
Linear Algebra: Solutions to Coursework 2

1.

Ker f = {(x, y, z, t) ∈ R4 | x + y = 0, 2z + 2t = 0}
= {(x,−x, z,−z) | x, z ∈ R}.

As Ker f 6= {0} we see that f is not injective.
A basis for Ker f is given by {(1,−1, 0, 0), (0, 0, 1,−1)}. This set is spanning as

(x,−x, z,−z) = x(1,−1, 0, 0) + z(0, 0, 1,−1) ∀x, z ∈ R.

Moreover, as this set contains two vectors which are not multiples of each other, it is linearly
independent, hence a basis for Ker f . In particular, dim Ker f = 2.

Now using the Rank-Nullity Theorem we get

dim R4 = dim Ker f + dim Im f

and as dim R4 = 4 and dim Ker f = 2 we must have dim Im f = 2. As Im f is a subspace of
R2 and has dimension 2 we must have Im f = R2. In particular, f is surjective. As a basis
for Im f = R2 we could take the standard basis {(1, 0), (0, 1)}.

2. (a) We have g(1) = 1 + 0 = 1 = 1.1 + 0x + 0x2, g(x) = 1 + 1 = 2 = 2.1 + 0x + 0x2 and
g(x2) = 1 + 2x = 1.1 + 2x + 0x2. Thus the matrix representing g with respect to the
basis {1, x, x2} is given by

A =

 1 2 1
0 0 2
0 0 0

 .

(b) We have g(1) = 1 = 1.1+0(1+x)+0(1+x+x2), g(1+x) = 3 = 3.1+0(1+x)+0(1+x+x2)
and g(1+x+x2) = 4+2x = 2.1+2(1+x)+0(1+x+x2). Thus the matrix representing
g with respect to the basis {1, 1 + x, 1 + x + x2} is given by

B =

 1 3 2
0 0 2
0 0 0

 .

(c) We have 1 = 1.1 + 0x + 0x2, 1 + x = 1.1 + 1x + 0x2 and 1 + x + x2 = 1.1 + 1x + 1x2.
Thus the change of basis matrix is given by

P =

 1 1 1
0 1 1
0 0 1

 .

We have

P−1 =

 1 −1 0
0 1 −1
0 0 1


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and we check that

P−1AP =

 1 −1 0
0 1 −1
0 0 1

  1 2 1
0 0 2
0 0 0

  1 1 1
0 1 1
0 0 1


=

 1 3 2
0 0 2
0 0 0

 = B

as required.

3.

∆(λ) = det

 2 − λ 0 −3
−6 −1 − λ 6
0 0 −1 − λ

 = (λ + 1)2(2 − λ).

Thus the eigenvalues of A are given by λ = −1 and λ = 2.

When λ = −1, consider  3 0 −3
−6 0 6
0 0 0

  x
y
z

 =

 0
0
0

 .

This is equivalent to x − z = 0, so z = x and y can be anything. Thus we have

sA(−1) = {(x, y, z) ∈ R3 | z = x} = {(x, y, x) | x, y ∈ R}.

A basis for sA(−1) is given by {(1, 0, 1), (0, 1, 0)}. This set is a spanning set for sA(−1) as

(x, y, x) = x(1, 0, 1) + y(0, 1, 0) ∀x, y ∈ R.

Moreover it is also linearly independent as it contains two vectors which are not multiples of
each other.

When λ = 2, consider  0 0 −3
−6 −3 6
0 0 −3

  x
y
z

 =

 0
0
0

 .

This is equivalent to z = 0 and −2x − y + 2z = 0. Thus we have z = 0 and y = −2x and

sA(2) = {(x, y, z) ∈ R3 | z = 0, y = −2x} = {(x,−2x, 0) | x ∈ R}.

A basis for sA(2) is given by {(1,−2, 0)}. This set is a spanning set for sA(2) as

(x,−2x, 0) = x(1,−2, 0) ∀x ∈ R.

Moreover it is also linearly independent as it contains only one non-zero vector.

Now we set

P =

 1 0 1
0 1 −2
1 0 0


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then P−1 is given by

P−1 =

 0 0 1
2 1 −2
1 0 −1


and we have

P−1AP =

 0 0 1
2 1 −2
1 0 −1

  2 0 −3
−6 −1 6
0 0 −1

  1 0 1
0 1 −2
1 0 0


=

 −1 0 0
0 −1 0
0 0 2


a diagonal matrix with the eigenvalues appearing on the diagonal.

4. (a) As rankh1 = dim Im h1 = 3 and Im h1 is a subspace of R3 we see that Im h1 = R3 and
so h1 is surjective.
Now using the Rank-Nullity theorem we have

dim R4 = rankh1 + nullity h1

and as dim R4 = 4 and rank h1 = 3 we get that nullity h1 = dim Kerh1 = 1. This implies
that h1 is not injective.

(b) As 0 is an eigenvalue for h2, there is a non-zero vector v ∈ V with h2(v) = 0.v = 0, i.e.
v ∈ Ker h2. This implies that h2 is not injective.
Now using the Rank-Nullity theorem we have

dim V = dim Kerh2 + dim Im h2.

As dim Kerh2 > 1 we have that dim Im h2 < dim V . So Im h2 6= V and h2 is not
surjective.
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