
3 Differential equations

In this last part of the Calculus course we are going to study some new methods to solve certain
types of differential equations. This will be a continuation of what you studied in your 1st year
calculus course and, as in there, we are going to deal exclusively with real functions y = f(x)
of one real variable. As last year, we will concentrate on a subclass of differential equations,
that is linear differential equations.

3.1 Linear differential equations

Definition: A n-th order linear differential equation is an equation of the form

y(n) + P1(x)y(n−1) + P2(x)y(n−2) + · · ·+ Pn(x)y = R(x), (3.1)

where

y(k) =
dky

dxk
, (3.2)

is the k-th derivative of the function y with respect to the variable x and P1(x), . . . Pn(x) and
R(x) are real functions of x which are continuous in a certain interval I ∈ R. The order of
the differential equation is the highest order of the derivatives appearing in it (in this case n).
The equation is linear because no terms involving products of y and its derivatives appear (e.g.
terms like yy(k) or y(p)y(k)).

Notation: In order to prove certain general properties of linear differential equations it is
convenient to introduce various notations. For example, we can introduce an operator L which
acts on a function f(x) as follows

L(f) = f (n) + P1(x)f (n−1) + P2(x)f (n−2) + · · ·+ Pn(x)f, (3.3)

that is,
L = Dn + P1(x)Dn−1 + P2(x)Dn−2 + · · ·+ Pn(x), (3.4)

with
D =

d

dx
and Dn =

dn

dxn
. (3.5)

In terms of the operator L, the equation (3.1) would take the form

L(y) = R(x) = (Dn + P1(x)Dn−1 + P2(x)Dn−2 + · · ·+ Pn(x))y. (3.6)

Using the definition of the operator L we can easily deduce the two following properties:

L(y1 + y2) = L(y1) + L(y2) and L(αy) = αL(y), (3.7)

which follow from the properties of the derivative. These two properties are equivalent to saying
that L is a linear operator.
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3.1.1 Second order linear differential equations

Let us now consider a particular case of the equations (3.1), that is 2nd order differential
equations

y′′ + P1(x)y′ + P2(x)y = R(x) = L(y). (3.8)

As usual in this context, solving these equations is done in two steps: fist we must solve the
homogeneous 2nd-order differential equation

y′′ + P1(x)y′ + P2(x)y = 0 = L(y), (3.9)

and then find a particular solution of the inhomogeneous equation (3.8). In the next sections
we are going to see why this is the case and how to solve (3.8)-(3.9).

Homogeneous equations: In this section we are going to study how to solve homogeneous
equations such as (3.9). We will also see two theorems which will answer two fundamental
questions: when do solutions to (3.9) exist? and under which conditions is the solution of (3.9)
unique? Before entering these details, let us look at a very simple example:

Example: Consider the following homogeneous 2nd order differential equation

y′′ + k2y = 0, (3.10)

where k 6= 0 is a constant. This is an equations which you have learnt how to solve last
year. In general you try solutions of the type:

y = Cemx, (3.11)

with C and m being constants. Then you plug this solution into the equation above and
obtain

m2 + k2 = 0 ⇒ m = ±ik. (3.12)

Therefore the most general solution of (3.10) is of the form

y = C1e
ikx + C2e

−ikx, (3.13)

with C1, C2 being generic constants. Equivalently we can write

y = A1 sin(kx) + A2 cos(kx), (3.14)

with C1 = (A2 − iA1)/2 and C2 = (A2 + iA1)/2.

The solution (3.1.1) with A1, A2 arbitrary is the most general solution of (3.10). However,
in many problems we have to select a particular solution from the set (3.1.1), a solution
satisfying certain additional conditions. There conditions are called initial conditions.
For example, suppose we want to find a solution of (3.10) such that for a certain value of
x = x0,

y′(x0) = b and y(x0) = a. (3.15)

This means that the following two equations have to be satisfied

y(x0) = a = A1 sin(kx0) + A2 cos(kx0), (3.16)
y′(x0) = b = A1k cos(kx0)−A2k sin(kx0). (3.17)
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This is a system of two linear equations for two unknowns. An equivalent way of writing
these equations is

(
sin(kx0) cos(kx0)

k cos(kx0) −k sin(kx0)

)(
A1

A2

)
=

(
a
b

)
. (3.18)

