
Ministry of Science and Higher Education of the Russian Federation

ITMO UNIVERSITY

GRADUATION THESIS

SELF-ADJUSTING NETWORKS IN MATCHING MODEL

Author: Feder Evgeniy Alexandrovich

Subject area: 01.03.02 Applied mathematics
and informatics

Degree level: Bachelor

Thesis supervisor: Aksenov V.E., PhD

Saint Petersburg, 2020

Student Feder Evgeniy Alexandrovich
Group M3439 Faculty of IT&P

Subject area, program/major
Mathematical models and algorithms in software engineering

Consultant(s):
a) Stefan Schmid, PhD, Professor in University of Vienna

Thesis received “ ” 20

Originality of thesis %

Thesis completed with grade

Date of defense “”

Secretary of State Exam Commission Pavlova O.N.

Number of pages

Number of supplementary materials/Blueprints

Ministry of Science and Higher Education of the Russian Federation

ITMO UNIVERSITY

APPROVED
Head of educational program
prof., doct. Parfenov V.G.
“ ” 20

OBJECTIVES
FOR A GRADUATION THESIS

Student Feder Evgeniy Alexandrovich
GroupM3439 Faculty of IT&P
Degree level: Bachelor
Subject area: 01.03.02 Applied mathematics and informatics
Major: Mathematical models and algorithms in software engineering
Thesis topic: Self-Adjusting Networks in Matching Model
Thesis supervisor Aksenov V.E., PhD, Researcher in ITMO University
2 Deadline for submission of complete thesis: “”
3 Requirements and premise for the thesis

The goal here is to try to generalize Self Adjusting Network algorithms. In all this alogorithms
the cost of forwarding along one link is 1, and the cost of changing a link is also 1. In real networks,
the cost of changing a link is higher than the cost of forwarding along one link. So we want to look
at Self-Adjusting algorithms in a model where: the cost of forwarding along one link is 1, and the
cost of changing a link is α>1, for some parameter α.
4 Content of the thesis (list of key issues)

Graduation thesis must explain basic definitions that will be explored: Self Adjusting Net-
works, Static Optimality and introduce Model in which we will work. Then thesis must explain
basic algorithms that will used and then explain their modification and proof, that they better than
straightforward known implementations.
5 List of graphic materials (with a list of required materials)

Supplementary materials and blueprints not required
6 Source materials and publications

a) Demand-Aware Networking:A Theory for Self-Adjusting Networks, by Chen Avin and Ste-
fan Schmid;

b) ProjecToR: Agile Reconfigurable Data Center Interconnect, by Monia Ghobadi et al;
c) SplayNet: Towards Locally Self-Adjusting Networks, by Stefan Schmid, Chen Avin, Chris-

tian Scheideler, Michael Borokhovich, Bernhard Haeupler, Zvi Lotker.
7 Objectives issued on “”

Thesis supervisor

Objectives assumed by “”

Ministry of Science and Higher Education of the Russian Federation

ITMO UNIVERSITY

SUMMARY
OF A GRADUATION THESIS

Student: Feder Evgeniy Alexandrovich
Title of the thesis: Self-Adjusting Networks in Matching Model
Name of organization: ITMO University

DESCRIPTION OF THE GRADUATION THESIS

1 Research objective: Adapt data structures for Matching Model and get algorithms that will have
less than O(α) multiplier for the static optimality complexity.
2 Research tasks:

a) introduce a model which will approximate Self Adjusting Networks in data centers.
b) look for subcases of Self Adjusting Networks and invent idea to adapt them for model.
c) get static optimality complexities for the invented algorithms.

3 Number of sources listed in the review section: 12
4 Total number of sources used in the thesis: 12
5 Sources by years:

Russian Foreign
In the last 5 to 10 More than In the last 5 to 10 More than
5 years years 10 years 5 years years 10 years

0 0 0 7 0 5

6 Use of online (internet) resources: none
7 Use of modern computer software suites and technologies: none
8 Short summary of results/conclusions

Lazy adaptations algorithms turned up better than versions of algorithms in Standard Model

9 Grants received while working on the thesis

10 Have you produced any publications or conference reports on the topic of the thesis?
Congress of Young Scientist

Student Feder E.A.

Thesis supervisor Aksenov V.E.

“ ” 20

4

CONTENTS
INTRODUCTION. 5
1. Introduction to the subject area and goals for the work . 7

1.1. The topology of the networks . 7
1.2. Self-Adjusting Networks. 7
1.3. Standard and Matching Model . 9
1.4. Static Optimal algorithms . 11
1.5. Related work and Overview. 12

1.5.1. Line Network. 12
1.5.2. Binary Tree Network . 12
1.5.3. Network with bounded degree . 14

1.6. Goals and Objectives . 17
Conclusions on Chapter 1 . 18

2. Lazy Nets . 19
2.1. List Topology with search requests . 19
2.2. Tree Networks . 22

2.2.1. Idea of Lazyness. 22
2.2.2. Search requests . 23
2.2.3. Routing requests. 27

2.3. Network with bounded degree property . 29
Conclusions on Chapter 2 . 32

CONCLUSION . 34
REFERENCES . 35

5

INTRODUCTION
Nowadays, the traffic in data centers becomes incredibly high. Thus, re-

searchers all over the world want to reduce the communication cost between the
nodes. Currently, networks in data centers are static and optimized for the worst
case load. For example, one of the ways is to adapt a static structure for the traffic
by reducing the routing distance between frequently communicating nodes.

Despite the fact that most of the state-of-the-art algorithms target to build op-
timized static network [2, 5–8] the recent research made it possible to dynamically
change parts of the physical network [9]. Thus, it is now possible to have a dynamic
network topology, by paying additional cost for the changes. One of the arising
questions is how to create low-cost algorithms that change a network depending on
the communication requests dynamically.

Usually, dynamic algorithms are provided in amodel where the cost of passing
along one link is one, and the cost of changing a link is also one. We call this model
as StandardModel (SM). However, in next-gen real-life networks [9] we can change
several links in parallel. So, SM does not reflect the real-life opportunities.

In this work, we want to tighten the gap between theory and practice. We talk
about recently introduced model [1] —Matching Model (MM), in which the cost of
passing along one link is one, and the cost of changing the whole network is O(α),
for some fixed parameter α > 1. Note that α can depend on the size of the network.

We investigate Self-Adjusting algorithms on the most popular types of net-
works: List, Binary Trees and Graph with bounded degree — in Matching Model,
introduced here. The state-of-the-art algorithms: Move To Front [10] for List, Splay
Tree [11] and SplayNet [12] for Binary Tree, ReNet [3] for Graph with bounded de-
gree — applied straightforwardly, give usO(α) complexity of static optimality. We
findO(α) bound to be too loose and we decide to adapt these algorithms for the new
model. Our modification of Move To Front algorithm is O(1)-static optimal. For
other algorithms, we introduce “Idea of Lazyness” that allows us to get a better ratio
— O(min(

√
α, log |V |))-static optimality in MM.

