The Navier-Stokes equation for an incompressible Newtonian fluid in the
absence of body forces is
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1. The complex potential for the uniform flow past a circle of radius a
centred at the origin and with circulation I' is
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where the far-field flow is inclined at an angle a to the z-axis. Verify

that the mapping
2

(=24~
z

maps the circle z = ae® in the z-plane onto the straight line between
( = —2a and ¢ = 2a in the (-plane. Hence write down the potential
for the flow past a flat plate with circulation in the (-plane.

Find the value of the circulation, I', such that the singularity in the
velocity at the trailing edge ¢ = 2a is removed. What would the corre-
sponding lift on the flat plate be?

2. The flow given by

u(x,y, z,t) = (f(z,t), Ay, —Az)

where A is a constant is an incompressible flow which satisfies the
Navier-Stokes equation. Show that f(z,t) satisfies
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Find the general time-independent solution with the pressure p a func-
tion of y and z only.



Show that U
2 Uy _p2 2
t) = 0 /28 g
Fent) = [ e/

is a solution to the time-dependent equation where
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where d = dg at t = 0.

[You may find the last part easier if you first differentiate (1) partially
with respect to z and show that % satisfies the resulting expression.]

Turn over ...



3. State the Milne-Thompson theorem for the complex potential of a flow
past a circle. Verify that the edge of the circle is a streamline of the
flow.

The complex potential for a stagnation point flow centred on the origin
is

w(z) = AZ?,

where A is a constant. Find the corresponding potential if a cylinder
of radius a is placed at the origin.

If the circulation due to a vortex at the origin with potential
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is superimposed, find the circulation, I, for which there are exactly two

stagnation points on the surface of the cylinder.

You may quote the result that the gradient of a function
¢ in polar coordinates (r,0) is
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4. Derive the boundary-layer equations for the steady two-dimensional in-
compressible flow of a viscous liquid along a plane impermeable surface.
What is the appropriate form of the boundary conditions?

The flow outside a boundary layer is given by U = ae?® where a and b
are constants. By seeking a similarity solution of the form

Y= ANz)F(n),  n=yd(z),

where 1 is the stream function, show that the governing equation for
the flow in the boundary layer may be reduced to the ordinary differ-
ential equation
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providing the functions A(z) and #(x), which are to be determined, are
chosen appropriately. State the boundary conditions satisfied by F'(n).

Turn over ...



5. An incompressible fluid lies between two fixed plates at y = 0 and
y = h and is subject to a uniform unsteady pressure gradient in the
x-direction
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where R denotes the real part, ug and w are constants and the density
of the fluid is p. Show that there is a solution of the Navier-Stokes
equations in which

u :R{H(y)ei”t}, v=w=0

where u, v and w are the velocity components in Cartesian coordinates
(x,y, z) and the fluid satisfies the no-slip conditions at the walls.

Show that
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where v is the kinematic velocity.

Show that for large A the velocity profile is approximately uniform
except for a region near the wall whose width is of order A='/2. Show
that the oscillations in this uniform core flow lag behind the oscillation
in the pressure gradient by a quarter of the phase.
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