A system of equations like this can always be solved (we have 2 equations and 2 un-
knowns). It will have a unique solution provided the two equations (3.17) are indepen-
dent from each other. Another way of saying that is to say that the determinant

∣∣∣∣
sin(kx0) cos(kx0)

k cos(kx0) −k sin(kx0)

∣∣∣∣ = k(cos2(kx0) + sin2(kx0)) = k, (3.19)

must be non-vanishing (k 6= 0). Since it was assumed from the beginning that k 6= 0, we
can conclude that there is a unique solution of the initial value problem

y′′ + k2y = 0 with y′(x0) = b and y(x0) = a. (3.20)

Existence theorem: Let P1(x), P2(x) be continuous functions of x in an open interval I and
let

L(y) = y′′ + P1(x)y′ + P2(x)y. (3.21)

If x0 ∈ I and a, b are given real numbers, there exists y = f(x) such that L(y) = 0 on I with
f(x0) = a and f ′(x0) = b.

Uniqueness theorem: Let

L(y) = y′′ + P1(x)y′ + P2(x)y, (3.22)

and let f(x), g(x) be solutions of the homogenous equation L(f) = L(g) = 0 on an open interval
I of R. Assume that f(x0) = g(x0) and f ′(x0) = g′(x0) for some x0 ∈ I. Then f(x) = g(x) for
all x ∈ I.

Theorem (characterization of solutions): Let

L(y) = 0 = y′′ + P1(x)y′ + P2(x)y, (3.23)

be a 2nd order linear and homogeneous differential equation with coefficients P1(x), P2(x) which
are continuous in an open interval I ∈ R. Let u1(x), u2(x) be two non-zero functions satisfying
L(u1) = L(u2) = 0 in I and such that u2(x)/u1(x) is not a constant in I. Then

y = c1u1(x) + c2u2(x), (3.24)

is a solution of L(y) = 0 on I. Conversely, if y is a solution of (3.23) in I, then there exist
constants c1, c2 such that (3.24) holds. This means that all solutions of (3.23) are of the form
(3.24).
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Proof:

(a) To proof that c1u1(x)+c2u2(x) is a solution of (3.23) provided that u1(x), u2(x) are solutions
of (3.23) we only have to use the first property in (3.7), that is the fact that L is a linear
operator. Therefore

L(c1u1(x) + c2u2(x)) = c1L(u1(x)) + c2L(u2(x)). (3.25)

(b) The second statement we have to proof is that all solutions of (3.23) are of the form
y = c1u1(x) + c2u2(x). To prove that we can consider a solution of the equation y = f(x)
and choose a point x0 ∈ I with initial conditions y′(x0) = f ′(x0) and y(x0) = f(x0). If we
are able to show that we can find two constants c1, c2 such that

f(x0) = c1u1(x0) + c2u2(x0), (3.26)
f ′(x0) = c1u

′
1(x0) + c2u

′
2(x0), (3.27)

then we would have proven that f and c1u1(x) + c2u2(x) have the same values and the
same derivatives at the point x0. Then we can use the uniqueness theorem to conclude
that they are the same function

f(x) = c1u1(x) + c2u2(x). (3.28)

To show the existence of c1, c2 such that (3.27) holds we only need to prove that there is
at least a point x0 ∈ I such that the system of equations (3.27) has a solution. As in the
example, this is equivalent to finding at least a point x0 ∈ I such that the determinant

∣∣∣∣
u1(x0) u2(x0)
u′1(x0) u′2(x0)

∣∣∣∣ = u1(x0)u′2(x0)− u′1(x0)u2(x0) 6= 0. (3.29)

In general, we define the determinant

W (x) =
∣∣∣∣

u1(x) u2(x)
u′1(x) u′2(x)

∣∣∣∣ = u1(x)u′2(x)− u′1(x)u2(x), (3.30)

and we call it the Wronskian.