In Chapter 1, we provide the main definitions that we use in this work, for
example, Self-Adjusting Networks and static optimality. We consider state-of-the-
art Self-Adjusting algorithms on List, Binary Tree and Graphs with bounded degree.
Finally, we talk about motivation and set a goal of our work. In Chapter 2, we
present our modifications of the algorithms fromChapter 1 and provide the proofs of

6

their complexity of static optimality. In conclusion, we briefly overview the results
presented earlier and describe directions for further studies.

The problem description and model were found together with the supervisors
(it took approximately 3 month). All other results were obtained by the student,
under the supervision. This work was presented on Congress of Young Scientist
and it won in “report contest” section.

7

CHAPTER 1. INTRODUCTION TO THE SUBJECT AREA AND GOALS
FOR THEWORK

In this chapter, we introduce basic definitions such as Self-Adjusting Network
(SAN) algorithms, static optimality, and we define two models, Standard Model and
Matching Model. Finally, we recall self-adjusting algorithms in SM on List, Binary
Trees and Graph with bounded degree. Finally, we talk about motivation and set a
goal of our work.

1.1. The topology of the networks
Let computational nodes and the connections between them form an undi-

rected graph G = (V,E), where G belongs to G and G is a topology, or family of
undirected graphs.

In this work we consider three different topologies: List, Binary Tree and
Graph with bounded degree.

Definition 1. Connected topology is a family of graphs, in which there exists a
route between all nodes.

Definition 2. List topology is a connected topology, where two nodes (head
and tail) have degree one, and all other nodes have degree two.

Definition 3. Tree topology is a connected topology, where each but one (root)
node has parent. If each node has zero or two childs we name this as Binary tree
topology.

Definition 4. TopologyG satisfies bounded degree property, if a degree of each
node is not more than constant ∆.

1.2. Self-Adjusting Networks
In this subsection we formalise the definition of Self-Adjusting Network al-

gorithm and other related notions.
Definition 5. Let σ = (σ1, σ2, . . . , σm) = ((u1, v1), (u2, v2), . . . , (um, vm)),

where ui, vi ∈ V , be a sequence of routing requests to forward a packet in between
the pairs of nodes ui and vi.

Definition 6. If we assume that our topology has a distinguished node S, e.g.,
front for List and root for Trees, then instead of routing requests we perform search
requests from node S (i.e., ui = S for all i) and the notation of these requests will
be σ = (σ1, σ2, . . . , σm), where σi ∈ V .

8

Our main goal is to build a graph, which will optimize the total cost for pro-
cessing all requests. We can solve this task statically, i.e. the graph do not change
during the execution, or dynamically, i.e. the graph can be changed.

Definition 7. Static optimization task is a task when given requests a priori we
build a graph G ∈ G and this graph does not change until the end of all requests.
This graphG needs to optimize the total cost function sumCost(static, G, σ) =

m∑
i=1

li,

where li is a length in edges to process request σi and “static” means that we do not
change G during requests.

One of the example of the static optimization task is “Building Demand-
Oblivious Network task” [4]. In it we need to build a static network, which opti-
mizes the cost of the “worst-case” request. If we know an additional information
about requests we can build a more optimal network. For example, if we know the
distribution of requests we can build Demand-Aware Network [4], which consider
some pair of nodes to communicate more frequently than another.

Definition 8. In dynamic optimization task, we assume that we can change our
graph after each request. Before requests, we are provided with an arbitrary graph
G0 ∈ G. Our task is to build an algorithmA that adjusts our network and minimizes
the total cost, which is calculated as sumCost(A, G0, σ) =

m∑
i=1

(li + cost(Gi, Gi+1)),

where li is a length in edges of G to process request σi and cost(Gi, Gi+1) is an
adjusting cost to rebuild the network from step i, Gi ∈ G, to step i + 1, Gi+1 ∈ G.
Example of this adjustments are presented on Figure 2 and 3 for two (routing and
search) types of requests.

In this work, we assume that all changes to the network graph are controlled
by a coordinator C. The coordinator is connected to all nodes from V and controls a
structure of the network. We neglect the communication cost with the coordinator.
Example of such a graph is presented on Figure 1.

Definition 9. The algorithm to perform the requests and adjust the network at
each step from Gi ∈ G to Gi+1 ∈ G is called Self-Adjusting (Network) algorithm.

On Figure 2 from [4] we can see an illustration of Self-Adjusting algorithm
for routing requests. At first, we find a route between two nodes. Then we adjust
our network hoping to exploit temporal locality as these requests are also likely to
be relevant soon. And on Figure 3 from [4] we can see illustration of Self-Adjusting
algorithm “Splay Tree”[11] performing search requests. After finding 7 we splay
this node to the root.

9

C

v0

v1

v2

v3

v4

v5

Figure 1 – All nodes are (logically and possibly physically) connected to node C,
which can request arbitrary topology changes and has a complete information

about the network and its statistics.

Figure 2 – Self-Adjusting algorithm for routing request illustration from [4].

1.3. Standard and Matching Model
Let algorithm A be a Self-Adjusting algorithm. We need to specify the cost

of each operation.
Definition 10. In Standard Model (SM) the cost of changing one edge to an-

other one is equal to 1. Thus, cost(Gi, Gi+1) = rt, where rt is a number of edge
changes between Gi and Gi+1.

In this work, we talk about recently introduced model [1] —Matching Model
(MM). The idea for this model comes from the physical properties of a next-gen
dynamic network based on laser switches [9]. Each physical node has a constant

10

Figure 3 – Self-Adjusting Networks for search requests illustration from [4].

number∆ of physical sockets — a sender and a receiver. One socket represents one
possible connection with another node.

Definition 11. Edge coloring of the graph is a color function
C : E → {1, . . . ,∆}, where incident edges have different color values.

Theorem 12 (Vising’s theorem). Every undirected graph with bounded degree
∆ can be provided with edge coloring using at most ∆+ 1 different colours.

Let ∆ be the maximum degree of any graph from G. Thus, by Vising’s theo-
rem, at each step t the edges of graph Gt can be edge colored using at most ∆ + 1

colors. Thus, our graph Gt can be represented by ∆+ 1 matchings (Figure 4).

Figure 4 – Graph which is represented by matchings. The edges of one color
represent one matching.

In MM, the coordinator C can perform the following command: ask all nodes
simultaneously to change the edges of the matching with the chosen color paying
the cost α. Since Gt has constant number of matchings (more precisely, ∆+ 1) by

11

Vising theorem, the network can be changed from Gt to any Gt+1 ∈ G by paying
the cost α · (∆ + 1) = O(α).

Figure 5 – The coordinator ask to change green matching from Figure 4.

Definition 13. In MM, the adjustment cost is equal to α ·mi, where mi is the
number of matchings that we changed between Gi and Gi+1 on i-th request.

Note that the discussed cost of O(α) counts both the computation of the new
topology Gi+1 inside the coordinator C and the physical reconfiguration cost. In
other words, we say that the computation of the new topology is small in comparison
to the physical adjustment.

