
Linear Algebra: Solutions to Exercise Sheet 1

Remark on notation:
“{X}” means “the set of all X’s”.
“{X | Y }” means “the set of all X’s satisfying condition Y ”.
“∀X” means “for all X’s”.
“x ∈ Y ” means “x belongs to the set Y .
“x /∈ Y ” means “x does not belong to the set Y .

1. Pn is the set of all polynomials p(x) = a0 + a1x + . . . + anx
n with a0, a1, . . . , an ∈ R,

with addition given by

(a0+a1x+. . .+anx
n)+(b0+b1x+. . .+bnx

n) = (a0+b0)+(a1+b1)x+. . .+(an+bn)xn ∈ Pn,

and scalar multiplication given by

λ(a0 + a1x + . . . + anx
n) = (λa0) + (λa1)x + . . . + (λan)xn ∈ Pn

for λ ∈ R.

We need to check that (V 1)–(V 8) are satisfied.
(V 1): (p(x) + q(x)) + r(x) = p(x) + (q(x) + r(x)) for all p(x), q(x), r(x) ∈ Pn is clear.
(V 2): p(x) + q(x) = q(x) + p(x) for all p(x), q(x) ∈ Pn is also clear.
(V 3): The zero vector is given by the zero polynomial 0 = 0 + 0x + . . . + 0xn.
(V 4): For each p(x) ∈ Pn, its negative is given by −p(x) = (−a0) + (−a1)x + . . . +
(−an)xn.
(V 5): λ(p(x) + q(x)) = (λp(x)) + (λq(x)) for all λ ∈ R and all p(x), q(x) ∈ Pn.
(V 6)–(V 8): are similar.

2. M(2, 2) is the set of all 2× 2 matrices with real entries with addition given by(
a1 b1

c1 d1

)
+

(
a2 b2

c2 d2

)
=

(
a1 + a2 b1 + b2

c1 + c2 d1 + d2

)
and scalar multiplication given by

λ

(
a b
c d

)
=

(
λa λb
λc λd

)
for λ ∈ R.

We need to check the 8 axioms.
(V 1): For all matrices A, B, C ∈ M(2, 2) we have (A + B) + C = A + (B + C).
(V 2): For all A, B ∈ M(2, 2) we have A + B = B + A.

(V 3): The zero vector is given by the zero matrix

(
0 0
0 0

)
.

(V 4): For any matrix A, its negative is given by −A = (−1)A.
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(V 5): λ(A + B) = (λA) + (λB) for any A, B ∈ M(2, 2) and any λ ∈ R.
(V 6)–(V 8): can be verified similarly.

Important remark: We can generalize the above argument to show that in fact the
set M(n,m) of all n×m matrices with real entries, with the usual addition and scalar
multiplication of matrices, form a vector space over R.

3. (a) U = {(x, 0) | x ∈ R} is a subspace of R2. In order to prove it, we need to show
that U satisfies the three conditions (S1), (S2) and (S3).
(S1): (0, 0) ∈ U (take x = 0).
(S2): If (x, 0) ∈ U and (y, 0) ∈ U then (x, 0) + (y, 0) = (x + y, 0) ∈ U .
(S3): If λ ∈ R and (x, 0) ∈ U then λ(x, 0) = (λx, 0) ∈ U .

(b) U = {(x, y) | x, y integers} is not a subspace of R2. In fact, (S3) fails: take λ = 1
2

and (1, 0) ∈ U then 1
2
(1, 0) = (1

2
, 0) /∈ U .

(c) U = {(x, y) ∈ R2 | x ≤ y} is not a subspace of R2. In fact, (S3) fails: take
λ = −1 and (1, 2) ∈ U then (−1)(1, 2) = (−1,−2) /∈ U (as −1 > −2).

(d) U = {(x, y) ∈ R2 | x2 = y2} is not a subspace of R2. In fact, (S2) fails: take
(1,−1) ∈ U and (1, 1) ∈ U then (1,−1) + (1, 1) = (2, 0) /∈ U as 22 = 4 6= 0.

(e) U = {(x, y) ∈ R2 | y = 2x} is a subspace of R2. In order to prove it, we need to
show that U satisfies the three conditions (S1), (S2) and (S3).
(S1): (0, 0) ∈ U as 0 = 2.0.
(S2): If (x1, y1) ∈ U (i.e. y1 = 2x1) and (x2, y2) ∈ U (i.e. y2 = 2x2) then
(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2) ∈ U as y1 + y2 = 2x1 + 2x2 = 2(x1 + x2).
(S3): If λ ∈ R and (x, y) ∈ U (i.e. y = 2x) then λ(x, y) = (λx, λy) ∈ U as
λy = λ(2x) = 2(λx).

4. (a) U = {f ∈ RR | f(0) = f(1)} is a subspace of RR. In order to prove it we need to
verify that U satisfies the following three conditions.
(S1): The zero function O defined by O(x) = 0 for all x ∈ R is in U as O(0) =
0 = O(1).
(S2): If f, g ∈ U i.e. f(0) = f(1) and g(0) = g(1) then (f +g)(0) = f(0)+g(0) =
f(1) + g(1) = (f + g)(1) so (f + g) ∈ U .
(S3): If λ ∈ R and f ∈ U i.e. f(0) = f(1) then (λf)(0) = λ(f(0)) = λ(f(1)) =
(λf)(1). So (λf) ∈ U .