Proving that there is at least a point x0 ∈ I such that the Wronskian W (x0) 6= 0 is
equivalent to proving that all solutions of the homogeneous equation (3.23) have the form
(3.24). We will carry out this proof by proving that if we assume the contrary we arrive
to a contradiction: Suppose that W (x) = 0 for all x ∈ I. Then this will imply that

(
u2

u1

)′
=

u1u
′
2 − u2u

′
1

u2
1

=
W

u2
1

= 0, (3.31)

but this is in contradiction with one of the assumptions we made at the beginning, namely
that u2/u1 is not a constant for x ∈ I. This means that the derivative of u2/u1 can not
be vanishing, which is what would happen if the Wronskian is zero everywhere. Therefore
W (x0) 6= 0 for at least one point x0 ∈ I.

Corollary: This theorem tells us that all solutions of the equation L(y) = 0 are of the form
c1u1(x) + c2u2(x), with c1, c2 being arbitrary constants. For this reason

y = c1u1(x) + c2u2(x), (3.32)

is called the general solution of L(y) = 0. It follows also from the theorem that we can find the
general solution by finding two particular solutions u1(x), u2(x) such that u2/u1 6= constant. If
u2/u1 6= constant we call u1, u2 linearly independent solutions.

71



Inhomogeneous equations:
Consider now the inhomogeneous equation

y′′ + P1(x)y′ + P2(x)y = R(x) = L(y), (3.33)

with P1, P2, R being continuous functions on an open interval I ∈ R. Suppose that y1 and y2

are two solutions of the inhomogeneous equation

L(y1) = L(y2) = R(x), (3.34)

then by linearity of L
L(y1 − y2) = L(y1)− L(y2) = 0, (3.35)

therefore y1 − y2 is a solution of the homogeneous equation L(y) = 0. However the previous
theorem told us that the solutions of the homogeneous equation always are of the form c1u1(x)+
c2u2(x). Therefore y1 − y2 must be of the form

y1 − y2 = c1u1(x) + c2u2(x), (3.36)

for some c1, c2, or equivalently

y1 = c1u1(x) + c2u2(x) + y2. (3.37)

This proves that any pair of solutions of the inhomogeneous equation are related by (3.37). In
other words, given a particular solution of L(y) = R, say y1, all solutions of the differential
equation are contained in the set

y = y1 + c1u1(x) + c2u2(x), (3.38)

where L(u1) = L(u2) = 0 and c1, c2 are arbitrary constants. For that reason (3.38) is called the
general solution of the inhomogeneous equation (3.33).

Conclusion: Given an inhomogeneous equation

y′′ + P1(x)y′ + P2(x)y = R(x) = L(y), (3.39)

with P1, P2, R being continuous functions on an open interval I ∈ R, there are two problems we
need to solve in order to find its general solution:

1. Find the general solution of the homogeneous equation L(y) = 0, i.e. c1u1(x) + c2u2(x).

2. Find a particular solution of the inhomogeneous equation L(y) = R.

From last year’s Calculus you already know some methods to solve simple homogeneous equa-
tions. Therefore we are going to start by learning a method to solve inhomogeneous equations:
the method of variation of parameters.
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3.1.2 The method of variation of parameters

Theorem: Let u1, u2 be two linearly independent solutions of a homogeneous equation L(y) =
0 on an interval I, with

L(y) = y′′ + P1(x)y′ + P2(x)y. (3.40)

Let
W (x) = u1(x)u′2(x)− u′1(x)u2(x), (3.41)

be the Wronskian of u1 and u2. Then, the inhomogeneous equation L(y) = R(x) has a solution
y1 given by

y1(x) = v1(x)u1(x) + v2(x)u2(x), (3.42)

with
v1(x) = −

∫
u2(x)

R(x)
W (x)

dx and v2(x) =
∫

u1(x)
R(x)
W (x)

dx, (3.43)

Proof: Let us suppose that y = v1(x)u1(x)+v2(x)u2(x) and try to determine v1(x) and v2(x).
Then we just have to plug this solution into the equation

R(x) = y′′ + P1(x)y′ + P2(x)y, (3.44)

and see what conditions must v1, v2 satisfy. Let us first compute

y′ = v′1(x)u1(x) + v1(x)u′1(x) + v′2(x)u2(x) + v2(x)u′2(x), (3.45)
y′′ = v′′1(x)u1(x) + v′1(x)u′1(x) + v′1(x)u′1(x) + v1(x)u′′1(x)