1.4. Static Optimal algorithms
We already discussed static algorithms, in which requests are known in ad-

vance, but the network can not change. However, in real life requests are not known
a priori and by that we should consider dynamic networks. To reason about a com-
plexity of dynamic algorithms the following notion is provided.

Definition 14. The network configuration OPT (σ) ∈ G is static-optimal
on the sequence of requests σ if sumCost(static, OPT (σ), σ) is less than
sumCost(static, H, σ) for any configuration H ∈ G, where “static” means that a
network does not change

Self-Adjusting algorithm A is called c-statically optimal if for
each sequence of requests σ and for each start configuration G0,
sumCost(A, G0, σ) ⩽ c · sumCost(static, OPT (σ), σ)

12

Move To Front

xhead before

afterhead x

Figure 6 – Move-To-Front algorithm on request x

1.5. Related work and Overview
1.5.1. Line Network

The first type of considered networks is Line Network. Line Network is a
network with Line Topology. One of the most popular dynamic algorithm to per-
form search requests on Line Network is Move-To-Front (MTF) by Sleator and Tar-
jan [10]. In a few words, after an access to the element x MTF moves x to the
front of the list (see it at Figure 6). This algorithm is interesting for us since it is
O(1)-statically optimal in Standard Model.

In Chapter 2, we introduce a Lazy modification of the MTF algorithm which
appears to be O(1)-statically optimal in Matching Model.

The proof ofO(1) static-optimality in [10] uses the idea of amortized analysis
with the potential function ϕ(x) which is the number of inversions in MTF list, i.e.,
the list maintained by MTF algorithm, with respect to the static optimal list (OPT).
An inversion is a pair (x, y) of items such that x occurs before y in Move-To-Front
list and x occurs after y in OPT list. We assume without loss of generality that
Move-To-Front and OPT start with the same list so that the initial potential is 0.

Using such a potential function ϕ we can prove that the amortized cost of the
MTF list is strictly less than twice the cost of OPT. Thus, MTF is O(1)-statically
optimal.

1.5.2. Binary Tree Network
The second type of a considered typologies is a Binary Tree topology. Binary

Tree Network is a network with Binary Tree topology. At first, let us consider search
requests from the root of the tree and then let us discuss routing requests.

13

1.5.2.1. Search requests
The first type of requests are search requests. We remind that for these re-

quests in Binary Tree Topology we have a special node, named “root”, and for all
requests one of the nodes in pair is always the root.

One of the well-known Self-Adjusting Binary Trees is ST , Splay Tree algo-
rithm, introduced by Sleator and Tarjan [11]. One of the most important property of
ST is that it is O(1)-statically optimal in SM, like MTF algorithm. Another point
why we consider Splay Tree is that it is used as a basic block of the ReNet structure,
introduced later in Section 1.5.3.

Suppose we are given search request x. At first, we search x like in a standard
search tree. Then the algorithm performs the splay operation. The splay operation
moves x to the root step-by-step. On each step, ST applies one of the operations:
zig, zig-zig and zig-zag. You can see the illustration of each operation on Figure 7.

A B

C
x

y x

y
A

B C

zig

A B

zig-zig

C

D
x

y

z

A

B

x

y

A

C

D

x

y

z

B C D

zig-zag

A

B

C D

x

y

z

z

Figure 7 – Illustrarion of the splay step types.

Obviously, the straightforward version of ST in MM is O(α)-statically opti-
mal since a change of one edge costs O(α).

14

In Chapter 2 we explain how to modify Splay Tree such that it becomes
O(

√
α)-statically optimal.

1.5.2.2. Routing requests
In the previous subsection we consider requests that are performed from the

root. In this section, the data structure tries to answer general requests between any
pair of nodes. In 2015, Schmid et al. [12] presented the study of self-adjusting data
structures and introduced a new self-adjusting Binary Search Tree under general
requests called SplayNet.

We shortly describe how it works. Consider a request (u, v). Node u asks the
coordinator C for the common ancestor of u and v. Let it be node p. The route by
which we pass a packet is u−p−v. After we find the route, we “splay” u to the place
of p and then “splay” v to the position of the son of u. By that, SplayNet is a natural
generalization of the classic Splay Tree algorithm which “splays” communication
partners to their common ancestor. On Figure 8 you can see an example on how to
process a request from node 1 to node 5.

For this data structure we do not have a complexity of static optimality, how-
ever, in Chapter 2 we propose its version obtained by the application of our “Idea
of Lazyness”.

1.5.3. Network with bounded degree
Network with bounded degree (Bounded degree network) is a network of the

topology that satisfies the bounded degree property. In this subsection, we consider
ReNet algorithm [3].

Ideally, we would like to have each node u ∈ V in graph be connected di-
rectly to all its communication partners in σ, achieving an ideal route length of one.
However, this is infeasible, as (1) the communication partners of u are not known a
priori and (2) u may have too many communication partners that would result in a
large degree of u while our topology has bounded degree property.

ReNet is an algorithm, that solves the problem of large degree in a specific
case where the request sequence is sparse. Sparse request sequence is a sequence in
which a number of different communications pairs is linear, i.e., O(|V |), while in
the general case this number can beO(|V |2). If this precondition is satisfied, ReNet
algorithm maintains a graph with bounded degree property: deg(v) ⩽ 6 · θ for all
vertices v, where θ is a parameter of ReNet.

15

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

build a route from 1 to 5

1

2 3

4

5

6

7

8

splay 1 to 4

splay 5 to 2

Figure 8 – Example on how to build a route and adjust in the SplayNet algorithm

We begin an explanation of ReNet by providing the main definitions for this struc-
ture.

The structure of ReNet is the following:
— Each node u in ReNet keeps track of its recent active communication partners,

hoping to exploit temporal locality as they are also likely to be relevant in the
near future. So, letWorking set,Wt(u), be the set of nodes v at request t such
that either (u,v) or (v, u) is in {σr, σr+1...σt−1}, where r is a moment of last
reset (we explain what reset is later).

— Each node in a network can be one of two types. Node u is small, when
|W (u)| < θ, otherwise, the node is large. If the node is small it will connect
to its communication partners directly. When the node becomes large it or-

16

ganizes partners into the Splay Tree (in paper these trees are called ego-tree
of node u or ego(u)). The examples of the network topologies of small and
large nodes can be seen on Figure 9.

Small node Large node

Figure 9 – Types of nodes in ReNet

— In addition, we have a reset operation that provides temporal locality. When∑
u∈V

|W (u)| becomes n · θ/2 we clear everything: we remove all edges from

the network and re-initialize all working sets. Then, we simply continue with
requests.

— If we want to add an edge between nodes, we simply ask the coordinator C to
add the edge by paying the cost c.

Below, we describe how to process a request from u to v.
a) Both nodes u and v are small: we add an edge between them (if it does not

exists) and we transfer a packet along this edge.
b) One node is small and the other one is large: if nodes are not connected then

we add the small node to the ego-tree of the large node and build a route via
this Splay Tree.

c) Both nodes are large: if nodes are not connected then the algorithm chooses
some small node hwhich we add to both ego trees. Later such a node is called
helper node. You can see an example of helper nodes on Figure 10. Then, the
route between large nodes is built through h. However, we have to note that
sometimes one node lies in the ego-tree of another node and we can process
the request like in the small-large case.

