Thus this is
not an inner product.

(c) Let (—,—) on M(2,2) be given by (A, B) = det(BA). We check condition (4) first.
10 10 10 10
Let A = 00 ) Then (A, A) = det 00 00 = det 0o0)=0 and so

condition (4) fails. Thus this is not an inner product. (It also fails (2).)

(d) Let {(—, —) on M(2,2) be given by (A, B) = tr(AB). Again we check condition (4) first.
01 01 01 00

Let A = 00 . Then (A, A) = tr 00 00 =t 5 = 0 and so

condition (4) fails. Thus this is not an inner product.

(e) Let {—,—) on P, be given by (p,q) = p(0)q(0) + p(3)a(3) +p(1)q(1). We check each

condition in turn. Condition (1): Let p,q € P,. We have

(,q) =p(0)q(0) +p(3)a(3) +p(1)g(1)
=q(0)p(0) +a(3)p(3) + a(1)p(1) = (g,p)-

Condition (2): Let p,¢,r € Py. We have
p+a,r) = @0)+q0))(r0) + (p(3) + a(5))(r(3))
p(0)r(0) +p(3)r(3) + p(1)r(1) +q(0)r

={p,r)+{q).

Condition (3): Let p,q € P, and A € R. We have

(Ap,q) = Ap(0)q(0) + Ap(3)a(
= A(p(0)g(0) + p(3)g(
Condition (3): Let p € P,. We have

{p,p) =p(0)p(0) + p(3)p(3) + p(1)p(1)
=p(0)?+p(3)* +p(1)* 20

S
C)
++

N~

)+ \i:&wu

) +p(1)a(1)) = AMp, ).

(ST

Further, (p,p) = 0 if and only if p(0) = p(3) = p(1) = 0. But any non-zero polynomial of
degree at most 2 has at most 2 distinct roots. Therefore {(p,p) = 0 if and only if p = 0.

We have checked that conditions (1)-(4) hold, so this is an inner product.

Note the last paragraph of part (e). You have to explain why p is zero given the fact that

p(0) = p(3) = p(1) = 0. If we had worked in Ps this would not have followed, as there the
polynomial p(z) = z(z — 3)(x — 1) would have been a counterezample.

Question 4: Orthonormal bases

As usual, it may help to recall the definitions needed for the question. Given an inner product
(—,—) on a real vector space V, a set S of vectors is called orthogonal if every pair u, v of
distinct vectors from S satisfies (u,v) = 0. A set S of vectors is called orthonormal if it is
an orthogonal set, and ever vector u satisfies (u,u) = 1. The dot product on R? is given
by (u,v) = i, wivi.

To show that the given set (which to save space I will refer to as {u;, us, us, us}) is orthogonal
we must check that

(ur,ug) = (uy,u3) = (uy,uy) = (ug, uz) = (s, uys) = (uz,uyg) = 0.

Note we do not need to check the other distinct pairs, e.g. {uz,u;) = 0 as we know that
(u,v) = (v,u) by the properties of an inner product. To show that S is an orthonormal set
we also need to check that

(ur, wi) = (uz, uz) = (uz, uz) = (wg,ug) = 1.

6




Both these checks are easy, and were carried out successfully by everyone who attempted
them, so I omit them here. However we also need to show that S is a basis of R*. When
marking the coursework I did not deduct marks for this — but you should have included some
reason, €.g.:

Any set of orthogonal vectors are linearly independent (this was Theorem 4.12 in the course),
and so S is a set of 4 linearly independent vectors in a 4-dimensional space. Therefore (by
Corollary 1.32 in the course) S forms a basis of R*.

To complete the question you have to write some vector as a linear combination of these basis
elements. There are two ways to do this: (i) try to solve 4 equations in 4 unknowns (which
is very long and tedious, especially as the final answers are not particularly nice fractions!)
or (ii) Use a Theorem from the course to make life much easier. Naturally, we will do the
latter.

We know that if {uy, us, uz, us} is an orthonormal basis for a vector space V, then any v € V
can be written as

v = (v,uj)u; + (v, uz)us + (v, uz)uz + (v, us)u,.

You should check that in the example in the question we get

H + m + m Hm
V=—u +—uy+ —uz — ——uy.

/3 1 5™ 5™ 73 4
Note that you can check this answer to see if you have made a mistake, by adding the four
vectors. If you have time in an exam this is always worth doing.

Question 5: Gram-Schmidt
Provided that the algorithm is written out correctly (and no computational mistakes occur)
this is quite a straightforward question, as it becomes one long calculation. However it is
very easy to make a mistake, so checking the answer at various stages can be useful.
Given a basis {uy,us,...,u,} of a real vector space V, the Gram-Schmidt process con-
structs an orthogonal basis for V' in the following manner. Proceeding by induction on i we
define new vectors w; and v; by setting

i-1

W =u; — MUAELQYQ and v;
j=1

where || u ||= /(u,u). Then the set {vi,vs,...,v,} is an orthonormal basis for V.
We will apply this to M (2,2) with inner product (4, B) = tr(B 4) and basis

ht (1)

will

11 10 10 10

W=loo )™ 10/ ™ o1 )™ oo

To save space, we will omit the calculations of tr(B* A); you should check that you can

obtain the answers given at each stage.

