
The Navier-Stokes equations for an incompressible Newtonian fluid are

∇·u = 0,

∂u

∂t
+ u · ∇u = −1

ρ
∇p+ ν∇2u + F.

Euler’s equation for an incompressible inviscid fluid is

∂u

∂t
+ u · ∇u = −1

ρ
∇p+ F.

Bernoulli’s equation for an incompressible inviscid irrotational fluid is

∂φ

∂t
+

1

2
|u|2 +

p

ρ
+ Φ = Q(t)

where F = −∇Φ and u = ∇φ.

You may neglect the effect of gravity in questions unless otherwise stated.

1. Derive the boundary-layer equations for the steady two-dimensional in-
compressible flow of a viscous liquid along a plane impermeable surface.
What are the appropriate boundary conditions to be applied to the flow
in the boundary layer?

A wedge points into an oncoming stream of fluid. With one of the faces of
the wedge aligned along the positive x-axis, there is an exterior flow past
the face given by

U(x) = Cx1/4.

By looking for a solution to the boundary layer equations in terms of the
streamfunction, ψ, which takes the form

ψ = Axαf(η), where η =
By

xβ
,

show that the problem can be reduced to the ordinary differential equation

f ′′′ + ff ′′ +
2

5

(
1− (f ′)

2
)

= 0,

where A, B, α and β are constants that are to be determined. Do not try
to solve this differential equation.

What are the boundary conditions satisfied by f(η)?

Turn over . . .



2. State the Milne-Thompson theorem for the complex potential of an invis-
cid flow past a circular cylinder. Show from this complex potential that
the flow does have a streamline around the cylinder.

A stagnation point flow with centre at c on the real axis has complex
potential

w(z) = A(z − c)2,

where A and c are real and positive constants. A circular cylinder of radius
a is introduced with its axis at z = 0. Find the corresponding complex
potential.

Show that the points in the flow with zero velocity satisfy the quartic
equation

z4 − cz3 + ca2z − a4 = 0,

and hence find the position of the four stagnation points (Hint: there
are stagnation points at z = ±a). Find the critical value of c such that
below this value there are four such stagnation points on the surface of
the cylinder, but above this value there are only two. Sketch the flow in
each of these two cases.

3. A viscous fluid lies above a solid boundary located at z = 0. Its velocity
is given by

u(x, y, z) =
(
Axz,Ayz,Bz2 + Cz +D

)
.

Determine B, C and D in terms of A so that this flow is both incompress-
ible and satisfies the appropriate boundary condition at the plane z = 0.
By considering its three components, show that this flow is an exact so-
lution of the steady Navier-Stokes equation for some pressure, p(x, y, z),
which is to be determined.

Determine the vorticity of the flow, showing that vorticity is everywhere
parallel to the z = 0 plane and perpendicular to a radial vector from the
z-axis, and hence vortex lines form circles centred on the z-axis.

Show that the ratio of the length of the vortex lines to the strength of the
vorticity is constant.
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4. The surface of an inviscid irrotational fluid with gravity waves is given by

y = η(x, t) = ε cos (kx− ωt) .

Find the potential of the flow assuming the fluid is of uniform depth h
in the negative y-direction and that ε is small so terms proportional to ε2

and smaller can be ignored.

Show that, if surface tension is neglected, the wavenumber, k, and fre-
quency, ω, of the waves are related by

ω2 = gk tanh kh,

where g is the acceleration due to gravity.

If surface tension is taken into consideration, the pressure of the fluid at
the surface becomes

p = P0 − T
∂2η

∂x2

where T is a positive constant. Show that the relation between the fre-
quency and the wavenumber is then

ω2 =

(
g +

k2T

ρ

)
k tanh kh.

Show that for T = 0 the ratio of the group velocity of the waves to the
phase velocity tends to 1/2 as the waves become shorter (k →∞), while
for T 6= 0 it tends to 3/2 as the waves become shorter.

Turn over . . .



5. From the Navier-Stokes equations derive the vorticity equation for an in-
compressible flow

∂ω

∂t
+ u · ∇ω = ω · ∇u + ν∇2ω.

An incompressible flow is given by

u(x, y, z, t) = (−Ax+ u′(x, y, t), −Ay + v′(x, y, t), 2Az) ,

where A is a positive constant and (u′, v′, 0) is a perturbation velocity.
Show that the vorticity of this flow is of the form ω = (0, 0, ω3(x, y, t)),
where ω3 satisfies

∂ω3

∂t
− Ax∂ω3

∂x
− Ay∂ω3

∂y
+ u′∂ω3

∂x
+ v′∂ω3

∂y
= 2Aω3 + ν

(
∂2ω3

∂x2
+
∂2ω3

∂y2

)
.

(i) Show that if the vorticity is independent of position, i.e. ω3 = f(t)
for some function f(t), then the vorticity grows exponentially.

(ii) Consider the case of a steady axi-symmetric flow around the z-axis.
In this situation we have xu′+yv′ = 0 and the vorticity is independent
of t and depends only on the distance, r = (x2 + y2)1/2, from the z-
axis, i.e. ω3 = g(r) with x = r cos θ and y = r sin θ.

Show that g(r) satisfies

Arg′ + 2Ag + ν (g′′ + g′/r) = 0.

Hence show that

Ar2g + νr
dg

dr
= B,

where B is a constant. Why must B be zero?

Find the general solution to this differential equation with B = 0.[
You may quote the result u× (∇× u) = 1

2
∇(u · u)− u · ∇u.

]
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