17

Figure 10 – Example of helper nodes from ReNet paper [3]

On the Figure 11 we can see an example of ReNet topology. u and v are large nodes
and h is the helper node, which helps to build a route between u and v. x and y are
small and are connected directly.

u

v

h

x

y

Figure 11 – Example of ReNet network.

1.6. Goals and Objectives
In this work, we consider all the algorithms described above inMM. InMatch-

ingModel the change of one edge costs α. This means, that if we take the algorithms
above as they are presented in SM, the algorithms will have the static optimality
complexity to be O(α) in MM which is too high.

Theorem 15 (Motivation for the work). Complexity of static optimality for pre-
sented algorithms in Standard Model is O(α) times higher in Matching Model.

Proof. For MTF we can get a lower bound on the complexity of static optimality.
Suppose we start with the list {x1, x2, x3, . . . , xn}. We create a sequence of requests
σ = {x2, x1, x2, x1....}. This sequence always searches for the second element of

18

the list. In OPT list we perform m = |σ| operations and in MTF we pay O(αm)

cost. So, our complexity of static optimality is at least α.
We can apply the same idea to Splay Tree and SplayNet algorithms. The cost

of routing will be one or two, while the cost of the adjustment is α. Because ReNet
is based on Splay Tree, the complexity of static optimality of ReNet becomes also
α times more.

Our goal is to adapt these algorithms for Matching Model such that they have
complexity of static-optimality smaller than O(α).

Conclusions on Chapter 1
In this chapter, we introduced the main definitions used in our work. Firstly,

we described two notions from the title: Self-Adjusting Network algotithm and
Matching Model. Then, we defined property by which we compare the algorithms
— the complexity of static optimality. After that we overviewed the state-of-the-art
self-adjusting algorithms for three cases of the network topology: List, Binary Tree
and Graph with bounded degree. Finally, we show that naive approaches give awful
complexity bound and we set a goal to reduce it.

19

CHAPTER 2. LAZY NETS
In the previous chapter we definedMatchingModel and overviewed the state-

of-the-art algorithms in the Standard Model. However, as mentioned, the naive us-
age of the state-of-the-art algorithms give us awful complexity bounds in Matching
Model. In this chapter, we adapt these algorithms for MM using our “Idea of Lazy-
ness” and prove their complexities of static optimality.

2.1. List Topology with search requests
We start with the networks that satisfy List Topology. In Standard Model we

are provided with O(1)-statically optimal Move To Front algorithm [10]. We note
that inMatchingModel “move-to-front” operation during the request after an access
of an element costs α. We want to amortize this cost by adjusting the network not
at each search request.

Surprisingly, we found that quite a straightforward optimization of the MTF
algorithm gives a desired theoretical bound:
— Maintain a counter for each node, being zero at initialization.
— On each request of a value, we increase the counter of the corresponding node

by one.
— If the counter becomes α, we perform move-to-front operation on this node.

Such amodification allows us to getO(1)-statically optimal algorithm inMM.
We name it “Lazy Move-To-Front”. For the proof of the complexity we use the
following theorems from the original paper [10].

Theorem 16. Let pt(x) be the position of element σt in the MTF list at time
t and j be the position of element σt in the OPT list. Then, j ⩾ pt(x) − ϕt(x),
where ϕt(x) is the MTF potential function of element x at the request t, which is the
number of inversions in MTF list with respect to the static optimal list (OPT).

Theorem 17. cost(σt) + ∆ϕt(x) = 2 · (pt(x)−ϕt(x))−1
We re-prove these theorems in the proof of the following theorem.
Theorem 18. “Lazy Move-To-Front” algorithm is O(1)-statically optimal in

Matching Model if |σ| ⩾ a · n(n+1)
2 .

Proof. We prove this Theorem using a standard amortization argument. For that we
introduce a potential function for the Lazy MTF after t requests: Φt =

∑
α · ϕt(x),

where ϕt(x) is the MTF potential function of element x, which is the number of
inversions in MTF list with respect to the static optimal list (OPT). An inversion is

20

MTF

OPT

j

x

x

v u

v u

pta(x)

pta(x)− 1− φta
(x)

Figure 12 – Illustration for the Theorem 16 and 17. u increases ϕta(x) by 1 and v
does not affects into ϕta(x) (number of nodes like v is not more than

(pta(x)− 1− ϕta(x))). After we move to front ϕta+1(x) = 0, x starts increase
ϕta+1(v) and do not affect on u node

a pair (x, y) of items such that x occurs before y in Move-To-Front list and it occurs
after y in OPT list. We assume without loss of generality that Move-To-Front and
OPT start with the same list, so, the initial potential is zero.

Our potential function changes only on the α-th request per element. So, we
split the requests to the fixed element x into the blocks of length α. Now, we want
to compare the total cost of requests in each block in OPT and Lazy MTF list.

a) The cost on OPT list is straightforward. It is equal to α · j, where j is the
position of x in OPT list.

b) Consider α requests to the element x. Let pti(x) be the position of x in Lazy
MTF after ti-th request where i is the index of the request to x and ti is the
index of the request in σ. Thus, the total cost of the first α − 1 requests that

access x is equal to
α−1∑
i=1

pti(x).

Let us perform the α-th access to x. We briefly revise the proof of Theorem 17
and use the same amortization idea here.
The change in the MTF potential due to moving x to the front is equal to
the sum of two contributions (you can see these contributions on Figure 12):
1) x no longer contributes anything to the potential, as it no longer has any
elements in front of it, so, we have a decrease of the potential by ϕta(x); 2) all
pta(x)−1 elements that were in front of x now have an additional element in
front of them, x itself, and thus their potential might be increased by one. The
total number of these elements is pta(x)−1−ϕta(x), because all nodes, which
did not affect on ϕta(x) before, are affected now. So, a total change of MTF
potential of x is at most−ϕta(x)+(pta(x)−1−ϕta(x)) = pta(x)−1−2·ϕta(x).

21

By that, we measures how the potential changes after the move-to-front ad-
justment. Thus, the amortized cost of the α-th operation is equal to:

ptα(x) + ∆Φ = ptα(x) + α · (ptα(x)− 1− 2 · ϕtα(x))

Then the total cost of all α operations in a block is equal to:

α−1∑
i=0

pti(x) + ptα(x) + ∆Φ =

= pt0(x) + pt1(x) + ...+ ptα(x)− α · ϕtα(x) + α · (ptα(x)− 1− ϕtα(x))

= (pt0(x)− ϕtα(x)) + (pt1(x)− ϕtα(x)) + ...+

+ (ptα(x)− ϕtα(x)) + α · (ptα(x)− ϕtα(x)− 1)

(1)

At first, we know that pt0(x) ⩽ pt1(x) ⩽ ... ⩽ ptα(x) since the node
can be only moved further the list due to other move-to-front nodes. Sec-
ondly, from Figure 12, we can see that (pta(x) − 1 − ϕta(x)) ⩽ j − 1,
so (pta(x) − ϕta(x)) ⩽ j. We remind that j is the posi-
tion of x in OPT. By these two statements we can conclude that
(pti(x) − ϕtα(x)) ⩽ (ptα(x) − ϕtα(x)) ⩽ j. By making a substitution into
equation (1) we get

(1) ⩽ j + j + ...+ j + α · (j − 1) ⩽ α · (2 · j − 1) < 2 · α · j.