First we apply (1) with ¢ = 1. Here w; = u; (as the sum is empty) and (u;,u;) = 2, so
1 1 11

2\ 0 0

Next we apply (1) with i = 2. Now wy = uy — (ug, vi)vy so

wre (10 vy & 11 (L -1
T\1 o a0 )T o0
1 -1
— w1
andve == 2 o
Continuing in this way you should check that
1_1 1 1 1 11 11
— 3 3 — — 1 1 — 2 T2
el ) emumla a) e ) e
and so the set
R R T A -1y 3 —3
HI,\mOoumI/\wwouwlﬂm 1 3 )T \_m\_m

is an orthonormal basis of M(2,2).
If you have time in an exam you may want to check that these vectors are indeed orthogonal
and orthonormal.

Question 6: Orthogonal diagonalisation

This question combines just about all the topics introduced during the course. We start by
calculating eigenvalues and eigenspaces, then find bases for these spaces, then use Gram-
Schmidt to make these bases orthonormal, and then use the resulting vectors to diagonalise
the given matriz. Because of this range of topics, such a question can be popular with
ezaminers.

We first have to calculate the eigenvalues of A; i.e. solutions of the equation det(A—XI) = 0.
‘We have

2—A 0 0
det(A — ) = 0 3-2X Sl=—(+1@A-2)
0 21
and hence the eigenvalues of A are A =2 and A = —1.
First consider the case A = —1. Recall that x is an eigenvector with eigenvalue A is x is a
solution of the equation Ax = Ax. Thus we need to solve the equation Ax = —x; i.e.
211 =—x 3z, =0
3Ty +3ry ==y or 512 +hrs =0
STy 313 = —a3 Sxy +3z3 =0.
Clearly in this case the general solution is z; = 0 and 23 = —z3. Thus the eigenspace S4(—1)
0 0
consists of all vectors of the form x |; all such vectors are scalar multiples of 1
- -1

which thus forms a basis for S,(—1).




Next consider the case A = 2. We need to solve the equation Ax = 2x; i.e.

21, =21, 0 =0
L +m =2 _3 x_vm =0
m.&w m&.w = 42X or m.ﬂ.w m.&w =
3 1 _ 3 3 —
5T2 +5T3 =213 3%z —ja3 =0

Clearly in this case the general solution is x5 = z3 with z; chosen freely. If we let 2y = a
a
and z; = b then S4(2) consists of all vectors of the form | b |. We could have made other
b
choices, for example fizing xo and x3, which might lead to different eigenvectors in the end.
But (as long as we did not make a mistake!) these would still give a valid answer.
We next need to find a basis of S4(2). Taking a = 1 and b = 0 (respectively a = 0 and
1 0
b=1) weseethat | 0 ) and | 1 | are two vectors in S4(2). We must show they form a
0 1
basis. As in Question 2, we have chosen simple values of a and b, and for the same reasons
as there.

To show that our two vectors form a basis of S4(2), we must show that they are linearly
independent and span. For linear independence, suppose that

1 0 0
v& 0 + v,m 1 = 0
0 1 0

Then we must have A; = Ay = 0, and hence the two vectors are linearly independent. To
see that they span, we must show that a general vector in S4(2) can be written as a linear
combination of them. Thus we must show that we can find A\; and Ay such that

1 0 a
MO+l 1 )=1|0
0 1 b
for any pair of scalars a and b. But clearly Ay = a and Ay = b satisfy this. We have therefore
1 0
shown that [ 0 | and [ 1 ] form a basis of S4(2).
0 1

To finish the question we must find an orthogonal matriz P such that the product PL AP is
diagonal. We know by Theorem 3.8 (the Diagonalisation Theorem) how to find some invert-
ible matriz P, but in general this will not be orthogonal. By Theorem 4.20 (the Orthogonal
Diagonalisation Theorem) we need to find an orthonormal basis of eigenvectors. Thus we
need to convert our basis elements above using the Gram-Schmidt process.

As we want an orthogonal matrix at the end, we will need an orthonormal basis of R3. As
A is symmetric we know (by Theorem 4.21) that eigenvectors from different eigenspaces will
be orthogonal. Thus we can apply the Gram-Schmidt process to each eigenspace separately.

0

First consider Sa(—1). Our basis vector here was u = 1 |. Applying Gram-Schmidt
-1
0
we just set v = 1
-1
1 0
Next consider S4(2). Our basis vectors here were uy = | 0 ] anduy = [ 1 |. Applying
0 1
1
Gram-Schmidt we get vi = (|| u; |)™'us = | 0 |, and find (Check!) that wy = u,.
0
0
Finally, vy = (|| w2 ||) w2 = w 1 |. We have here saved space by not explaining the
1

Gram-Schmidt process; really we should have described what we were doing (and said how
we chose each vector) as in Question 5. Notice too that we applied Gram-Schmidt separately
to each eigenspace, as noted above. You can apply it to all three vectors in one go, but this
is more complicated (and unnecessary).

‘We have found a set of three orthonormal eigenvectors for A. Hence by the Orthogonal Diago-
nalisation Theorem we may form the matrix P whose columns are these eigenvectors and this
will be orthogonal with PT AP diagonal. Indeed, the diagonal entries in the product will be

01 0
the eigenvalues of the corresponding eigenvectors. Thus we may take P = w 0 w
T 1
v 07
0 L _—L
- V22
Then P? = 1 0 0 and (without having to calculate, since we have quoted the
1 1
0% =
-1 00
Orthogonal Diagonalisation Theorem) that PLAP = 020
00 2
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