
Linear Algebra: Solutions to Exercise Sheet 3

1. Let V and W be vector spaces over R. Recall that a map f : V −→ W is linear if and only
if the following two conditions hold:

(i) f(u + v) = f(u) + f(v) for all u,v ∈ V

(ii) f(λv) = λf(v) for all λ ∈ R and all v ∈ V

So in order to prove that a map is linear, we need to check that the two conditions given
above hold. In order to prove that a map is not linear, it is enough to show that one of these
conditions fails, i.e. to find particular vectors v and u which do not satisfy condition (i), or
to find a particular value for λ and a particular vector v which do not satisfy condition (ii).

(a) This map is linear.
(i) f((x, y) + (x′, y′)) = f(x + x′, y + y′) = 3(x + x′) + 2(y + y′) = 3x + 3x′ + 2y + 2y′ =
(3x + 2y) + (3x′ + 2y′) = f(x, y) + f(x′, y′) for all (x, y), (x′, y′) ∈ R2.
(ii) f(λ(x, y)) = f(λx, λy) = 3(λx) + 2(λy) = λ(3x + 2y) = λf(x, y) for all λ ∈ R and
for all (x, y) ∈ R2.

(b) This map is not linear. Let’s see that (ii) fails. Take (x, y) = (1, 1) and λ = −1. Then
f(−1(1, 1)) = f(−1,−1) = (1, 0) but (−1)f(1, 1) = (−1)(1, 0) = (−1, 0).

(c) This map is linear.
(i) f(p(x)+ q(x)) = (x+1)(p(x)+ q(x)) = (x+1)p(x)+ (x+1)q(x) = f(p(x))+ f(q(x))
for all p(x), q(x) ∈ Pn.
(ii) f(λp(x)) = (x+1)(λp(x)) = λ(x+1)p(x) = λf(p(x)) for all λ ∈ R and all p(x) ∈ Pn.

(d) This map is linear.
(i) f(p(x) + q(x)) =

∫ 1
0 (p(x) + q(x))dx =

∫ 1
0 p(x)dx +

∫ 1
0 q(x)dx = f(p(x)) + f(q(x)) for

all p(x), q(x) ∈ Pn.
(ii) f(λp(x)) =

∫ 1
0 (λp(x))dx = λ

∫ 1
0 p(x)dx = λf(p(x)) for all λ ∈ R and all p(x) ∈ Pn.

(e) This map is not linear. We show that (i) fails. Take p(x) = x and q(x) = x + 1 then
f(p(x) + q(x)) = d

dx(2x + 1) + (5x + 2) = 5x + 4. But we have f(p(x)) + f(q(x)) =
d
dx(x) + (5x + 2) + d

dx(x + 1) + (5x + 2) = 10x + 6. We could also have shown that
condition (ii) fails.

(f) This map is linear.
(i)

f((x, y, z) + (x′, y′, z′)) = f(x + x′, y + y′, z + z′)
= ((y + y′) + (z + z′), (x + x′) + (z + z′), (x + x′) + (y + y′))
= ((y + z) + (y′ + z′), (x + z) + (x′ + z′), (x + y) + (x′ + y′))
= (y + z, x + z, x + y) + (y′ + z′, x′ + z′, x′ + y′)
= f(x, y, z) + f(x′, y′, z′)

for all (x, y, z), (x′, y′, z′) ∈ R3

(ii) f(λ(x, y, z)) = f(λx, λy, λz) = (λy + λz, λx + λz, λx + λy) = λ(y + z, x + z, x + y) =
λf(x, y, z) for all λ ∈ R and all (x, y, z) ∈ R3.
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(g) This is a linear map.
(i) f(A + B) = (A + B)T = AT + BT = f(A) + f(B) for all A,B ∈ M(n, m).
(ii) f(λA) = (λA)T = λAT for all λ ∈ R and all A ∈ M(n, m).

(h) This map is not linear. Let’s show that (i) fails. Take n = 2 and take A =
(

1 0
0 1

)
the identity 2 × 2 matrix. Then f(A + A) = f

((
2 0
0 2

))
= det

(
2 0
0 2

)
= 4. But

f(A) + f(A) = det(A) + det(A) = 1 + 1 = 2.