So, the total cost is strictly less than twice the cost of OPT list.
In the statement of the theoremwe have a restriction on the number of requests

σ. If |σ| ⩾ a · n(n+1)
2 we do not have to think about requests in the “tail” of σ (i.e.,

the requests which belong to non-finished block and do not have move-to-front op-
eration afterwards). It is due to the fact that sumCost(Lazy MTF, G0, σ) = ω(an2)

and all requests from the tail, which are not going to be amortized by move-to-front,
can be amortized over all |σ| requests: at each node we can set counter to a− 1 and
the potential is O(an2).

22

2.2. Tree Networks
2.2.1. Idea of Lazyness

Suppose for a moment that we are provided with a self-adjusting data structure
in SM and we want to adapt it to MM with the static-optimality complexity better
than O(α). The general idea is to perform adjustments only once in a while —
similarly to what we did for MTF. Obviously, there are a lot of different variants of
how to use this idea. In this subsection, we give the details of our idea and provide
the proof of its bound on the static-optimality complexity.

LetALG be the algorithm in SM andwe have a sequence of requests σ. Denote
our algorithm as LAZY. Let us divide the list of requests, σ, into epochs. During one
epoch the data structure maintained by LAZY algorithm remains unmodified and
the data structure maintained by ALG adjusts exactly as in SM. Epoch continues
until the total cost of operations in LAZY modifications exceeds α. After that LAZY
synchronizes its data structure with the data structure of ALG and LAZY moves to a
new epoch.

In SAN, LAZY algorithm works on the structure of the network itself, while
ALG emulates the network inside the coordinator. Of course, at that point, we make
a reasonable assumption that computations of ALG inside the coordinator cost much
less than transferring information between nodes. So, we simply ignore the cost of
the maintenance of ALG on the coordinator.

We are going to find the static optimality complexity of our algorithm in
Matching Model by formula: sumCostMM (ALG,G0,σ)

sumCostMM (static,OPT,σ) , where G0 is an arbitrary con-
figuration before at the beginning and OPT is a static optimal configuration for
requests σ. Let us multiply and divide this ratio by sumCostSM(ALG,G0, σ).
By that we obtain sumCostMM (LAZY,G0,σ)

sumCostSM (ALG,G0,σ)
· sumCostSM (ALG,G0,σ)

sumCostMM (static,OPT,σ) . We know that
sumCostSM (ALG,G0,σ)
sumCostSM (static,OPT,σ) = cALG, i.e., static-optimality complexity of ALG in Stan-
dard Model, and sumCostMM(static, OPT, σ) = sumCostSM(static, OPT, σ)

since OPT structure does not change. Thus, we get the complexity equal to
sumCostMM (LAZY,G0,σ)
sumCostSM (ALG,G0,σ)

· cALG. In Splay Tree and ReNet algorithm we know the com-
plexity cALG of static optimality — it is equal to one. For SplayNet we do not know
the value of cALG, so we provide a bound that depends on it.

Let us split now the dividend and the divider of the ratio into epochs. Let i be
the index of an epoch andm be the number of epochs. Suppose that Gi is the graph
right after the i-th epoch and σ(i) be the requests performed during i-the epoch. By

23

using the inequality a1+a2+...+am
b1+b2+...+bm

⩽ c·b1+c·b2+...+c·bm
b1+b2+...+bm

= c, where c = max
i=1...m

ai
bi
, we get

that:

sumCostMM(LAZY,G0, σ)

sumCostSM(ALG,G0, σ)
=

m∑
i=1

sumCostMM(LAZY,Gi−1, σ
(i))

m∑
i=1

sumCostSM(ALG,Gi−1, σ(i))
⩽

⩽ max
i=1...m

sumCostMM(LAZY,Gi−1, σ
(i))

sumCostSM(ALG,Gi−1, σ(i))

This transformation suggests us an idea for the proof: we find the
lower bound for sumCostSM(ALG,Gi−1, σ

(i)) and the upper bound for
sumCostMM(LAZY,Gi−1, σ

(i)), thus, we find the maximal possible ratio which
becomes the static optimal complexity. From now on, we consider and bound only
the ratios of the epochs, not the whole execution.

2.2.2. Search requests
We start with applying our “Idea of Lazyness” to Splay Tree algorithm.

Our modification has O(min(
√
α, logn))-ratio regarding to Splay Tree in Stan-

dard Model. Since Splay Tree is O(1)-static optimal then our modification is
O(min(

√
α, logn))-static optimal in Matching Model.

Lemma 19. Lazy Splay Tree algorithm is the O(
√
α)-statically optimal algo-

rithm in Matching Model

Proof. At first, we introduce all the necessary notions. Let TST and TLST be the trees
maintained by Splay Tree (ST) and Lazy Splay Tree (LST) algorithms, respectively.
Let us divide the requests into epochs σ(i). Let σ(i)

j be j-th request in i-th epoch.
Let sSTij and sLSTij be the cost of the corresponding request σ(i)

j in TST and TLST

respectively.
By the definition of the epochs, we have for any epoch i

∑|si|−1
j=1 sSTij < α

and
∑|si|

j=1 s
ST
ij ⩾ α. At the end of the epoch, i.e., after |si|-th request, by “Idea of

Lazyness” we synchronize the data structures and make TLST to be exactly as TST

structure. Without loss of generality we consider an epoch i. We have two cases.
a) If sLSTij ⩽ √

α for all j then during the epoch we perform more than
√
α

operations: each operation costs less than
√
α and we end the epoch when

the total cost exceeds α. Then sumCostMM(LST,Gi−1, σ
(i)) ⩽ α +

√
α

24

because the cost of the last operation does not exceed
√
α, and

sumCostSM(ST,Gi−1, σ
(i)) ⩾ √

α since we do more than
√
α operations

of cost at least one. So, our complexity of static optimality cannot exceed
α+

√
α√

α
= O(

√
α).

b) If there exists j for which sLSTij ⩾ √
α (if there are several of them we take the

one with the maximum cost) we should consider two cases: sSTij ⩾ √
α and

sSTij <
√
α. The second case is possible when before the request j in our epoch

we have done splay operations, which decreased the depth of requested node
v. This is the only explanation why the change of the depth happens since at
the beginning of the epoch the trees ST and LST were the same.
To begin with, we want to proof that

∑j
k=1 s

ST
ik ⩾ sLSTij , i.e., the total cost

of the requests on Splay Tree from the start of the epoch is greater than one
operation in Lazy Splay Tree.
Let us name the rotation operations during the splay: zig, zig-zig and zig-zag,
as “Step-of-splay”. At first, we need to understand why and how the depth of
our node can change in the progress of epoch. Consider Figure 13. We can
see that one step-of-splay can change the depth of all nodes in the tree.
Look at all “step-of-splay” operations that affected the depth of node v. Let
this set be SS, ∆d be the difference between the depth of node v in TST and
TLST , ∆ds and cs be the differences in depth before and after splay operation
s and the cost of route finding and adjustment in current step-of-splay s, i.e.,
the depth of the node.