+ v′′2(x)u2(x) + v′2(x)u′2(x) + v′2(x)u′2(x) + v2(x)u′′2(x)
= v′′1(x)u1(x) + 2v′1(x)u′1(x) + v1(x)u′′1(x) + v′′2(x)u2(x)
+ 2v′2(x)u′2(x) + v2(x)u′′2(x), (3.46)

substituting these derivatives into (3.44) we obtain

R(x) = v′′1(x)u1(x) + 2v′1(x)u′1(x) + v1(x)u′′1(x) + v′′2(x)u2(x)
+ 2v′2(x)u′2(x) + v2(x)u′′2(x) + P1(x)

(
v′1(x)u1(x) + v1(x)u′1(x)

+ v′2(x)u2(x) + v2(x)u′2(x)
)

+ P2(x)(v1(x)u1(x) + v2(x)u2(x)), (3.47)

now we can use the fact that u1, u2 are solutions of the homogeneous equation, that is, they
satisfy

0 = u′′1(x) + P1(x)u′1(x) + P2(x)u1(x), (3.48)
0 = u′′2(x) + P1(x)u′2(x) + P2(x)u2(x). (3.49)

Using these equations we can prove that all terms in (3.47) which are proportional to v1(x) and
v2(x) vanish, leaving us with the following condition

R(x) = v′′1(x)u1(x) + 2v′1(x)u′1(x) + v′′2(x)u2(x)
+ 2v′2(x)u′2(x) + P1(x)

(
v′1(x)u1(x) + v′2(x)u2(x)

)

= (v′1(x)u′1(x) + v′2(x)u′2(x)) + (v′1(x)u1(x) + v′2(x)u2(x))′

+ P1(x)
(
v′1(x)u1(x) + v′2(x)u2(x)

)
. (3.50)
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One way of solving this equation is to impose further conditions on v1, v2 (remember, that we
only need to obtain a particular solution of the inhomogeneous equation). For example, let us
look for v1, v2 satisfying

v′1(x)u1(x) + v′2(x)u2(x) = 0 and v′1(x)u′1(x) + v′2(x)u′2(x) = R(x). (3.51)

In this case we can solve these equations for v′1, v
′
2. From the first equation we obtain

v′1(x) = −v′2(x)
u2(x)
u1(x)

, (3.52)

substituting this in the second equation we get

−u′1(x)v′2(x)
u2(x)
u1(x)

+ v′2(x)u′2(x) = R(x)

⇒ v′2(x) =
u1(x)R(x)

u′2(x)u1(x)− u′1(x)u2(x)
=

u1(x)R(x)
W (x)

. (3.53)

Substituting this back into (3.52) we obtain

v′1(x) = −u2(x)R(x)
W (x)

. (3.54)

Integrating these equations we obtain the solutions (3.43). Let us see how this works with some
examples:

Example 1: Solve the following 2nd order linear differential equation:

y′′ + y = tanx. (3.55)

First we have to solve the homogeneous equation:

y′′ + y = 0. (3.56)

Last year you have seen that this kind of homogeneous equations with constant coefficients
can always be solved by looking for solutions of the type y = cemx. Substituting this
solution in (3.56) we obtain

m2 + 1 = 0 ⇒ m = ±i, (3.57)

which means that the general solution of (3.56) can be written as

y = c1 cosx + c2 sinx, (3.58)

therefore we identify

u1(x) = cosx and u2(x) = sinx. (3.59)

Having this solution the next step is to solve the inhomogeneous equation (3.55). To do
that we can use the method of variation of parameters which tells us that a particular
solution of the inhomogeneous equation is given by:

y = v1(x)u1(x) + v2(x)u2(x) = v1(x) cosx + v2(x) sinx, (3.60)
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with
v1(x) = −

∫
u2(x)

R(x)
W (x)

dx and v2(x) =
∫

u1(x)
R(x)
W (x)

dx. (3.61)

In our case

R(x) = tanx, (3.62)

W (x) =
∣∣∣∣

u1(x) u2(x)
u′1(x) u′2(x)

∣∣∣∣ =
∣∣∣∣

cosx sinx
− sinx cosx

∣∣∣∣ = cos2 x + sin2 x = 1.