(b) U = {f ∈ RR | f(x) ≥ 0 ∀x ∈ R} is not a subspace of RR. Indeed, condition
(S3) fails: take f ∈ U defined by f(x) = 1 for all x ∈ R, then (−1)f /∈ U as
((−1)f)(x) = −1 < 0 for all x ∈ R.

(c) U = {f ∈ RR | f(x) = f(−x) ∀x ∈ R} is a subspace of RR. As before, to prove
this we need to verify the same three conditions.
(S1): The zero function O is in U , as O(x) = 0 = O(−x) for all x ∈ R.
(S2): If f, g ∈ U , i.e. f(x) = f(−x) and g(x) = g(−x) for all x ∈ R, then
(f + g)(x) = f(x) + g(x) = f(−x) + g(−x) = (f + g)(−x) for all x ∈ R. So
(f + g) ∈ U .
(S3): If λ ∈ R and f ∈ U , i.e. f(x) = f(−x) , then (λf)(x) = λ(f(x)) =
λ(f(−x)) = (λf)(−x) for all x ∈ R. So (λf) ∈ U .
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5. (a) U = {a0 + a1x + . . . + anx
n ∈ Pn | a0 + a1 + . . . + an = 0} is a subspace of Pn.

In order to prove it, we need to show that U satisfies the three conditions (S1),
(S2) and (S3).
(S1): the zero polynomial is in U (take a0 = a1 = . . . = an = 0).
(S2): If a0+a1x+. . .+anx

n ∈ U (i.e. a0+. . .+an = 0) and b0+b1x+. . .+bnx
n ∈ U

(i.e. b0+. . .+bn = 0) then (a0+. . .+anx
n)+(b0+. . .+bnx

n) = (a0+b0)+. . .+(an+
bn)xn ∈ U as (a0+b0)+ . . .+(an+bn) = (a0+ . . .+an)+(b0+ . . .+bn) = 0+0 = 0.
(S3): If λ ∈ R and a0 + . . . + anx

n ∈ U then λ(a0 + . . . + anx
n) = (λa0) + . . . +

(λan)xn ∈ U as (λa0) + . . . + (λan) = λ(a0 + . . . + an) = λ.0 = 0.

(b) The set of all polynomials of degree exactly n is not a subspace of Pn. Indeed,
condition (S1) is not satisfied as the zero polynomial 0 has degree 0, so it is not in
this set. (Can also show that (S2) is not satisfied, as x+xn and 2x−xn are both
polynomials of degree n, so they are in this set, but their sum (x+xn)+(2x−xn) =
3x is not a polynomial of degree n.)

(c) Note that the set U of all polynomials in Pn satisfying p(0) = 0 is equal to the set
of all polynomials of the form a1x + a2x

2 + . . . + anx
n (so the independent term

a0 = 0). We claim that U is a subspace of Pn. In order to prove it, we need to
show that (S1), (S2) and (S3) holds.
(S1): The zero polynomial 0 = 0 + 0x + 0x2 + . . . + 0xn is in U .
(S2): Let a1x + a2x

2 + . . . + anx
n and b1x + b2x

2 + . . . + bnx
n be two polynomials

in U , then their sum (a1 + b1)x + (a2 + b2)x
2 + . . . + (an + bn)xn is still in U .

(S3): Let λ ∈ R and let p(x) = a1x + a2x
2 + . . . + anx

n be a polynomial in U ,
then λp(x) = (λa1)x + (λa2)x

2 + . . . + (λan)xn is still in U .

6. (a) Let U be the set of all 2× 2 matrices of the form

(
a b
0 c

)
for some a, b, c ∈ R.

Then U is a subspace of M(2, 2). In order to prove it we need to show that con-
ditions (S1), (S2) and (S3) holds.
(S1): The zero matrix is in U (take a = b = c = 0).

(S2): If

(
a1 b1

0 c1

)
and

(
a2 b2

0 c2

)
are in U then their sum

(
a1 b1

0 c1

)
+(

a2 b2

0 c2

)
=

(
a1 + a2 b1 + b2

0 c1 + c2

)
is in U .

(S3): If λ ∈ R and

(
a b
0 c

)
is in U then λ

(
a b
0 c

)
=

(
λa λb
0 λc

)
is also in U .

(b) The set U of all matrices of the form

(
a 1
0 c

)
for some a, c ∈ R is not a subspace

of M(2, 2) as, for example, the zero matrix is not in U , so condition (S1) is not
satisfied. (can also show that condition (S2) and (S3) are not satisfied).

(c) This is not a subspace of M(2, 2) as the zero matrix is not in this set, so (S1) is
not satisfied. (We could also show that (S2) or (S3) is not satisfied).

7. We proved at the lectures that Rn is a vector space over R and similarly that Cn is a
vector space over C. Now, is Cn a vector space over R? The answer is yes. The addition
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and the axioms (V 1)–(V 4) are satisfied just as before. For the scalar multiplication we
have that if λ ∈ R and z = (z1, . . . , zn) ∈ Cn then λz = (λz1, . . . , λzn) ∈ Cn as λzi ∈ C
for 1 ≤ i ≤ n. Moreover, the axioms (V 5)–(V 8) are satisfied as before.

Is Rn a vector space over C? The answer is no. The problem lies with the scalar
multiplication. If λ ∈ C and x = (x1, . . . , xn) ∈ Rn, then λx = (λx1, . . . , λxn) is not
necessarily in Rn. For example, take n = 2, λ = i ∈ C and x = (1, 1) ∈ R2, then
λx = (i, i) /∈ R2.
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