2. No, there is no such map. To see that observe that (3, 1) = 2(1, 0) + (1, 1) and so if the map
f were to be linear then we must have f(3, 1) = f(2(1, 0)) + f(1, 1) = 2f(1, 0) + f(1, 1) =
2(3, 2, 1) + (−1, 0, 1) = (5, 4, 3) but here we are given f(3, 1) = (5, 0,−2), so this map cannot
be linear.

Note that if the question read, “Is there a linear map f : R2 → R3 such that f(1, 0) = (3, 2, 1),
f(1, 1) = (−1, 0, 1) and f(3, 1) = (5, 4, 3)?” then the answer would be yes. Indeed this follows
from Proposition 2.3 in the lecture as {(1, 0), (1, 1)} form a basis for R2 (easy to check), so
there is a unique linear map f such that f(1, 0) = (3, 2, 1) and f(1, 1) = (−1, 0, 1). Moreover,
this map satisfies

f(λ1(1, 0) + λ2(1, 1)) = λ1f(1, 0) + λ2f(1, 1)

for any λ1, λ2 ∈ R. So we have

f(3, 1) = f(2(1, 0) + (1, 1)) = 2(3, 2, 1) + (−1, 0, 1) = (5, 4, 3).

3. A linear map f : V → W is surjective if for every vector w ∈ W there is a vector v ∈ V such
that f(v) = w. So a map is surjective precisely when the image of f , Im f , is equal to W .

We say that the map f is injective if distinct vectors in V are mapped to distinct vectors in
W , in other words if whenever we have f(v) = f(u) for some u,v ∈ V then we must have
v = u. We have seen in the lectures, Proposition 2.10, that a linear map f is injective if and
only if Ker f = {0}. So in order to prove that a linear map is injective, you can either show
that the first condition holds, or prove that the kernel contains only the zero vector.

(a) This map is not injective as f(1, 0, 0) = f(0, 1, 0) but (1, 0, 0) 6= (0, 1, 0). Alternatively,
we see that f(1,−1, 0) = (0, 0), so (1,−1, 0) ∈ Ker f .
This map is surjective as for all (x, y) ∈ R2 we can find (x, 0, y) ∈ R3 such that
f(x, 0, y) = (x, y).

(b) This map is injective. In order to prove it we check that the kernel is zero. Let (x, y, z) ∈
Ker f , this means that f(x, y, z) = (y + z, x + z, x + y) = (0, 0, 0) and so x = y = z = 0,
thus (x, y, z) = (0, 0, 0).
This map is also surjective. For all (x′, y′, z′) ∈ R3, we need to find (x, y, z) ∈ R3

such that f(x, y, z) = (y + z, x + z, x + y) = (x′, y′, z′). This can can done by taking
x = 1

2(−x′ + y′ + z′), y = 1
2(x′ − y′ + z′) and z = 1

2(x′ + y′ − z′).

(c) This map is not injective as f

(
1 0
0 0

)
= f

(
0 1
0 0

)
= 1.

This map is surjective as for all x ∈ R we have f

(
x 0
0 0

)
= x.
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(d) This map is injective. We show that the kernel is zero. Suppose f(a0 + a1x) = a0x +
a1x

2 = 0 then a0 = a1 = 0 so a0 + a1x = 0.
This map is not surjective as the constant polynomial 1 is not in the image of f .

(e) This map is not injective as f(0, 0, 0) = f(1, 0, 1) = (0, 0, 0).
This map is not surjective as (1, 2, 3) is not in the image.

(f) Note that for p(x) = a0 + a1x + a2x
2 + . . . + anxn ∈ Pn, we have p(0) = a0. So the map

f can be defined as f(a0 + a1x + a2x
2 + . . . anxn) = a1x + a2x

2 + . . . + anxn.
This map is not injective as f(x + 2) = f(x) = x.
This map is not surjective as the constant polynomial 1 is not in the image.

4. (a) The Rank-Nullity theorem tells us that

dim R3 = dim ker f + dim Imf

But we have seen above that the map f is surjective, so dim Imf = 2. Hence we have
dim ker f = 1. It is easy to find a basis for Imf = R2, take for example {(1, 0), (0, 1)}.
Now ker f = {(x, y, z) ∈ R3 | (x + y, z) = (0, 0)} = {(x,−x, 0) | x ∈ R}. So {(1,−1, 0)}
is certainly a linearly independent set in ker f and as dim ker f = 1 it is a basis.