Therefore we have

v1(x) = −
∫

sinx tanxdx = −
∫

sin2 x

cosx
dx, (3.63)

we can solve this integral by changing variables as

t = sin x ⇒ dt = cosxdx, (3.64)

which allows us to write

v1(x) = −
∫

t2

1− t2
dt = −

∫
t2 − 1 + 1

1− t2
dt

=
∫

dt−
∫

1
1− t2

dt = t +
1
2

∫ [
1

1− t
− 1

1 + t

]
dt

= t +
1
2

ln
[
t− 1
t + 1

]
+ C, (3.65)

Recalling that t = sinx we obtain

v1(x) = sinx +
1
2

ln
[
sinx− 1
sinx + 1

]
+ C. (3.66)

Similarly

v2(x) =
∫

cosx tan xdx =
∫

sinxdx = − cosx + C ′ (3.67)

Therefore, the general solution of (3.55) is

y = c1 cosx + c2 sinx +
[
sinx +

1
2

ln
[
sinx− 1
sinx + 1

]]
cosx− cosx sinx

= c1 cosx + c2 sinx +
cosx

2
ln

[
sinx− 1
sinx + 1

]
. (3.68)

Notice that in the final solution we can forget about the constants C,C ′ because we are
just interested in a particular solution of the inhomogeneous equation. Therefore, we can
just choose them to be zero!

Example 2: Solve the equation
y′′ + y = x3. (3.69)

You can solve this sort of equation without using the method of variation of parameters.
In fact you have already solved equations of this type last year. Remember that whenever
you have an equation of the form

y′′ + ay′ + by = R(x), (3.70)
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where a, b are constant coefficients and R(x) is a polynomial of degree n, the solution to
this equation is always of the form

y = a1 + a2x + . . . + anxn, (3.71)

with a1, a2, . . . , an constants.

Therefore a particular solution of (3.69) will be of the type

y = Ax3 + Bx2 + Cx + D, (3.72)

with derivatives

y′ = 3Ax2 + 2Bx + C, (3.73)
y′′ = 6Ax + 2B, (3.74)

and if we substitute (3.72) and (3.74) in (3.69) we obtain

6Ax + 2B + Ax3 + Bx2 + Cx + D = x3, (3.75)

from where it follows,

A = 1, B = 0, 6A + C = 0 ⇒ C = −6, B + 2D = 0 ⇒ D = 0. (3.76)

So, our particular solution of the inhomogeneous equation is

y = x3 − 6x, (3.77)

and the general solution of the homogeneous equation is the same as in example 1. There-
fore the general solution of (3.69) is

y = x3 − 6x + c1 cosx + c2 sinx. (3.78)

We could have solved this problem by using the method of variation of parameters. In
that case the particular solution of the inhomogeneous equation would be

y = v1(x) cosx + v2(x) sin x, (3.79)

with

v1(x) = −
∫

u2(x)
R(x)
W (x)

dx = −
∫

x3 sinx,

v2(x) =
∫

u1(x)
R(x)
W (x)

dx =
∫

x3 cosx. (3.80)

These integrals can be solved by parts (in fact we have to use integration by parts three
times to solve each of the integrals!)

∫
x3 sinx = −x3 cosx + 3

∫
x2 cosxdx

= −x3 cosx + 3x2 sinx− 6
∫

x sinxdx

= −x3 cosx + 3x2 sinx + 6x cosx− 6
∫

cosxdx

= (6x− x3) cos x + (3x2 − 6) sinx, (3.81)
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∫
x3 cosx = x3 sinx− 3

∫
x2 sinxdx

= x3 sinx + 3x2 cosx− 6
∫

x cosxdx

= x3 sinx + 3x2 cosx− 6x sinx + 6
∫

sinxdx

= (x3 − 6x) sin x + (3x2 − 6) cosx. (3.82)

Therefore the particular solution of the inhomogeneous equation would be

y = v1(x) cos x + v2(x) sinx = −((6x− x3) cos x + (3x2 − 6) sinx) cos x

+((x3 − 6x) sinx + (3x2 − 6) cosx) sinx

= (x3 − 6x)(cos2 x + sin2 x) = x3 − 6x. (3.83)

Therefore, we obtain the same solution as with the other method but now we have to
compute two quite lengthy integrals! The conclusion from this problem is that we must
only use the method of variation of parameters when no other simpler method works. The
method of variation of parameters is very powerful since it works for cases in which all
other methods we know fail but we should not use it if we do not need to.
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