∆d =
∑
s∈SS

∆ds ⩽
Figure 13

∑
s∈SS

cs ⩽
j−1∑
k=0

sSTik

dLSTv = ∆d+ dSTv ⩽
j−1∑
k=1

sSTik + dSTv =

j∑
k=1

sSTik

It means that
j∑

k=1

sSTij ⩾ dLSTv = sLSTij ⩾ √
α. Let us substitute this into static

optimal complexity estimation during the epoch:

25

sumCostMM(LST, Ti, σ
(i))

sumCostSM(ST, Ti, σ(i))
⩽

α + sLSTij

j∑
k=0

sSTik

=

=
α

j∑
k=0

sSTik

+
sLSTij

j∑
k=0

sSTik

⩽
√
α +O(1) = O(

√
α)

[h]

A B

C
x

y x

y
A

B C

zig

A B

zig-zig

C

D
x

y

z

A

B

x

y

A

C

D

x

y

z

B C D

zig-zag

A

B

C D

x

y

z

z

-1

0 +1

+1

-2

-1

+1 +2

+2

0

+1 -1 -1 +1

0 +1

+1

Figure 13 – Change depth in zig, zig-zig and zig-zag cases. In zig case cost
for adjustment and routing cost are 3 and 1 respectively, maximum change
of depth is 1. In zig-zig case this costs are 6, 2 and 2. In zig-zag - 4, 2 and 2.

In Lemma 19 we proved that Lazy Splay Tree is O(
√
α)-statically optimal.

But what should we do, if our α is too big (for example, O(n4)). We modify our
algorithm when α > log2 n: instead of Self-Adjusting algorithm we take static
balanced tree of height logn instead of Lazy Splay Tree.

Theorem 20. Lazy Splay Tree algorithm is the O(min(
√
α, logn))-statically

optimal algorithm in Matching Model.

26

Proof. In Lemma 19 we proved that Lazy Splay Tree is O(
√
a)-statically optimal

(Lemma 19). And if α > log2 n we use the static balanced tree algorithm which
gives us O(logn) complexity of static optimality.

One could suggest that we can use different algorithm from Splay Tree and,
probably, get the better complexity. However, as we show in the next theorem “Idea
of Laziness” has the worst-case bound which coincides with the bound given by
Splay Tree.

Theorem 21. “Idea of Laziness” can not achive better complexity of static op-
timality than O(min(

√
α, logn)).

Proof. Since, we provided an algorithm with O(min(
√
α, logn)) static optimality

ratio, we want to prove that it is in fact the best ratio for the “Idea of Lazyness”. For
that we need to find a pattern of requests, that will always achieve O(

√
α) ratio.

One of the worst cases for Lazy Splay Tree is when we access one element for
the whole epoch. Let us consider the number of of operations in tree TST . Let d be
the depth of the accessed node. In Lazy Splay Tree we will perform ⌈αd⌉ requests.
In Splay Tree the first request costs d, while the next requests cost one since we
splayed the node to the root. So, the cost is equal to:

c(d) = d+ ⌈α− d

d
⌉ =

d+ (αd − 1) α divided by d

d+ α
d α not divided by d

c′(d) = 1− α

d2

To find the extremum of the function c we have to equate c′(d) with 0. Thus,
we get d =

√
α. If d >

√
α we get c′(d) > 0, which means that d =

√
α is the

depth with the minimal cost for TST .
So, consider the following requests. We access a node at depth

√
α.

This gives us, that sumCostSM(ST,Gi−1, σ
(i)) = c(

√
α) = O(

√
α) and

sumCostMM(LST,Gi−1, σ
(i)) ⩽ a +

√
a. It means, that in the worst case we have

O(
√
α) static optimality complexity.
But tree is not obliged to have a node at depth

√
α. For example, when a = n4

the height of the tree obviously does not exceed n ⩽ √
α = n2. In this case, we are

trying to get another bound that depends only of n.

27

We repeat our pattern to request one node the whole epoch. We know that
dmax ⩾ logn. To reach “no node at

√
α depth” case we need to assume that

a > log2(n). Previously we count a derivative for c(d), which is monotonic and
increasing function. Our ratio will be α

c(d) . For the minimal ratio we need to request
nodes with maximum depth which is ⩾ log(n).

α

c(d)
⩾

α

logn+ α
logn−1 =

1
logn
a + 1

logn−
1
a

> 1
2

logn−
1

log2 n

= log2 n
2·logn−1 >

log2 n
2·logn = logn

2

α
logn+ α

logn
= 1

logn
a + 1

logn
> 1

2
logn

= logn
2

It means that the optimality ratio lies between logn
2 < c <

√
α. So, the lower

bound for Idea of Laziness of static optimality complexity is O(min(
√
α, logn)).

2.2.3. Routing requests
In the previous subsection, we applied “Idea of Lazyness” to Splay Tree al-

gorithm. However, we can do the same to SplayNet algorithm. Instead of the depth
we consider a distance of the route between two nodes. Lower bound for the lazy
algorithm is the same: for each epoch, we ask for a pair with distance

√
α and then

repeat this request
√
α− 1 times.

Lemma 22.

sumCost(Lazy SplayNet, G0, σ) = O(
√
α · sumCost(SplayNet, G0, σ))

holds for any starting tree G0 and any list of requests σ.

Proof. The proof for this algorithm is the same as the proof of Lemma 19 with one
change: the cost of the request becomes the length of the path between two nodes.

We briefly overview the proof.We recommend to become familiar with the
proof of Lemma 19. As previously, we consider two cases:

a) All requests in Lazy SplayNet cost not more than
√
α. It means that we will do

more than
√
α requests in SplayNet. So, our complexity of optimality cannot

be more than α+
√
α√

α
= O(

√
α).

b) We get a request that costs more than
√
α in Lazy SplayNet and, again, we

want to prove that the sum of costs of the requests in SplayNet exceeds
√
α.

28

At first, we say that in one step-of-splay the maximum difference of length
between nodes in tree cannot not be more than the cost to perform the step-
of-splay. You can check it using Table 1 and we can assume than in in each
“Step of Splay” we change no more than three links.