(b) We have shown above that this map is both surjective and injective, so ker f = {0} has
no basis and Imf = R3 has a basis given by {(1, 0, 0), (0, 1, 0), (0, 0, 1)} for example.

(c) The Rank-Nullity theorem tells us that

dim M(2, 2) = dim ker f + dim Imf

We have seen that the map f is surjective, so Imf = R and dim Imf = 1. Moreover, we
have dim M(2, 2) = 4. Hence we must have dim ker f = 3. A basis for Imf = R is given
by {1}. The kernel of f is defined by

{
(

a b
c d

)
| a + b + c + d = 0} = {

(
a b
c −a− b− c

)
| a, b, c ∈ R}.

It is easy to check that {
(

1 0
0 −1

)
,

(
0 1
0 −1

)
,

(
0

1 −1

)
} is linearly independent

and as dim ker f = 3 it must be a basis.
(d) The Rank-Nullity theorem tells us that

dim P1 = dim Imf + dim ker f

We have seen above that f is injective, so dim ker f = 0 and ker f has no basis. As
dim P1 = 2, we must have dim Imf = 2. Now Imf = {a0x + a1x

2 | a0, a1 ∈ R}. Clearly
x and x2 are in this set and they are linearly independent, as dim Imf = 2, the set
{x, x2} must be a basis.

(e) The Rank-Nullity theorem tells us that

dim R3 = dim Imf + dim ker f

The image of f is given by {(y, y, y) | y ∈ R}, so it is easy to see that {(1, 1, 1)} is both
spanning and linearly independent, hence it is a basis for Imf and dim Imf = 1. Thus
using the formula above we see that dim ker f = 2. Now ker f = {(x, 0, z) | x, y ∈ R}.
Clearly (1, 0, 0) and (0, 0, 1) are linearly independent vectors in ker f and so {(1, 0, 0), (0, 0, 1)}
form a basis for ker f .
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(f) The Rank Nullity theorem tells us that

dim Pn = dim Imf + dim ker f

Now Imf = {a1x + a2x
2 + . . . + anxn | a1, a2, . . . an ∈ R}, so a basis for Imf is given by

{x, x2, . . . xn} (check). As dim Pn = n+1 and dim Imf = n, we must have dim ker f = 1.
Clearly, the constant polynomial 1 is in the kernel so it is a basis for the kernel.

5. There are of course many different answers to this question. Here is one example.

(a) f : R2 → R2 defined by f(x, y) = (0, 0). This is the zero map, it sends every vector to
the zero vector. So the kernel Ker f = R2 and the image Im f = {0}. Thus in this case
we have Im f ( Ker f .

(b) f : R2 → R2 defined by f(x, y) = (x, y). This is the identity map, it send every vector
to itself. So the image Im f = R2 and the kernel Ker f = {0}. Thus in this case we have
Ker f ( Im f .

(c) This case is slightly harder. First note that we must have f ◦ f = O the zero map, as
everything in the image of f is then mapped to zero when we apply f a second time.
We can take the map f : R2 → R2 defined by f(x, y) = (0, x). It is easy to check that
this map is linear. The kernel of f is given by Ker f = {(0, y) ∈ R2} and the image of f
is given by {(0, x) ∈ R2}. Thus the image and the kernel of f coincide.

6. Let u ∈ ker f , this means that f(u) = 0. Then (g ◦ f)(u) = g(f(u)) = g(0) = 0. So
u ∈ ker(g ◦ f). We have shown that ker f ⊆ ker(g ◦ f), thus dim ker(g ◦ f) ≥ dim ker f , i.e.
Nullity(g ◦f) ≥ Nullity(f). Now the Rank-Nullity theorem applied to the map f tells us that

dim U = Nullity(f) + Rank(f)

and the Rank-Nullity theorem applied to the map (g ◦ f) tells us that

dim U = Nullity(g ◦ f) + Rank(g ◦ f).

As we have seen above that Nullity(g◦f) ≥ Nullity(f), we must have Rank(g◦f) ≤ Rank(f).
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