Linear Algebra: Solutions to Exercise Sheet 7

1. (a) Set vi =(1,0,0) as it already has norm 1. Now wg = (1,1,0) —(1,0,0) = (0,1,0) = v2
as it already has norm 1. And finally wg = (1,1,1) — (1,0,0) — (0,1,0) = (0,0,1) = vgs.

Thus in this case we obtain the standard orthonormal basis.
(b) We start with {u; = (2,0,3),u2 = (—1,0,5),us = (10, -7,2)}.

As||(2,0,3)||2:4+9:1313V\;eset 2127(203) (r 0, J%).
Now W2 = (717()’5) - ﬁ(ﬁvovﬁ) = (717(3)’5) 2(2 0 ):( 3 0 2)
As ||wa||? = 13 we set va = —— (3 2):(\;ﬁ,0,\/—1—3).
Finally, wg = (10, 7, 2)—f(% 0, =) —(F2)(75,0, %) = (10, -7,2)-2(2,0,3)+
2(—3,0,2) = (0,—7,0). As |[ws|[> = 49 we set vg = 1(0,—7,0) = (0, —1,0).
So we get the orthonormal basis {(%,0,\/%),(%,07\/%) (0,—1,0)}.
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As ||wy|| = % we have vy = \/§<

O NI
O“"L
N———
Il
/-
ool

)
2 .
0

. Let u; = 24 322, up = 522 — 1 and ug = 10 — 7z + 222
Now v = mul = \/%(2 + 3z?).

wy = ug — (ug,v1)v
502 —1— (24 32%) = 222 — 3.

As ||we|| = V13 we have vy = \/%(sz —3).

wg = ug— (ug,v1)v] — (us, v2)vy
= 10— Tz +22° — 2(2+ 32%) + 2(22° — 3) = —Tx.

As ||ws|| = 7 we have v3 = —z.

. We start with the basis of P» given by {u; = 1,uz = z,ug = 372} and use the Gram-Schmidt
process to construct an orthonormal basis {vy,va,vs}.
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Set wg = ug — (ug,vi)vi. As
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Set wg = ug — (ug,vi)vy — (ug, va)va. As
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Thus we have constructed an orthonormal basis for P, given by
{v _1 v —ﬁxv 3\f( _1)}
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we have 22 — 27 + 3 = 33%(%) - %(%x) + é&(g&(aﬂ - 1).

. Note that if we write vectors in R” as column vectors we can write the dot product of two
vectors X,y € R™ as the product of two matrices (one with just one row and the other with

just one column) x-y = x'y.

(a) Write c(i) for the i-th column of the matrix A. Then using the definition of matrix

multiplication we see that AT A = I is equivalent to saying that

i) ={ i

In other words, the columns of A form an orthonormal set. Note that AT A = I if and

only if AAT = I, thus the same result is true for the rows of the matrix A.
(b) For all x,y € R"™ we have
(Ax)-(Ay) = (Ax)"(Ay)
= (xTAT)(Ay) using (BC)? = CT BT

= x'(ATA)y
= xly using AT A = I as A is orthogonal
= xy.



(c¢) Using (b) we get for all x € R™ that
[Ax[[* = (Ax)- (Ax) = x-x = ||x|*,
thus || Ax] =[x
Recall that the dot product can be defined as x-y = |[x||||y]|| cos® where 0 is the angle

between the vector x and the vector y. If we view the matrix A as a linear map from R"” to
itself then (b) and (c) tell us that the map A preserves distances and angles between vectors.