Table 1 – Table of distance differences between nodes after each type step of splay

x y A B C
x 0 0 0 +1 0
y 0 0 0 -1 0
A 0 0 0 +1 0
B +1 -1 +1 0 -1
C 0 0 0 -1 0

(a) Zig
x y z A B C D

x 0 0 0 0 +1 +1 0
y 0 0 0 0 -1 +1 0
z 0 0 0 0 -1 -1 0
A 0 0 0 0 +1 +1 0
B +1 -1 -1 +1 0 0 -1
C +1 +1 -1 +1 0 0 -1
D 0 0 0 0 -1 -1 0

(b) Zig-zig

x y z A B C D
x 0 0 -1 0 +1 +1 -1
y 0 0 +1 0 -1 +1 =1
z -1 +1 0 +1 0 -2 0
A 0 0 +1 0 -1 +1 +1
B +1 -1 0 -1 0 +2 0
C +1 +1 -2 +1 +2 0 -2
D -1 +1 0 +1 0 -2 0

(c) Zig-zag

Then, let us sum all the costs of operations that affect the distance between
the requested nodes. We get

∑j
k=1 s

SN
ik ⩾ lLSNst = sLSTij ⩾ √

α and we use
this property next:

sumCostMM(LSN, T0, σ
(i))

sumCostSM(SN, T0, σ(i))
⩽

α + sLSNij

j∑
k=0

sSNik

=

=
α

j∑
k=0

sSNik

+
sLSNij

j∑
k=0

sSNik

⩽
√
α +O(1) = O(

√
α)

In Lemma 2.2.3 we proved that Lazy SplayNet is O(
√
α)-statically optimal.

But what should we do, if our α is too big (for example, O(n4)). We modify our

29

algorithm when α > log2 n: we use the static balanced tree of height logn instead
of Self-Adjusting algorithm.

Theorem 23.

sumCost(Lazy SplayNet, G0, σ) = O(min(
√
α, logn) · sumCost(SplayNet, G0, σ))

holds for any starting tree G0 and any list of requests σ.

Proof. In Lemma 19 we proved that Lazy SplayNet is O(
√
a)-statically optimal

(Lemma 19). And if α > log2 n static balanced tree algorithm isO(logn)-statically
optimal.

Theorem 24. “Idea of Laziness” can not archive better complexity of static
optimality than O(min(

√
α, logn)).

Proof. We prove the sequence of request on which our “Idea of Laziness” achieves
O(min(

√
α, logn)) multiplier in complexity. At the beginning of an epoch, we

choose two nodes on distance d and perform c(d) such requests until the end of
the epoch. Obviously, we get that the complexity cannot be smaller than

√
α.

Finally, we find the lower bound, which does not depend on α. We re-
peat our pattern to request one pair of nodes for the whole epoch. We know that
dmax ⩾ 2 logn. To reach “no route of length 2 logn” case we need to assume that
a > 4 log2(n). Previously we count a derivative for c(d), which is monotonic and
increasing function. Our ratio will be α

c(d) . For the minimal ratio we need to request
nodes with maximum distance which is ⩾ 2 log(n).

α

c(d)
⩾

α

2 logn+ α
2 logn−1 =

1
2 logn

a + 1
2 logn−

1
a

> 1
1

2 logn−
1

4 log2 n

= 4 log2 n
2·logn−1 > 2 logn

α
2 logn+ α

2 logn
= 1

2 logn
a + 1

2 logn
> 1

1
2 logn

= 2 logn

It means that if the 2 logn <
√
α our complexity lies between them.

2.3. Network with bounded degree property
Finally, we apply our “Idea of Lazyness” to ReNet algorithm, which provides

bounded degree property for the graph. If α is greater than log2 n, then for every
epoch t, Gt = T , where T is an arbitrary balanced binary search tree, which gives

30

us O(logn) complexity of static-optimality. Thus, for the rest of the section we
consider α less than log2 n.

From “Idea of Lazyness” we have ReNet structure, which maintains logically
in the coordinator, and LazyReNet structure, which represents the physical network.

Theorem 25. sumCost(LazyReNet, G0, σ) = O(
√
α sumCost(ReNet, G0, σ))

holds for every initial graph G0 and the list of requests σ.

Proof. During reset in LazyReNet we delete all the edges, i.e., unlink all the nodes,
by paying cost O(α). Thus, whenever a reset occurs in ReNet, we can apply an im-
mediate synchronization (adjustment) step between LazyReNet and ReNet. There-
fore, no reset can occur during an epoch, since an epoch is a segment of requests
between two synchronizations. Thus, a large node cannot become small within an
epoch.

Consider the requests σ(t) ⊑ σ during the arbitrary epoch t, i.e.
sumCost(Lazy ReNet, Gt, σ

(t)) ⩾ α, where Gt is the network topology at the be-
ginning of epoch t. We assume that before the last request from σ(t) our sumCost
was less than α. We split the requests of σ(t) into two sets: (i) A1 is the set of all
small-small requests for which a direct edge exists, the total cost of A1 requests in
LazyReNet is α1; (ii) A2 is the set of all small-large, large-small, and large-large
requests for which a route already exists, the total cost of A2 requests in LazyReNet
is α2. Sometimes nodes of the request are not connected and we have to add edge
between them in ReNet. But what should we do at the same time in LazyReNet ?
We can not add edge during an epoch, since we change network only during syn-
chronization step. We let this edge to be a “phantom” edge. So, if we need to route
through a “phantom edge” in LazyReNet we route this packet through coordinator
paying cost c. To simplify the proof wemake an assumption here that c also equals to
the cost of adding edge in ReNet. Let the total cost of traversing through “phantom
edges” be α3. By the definition of epoch, α ⩽ α1 + α2 + α3.

Small-small requests from A1 in LazyReNet are not necessarily small-small
requests in ReNet. It means that the cost of such request in ReNet is higher than the
cost of that request in LazyReNet , which is one. Thus, we could suppose that all
small-small requests in LazyReNet are also small-small in ReNet.

Further, we consider three cases depending on the values of α1, α2, and α3.
Consider the first case, when α1 ⩾ √

α. Since, small-small requests from A1 cost
the same in ReNet and LazyReNet, ReNet has to pay more than

√
α. Let m be

31

the maximum cost of performing request from A2 in LazyReNet and let this re-
quest be σm. Now we state that the total cost of requests from A2 in ReNet is
more than m. This can be proved in the same way, like in Lemma 19. Either
the described cost m of operations in LazyReNet is hidden in splay steps of pre-
ceding splay oprations in the same epoch or in phantom edge insertions. Hence
sumCost(ReNet, Gt, σ

′) ⩾ √
α + m and sumCost(Lazy ReNet, Gt, σ

′) ⩽ α + m.
So, our complexity is:

sumCost(LazyReNet, Gt, σ
′)

sumCost(ReNet, Gt, σ′)
⩽ α +m√

α +m
⩽ α +

√
α +m√

α +m
=

=
α√

α +m
+ 1 ⩽

√
α + 1 = O(

√
α)

In the second case α1 <
√
α and α2 = 0. Thus, we can deduce that

α3 ⩾ α − α1. This means that LazyReNet performs α3

c requests for which there
an edge does not exists. In ReNet these requests cost at least c + (α3

c − 1), i.e.,
we paid c for an edge insertion and at least 1 for the rest operations. By AM-GM,
c + (α3

c − 1) ⩾ 2
√
α3 − 1 ⩾ √

α3. Thus, in case α1 <
√
α and a2 = 0,

sumCost(ReNet, Gt, σ
(t)) ⩾ a1 +

√
α3 − 1 ⩾ √

α1 +
√
α3 ⩾ √

α1 + α3 =
√
α.

In the latter inequality, we used the following observation
√
x+

√
y =

√
(
√
x+

√
y)2 =

√
x+ y + 2

√
xy ⩾ √

x+ y, where x and y are posi-
tive integers. Note that by extension,

√
x+

√
y+

√
z ⩾ √

x+ y+
√
z ⩾ √

x+ y + z,
where z is also a positive integer. Now, we count static optimality complexity for
that case.

sumCost(LazyReNet, Gt, σ
(t))

sumCost(ReNet, Gt, σ(t))
⩽ α + c

c+ α3

c − 1 + α1
⩽

⩽

 α+c
c+α1

⩽ α
c+α1

+ 1 ⩽ α√
α3+α1

+ 1 = O(
√
α) c ⩾ √

α3

α+c√
α−1

⩽ α+
√
α√

α−1
= O(

√
α) c <

√
α3

Now we consider the last case is when α1 <
√
α and α2 > 0. From the

previous cases we know that in ReNet we pay at least α1 +
√
α3 − 1. Further we

want to prove that requests from A2 costs at least
√
α2 in ReNet. We do it in the

same way like in Lemma 19.

32

If all requests in A2 cost at most
√
α2 in LazyReNet, then ReNet pays at least

|A2| ⩾
√
α2.

Assume that there are less than√α2 requests inA2, then there has to be at least
one request that costs at least√α2 in LazyReNet. If there are more than one request,
let us take the maximal one and let this request costm. If that request costs at least
√
α2 in ReNet, then obviously ReNet pays at least

√
α2. Otherwise we consider

several cases: small-large or large-large request in LazyReNet .
Suppose that this request is large-large. Let (u,v) be the request and h be

the node through which the request is routed (h is either v or a helper node).
For simplicity we assume that we have the route through the helper node. Let
d(u,h) + d(h,v) ⩾ √

α2 be the cost in LazyReNet and d′(u,h) + d′(h,v) <
√
α2

the cost in ReNet. Now we are using the same idea from Lemma 19: for the change
of distance d(x, y) to d′(x, y) we pay by previous splay operations in this epoch.
So, ReNet pays at least than √

α2. Similarly, if the request was small-large in
LazyReNet, then the analysis would be the same.

Finally, the cost of ReNet for σ(t) is

cost(ReNet, Gt, σ
′) ⩾ α1 +

√
α2 +

√
α3 − 1 ⩾ √

α1 +
√
α2 +

√
α3 − 1 ⩾

⩾
√
α1 + α2 + α3 − 1 =

√
α− 1

Thus, static optimality complexity is:

sumCost(LazyReNet, Gt, σ
(t))

sumCost(ReNet, Gt, σ(t))
⩽

α+m√

α1+α3+m−1
= α√

α1+α3+
√
α2−1

+O(1) c ⩽ m

α+c√
α1+α2+c−1

= α+c√
α1+α2+

√
α3−1

+O(1) c > m

⩽ α√
α− 1

+O(1) = O(
√
α)

Therefore, sumCost(LazyReNet, G0, σ) = O(
√
α · sumCost(ReNet, G0, σ)) holds

in any of the cases above.

Conclusions on Chapter 2
In this chapter we introduced lazy algorithms for Networks in Matching

Model. Firstly, we introduced a counter modification for the Line Network algo-
rithm Move-To-Front, which gives us O(1)-static optimal algorithm in MM. Then,
we introduced “Idea of Laziness” and applied it to Binary Tree (Splay Tree and
SplayNet) and Graph with bounded degree (ReNet) algorithms from Chapter 1. The

33

complexity of static-optimality of the new algorithms isO(min(
√
α, logn)) regard-

ing to their versions from Standard Model.

34

CONCLUSION
In this work, we looked into recently introduced model, Matching Model [1],

of the cost of adjustments. We proposed new lazy versions of well-known Self-
Adjusting algorithms tailored for Matching Model. Our lazy versions have a better
complexity of static optimality than straightforward versions of algorithms from
Standard Model. Please see the comparison in Table 2.

Table 2 – Comparison of algorithms in two models

SM MM Straightforward MM Lazy
List O(1) O(α) O(1)

Tree (search) O(1) O(α) O(min(
√
α, logn))

Tree (route) cSN O(α · cSN) O(min(
√
α, logn) · cSN)

Bound Deg Graph O(1) O(α) O(min(
√
α, logn))

As a future work, it would be interesting to consider the following research
questions. At first, we would like to design dynamic optimal algorithms in MM,
However, for now, we do not know how dynamic optimal algorithms behave in
MM. Nevertheless, we suppose that we can redesign Tango Tree for our adjusting
operations. Secondly, we do not have algorithms for the routing requests in Line
Topology that has good complexity in MM. Finally, we want to assign a cost of
transferring a packet through an edge and recalculate our complexities of static op-
timality.

35

REFERENCES
1 AnOnlineMatchingModel for Self-Adjusting ToR-to-ToRNetworks / C. Avin

[et al.] // arXiv:submit/3235030. — 2020.

2 Avin C., Mondal K., Schmid S. Demand-aware network designs of bounded
degree // Distributed Computing. — 2019. — P. 1–15.

3 Avin C., Schmid S. ReNets: Toward Statically Optimal Self-Adjusting Net-
works // arXiv preprint arXiv:1904.03263. — 2019.

4 Avin C., Schmid S. Toward demand-aware networking: A theory for self-
adjusting networks // ACM SIGCOMM Computer Communication Review.
— 2019. — Vol. 48, no. 5. — P. 31–40.

5 BCube: a high performance, server-centric network architecture for modular
data centers / C. Guo [et al.] // Proceedings of the ACM SIGCOMM 2009
conference on Data communication. — 2009. — P. 63–74.

6 Beyond fat-trees without antennae, mirrors, and disco-balls / S. Kassing [et al.]
// Proceedings of the Conference of the ACM Special Interest Group on Data
Communication. — 2017. — P. 281–294.

7 Al-Fares M., Loukissas A., Vahdat A. A scalable, commodity data center net-
work architecture // ACM SIGCOMM computer communication review. —
2008. — Vol. 38, no. 4. — P. 63–74.

8 Knuth D. E. Optimum binary search trees // Acta informatica. — 1971. — Vol.
1, no. 1. — P. 14–25.

9 Projector: Agile reconfigurable data center interconnect / M. Ghobadi [et
al.] // Proceedings of the 2016 ACM SIGCOMM Conference. — 2016. —
P. 216–229.

10 Sleator D. D., Tarjan R. E.Amortized efficiency of list update and paging rules
// Communications of the ACM. — 1985. — Vol. 28, no. 2. — P. 202–208.

11 Sleator D. D., Tarjan R. E. Self-adjusting binary search trees // Journal of the
ACM (JACM). — 1985. — Vol. 32, no. 3. — P. 652–686.

12 Splaynet: Towards locally self-adjusting networks / S. Schmid [et al.]
// IEEE/ACM Transactions on Networking. — 2015. — Vol. 24, no. 3. —
P. 1421–1433.

36

