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INTRODUCTION
The amount of traffic in data center increases each day. Thus, researchers in

networks algorithms want to reduce the communication cost of requests between the
pairs of nodes. Nowadays, networks in data centers are static and optimized for the
worst case load. One of the ways to adapt a static network structure for the traffic
is to reduce the distance between frequently communicating nodes by making the
network dynamic.

Despite the fact that most of the state-of-the-art algorithms target to build
optimized static networks [2, 4–7] the recent research made it possible to dynam-
ically change parts of the physical network [12]. Thus, it is now possible to have
a dynamic network topology by paying additional cost for the changes. One of the
arising questions is to come up with low-cost algorithms that dynamically change a
network depending on the communication requests.

One of the most popular types of networks is Binary Tree Network. The
state-of-the-art dynamic algorithms on networks [10, 14] are based on the self-
adjusting trees [13, 15]. Unfortunately, in comparison to self-adjusting trees, these
self-adjusting networks do not provide any theoretical guarantees and are heuristic.
However, we want to care about these guarantees, for example, the static-optimality,
i.e., the dynamic network has time complexity close to the static network built on
the requests given in advance. In this work, we try to find some theoretical prop-
erties that make the data structures static-optimal. And then, we want to apply the
properties to existing self-adjusting network algorithms.

In Chapter 1, we provide the list of definitions that we use in the work, for
example, Self-Adjusting Networks and static-optimality. Also, we talk about the
motivation and set up our goals. In Chapter 2, we present a linear algorithm that
builds an optimal static structure for the uniform workload and provide a proof that
the structure is optimal. Then, we apply the extracted properties of static-optimal
algorithms to state-of-the-art algorithms from Chapter 1. In Chapter 3, we check
how the proposed algorithms work on several synthetic and real workloads. In con-
clusion, we briefly overview the results presented and describe directions for further
studies.

The problem description and all the algorithms and proofs were obtained by
the student under the supervision. There is a related work by the student published
on two conferences: SPAA [16] and INFOCOM [8] (rank A and A* respectively).
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CHAPTER 1. DEFINITIONS AND GOALS
1.1. The topology of networks

Let computational nodes and the connections between them form an undi-
rected graph G = (V,E), where G belongs to G and G is a topology, or family of
undirected graphs. In this work, we consider that the topology of the network is a
binary tree.

Definition 1. Connected topology is a family of connected graphs, i.e., the
graphs in which a route between any pair nodes exist.

Definition 2. Tree topology is a connected topology, where each but one (root)
node has a parent. If each node has at most two children, we name that topology as
Binary tree topology.

Also, in this work, we use the notion of the center of the network for the tree
topology. Thus, we need to find it. We can do it with the help of a known algorithm
named centroid decomposition [1].

Definition 3. Let T be an undirected tree. Centroid is a node v such that if we
delete it from the tree, the resulting connected components (that are also the trees)
have fewer than the half of the number of vertices from the original tree.

1.2. Optimal static network
Definition 4. Let σ = (σ1, σ2, . . . , σm) = ((u1, v1), (u2, v2), . . . , (um, vm)),

where ui, vi ∈ V , be a sequence of routing requests to forward a packet in between
the pairs of nodes ui and vi.

Our main goal is to build a graph that optimizes the total cost to process all
requests. We try to solve this task in two ways: 1) static, i.e., the graph cannot
change during the execution, or 2) dynamic, i.e., the graph can be changed.

Definition 5. Static optimization task is a task when given requests apriori we
build a graph G ∈ G that does not change until the end of all requests. This graph
G needs to optimize the total cost function sumCost(static, T, σ) =

m∑
i=1

li, where li
is a length in edges of the path between the nodes of request σi and “static” means
that we do not change T during requests.

One example of the static optimization task is “Building Demand-Oblivious
Network task” [3]. There, the authors try to construct a static network that optimizes
the cost of the “worst-case” request. If we know any additional information about
requests, we can build a more optimal network. For example, if we know the dis-
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tribution of requests, we can build Demand-Aware Network [3] that consider some
pair of nodes to communicate more frequently than another.

Another approach to find the optimal static tree is to use dynamic program-
ming [9].

Definition 6. The network configuration OPT (σ) ∈ G is optimal
on the sequence of requests σ if sumCost(static, OPT (σ), σ) is less than
sumCost(static, H, σ) for any configuration H ∈ G, where “static” means that a
network does not change.

Now, we explain on how to build an optimal tree given the list of requests
in advance. We divide the problem to the intervals I . We name the nodes outside
I as I∗. Consider WI(v) =

∑
u∈I

count(u, v) + count(v, u) and WI =
∑
v∈I

WI(v).

Dynamic programming stores n2 states: dp[i][j] represents the optimal tree that is
build on the nodes from i-th to j-th (later, this interval is denoted as I). The transition
from one state to another is the following: we iterate over the left and right ends of
the interval I and try to make k-th node in the middle of I as a new root of the subtree
(this node divides I onto I ′ and I ′′). For each choice of k we take the subtree with
minimum cost and move further. The recalculation of this dynamic programming
solution looks like this:

dp[i][j] =
j−1

min
k=i

dp[i][k] + dp[k + 1][j] +
∑
v∈I ′

WI ′(v) +
∑
v∈I ′′

WI ′′(v)

1.3. Self-Adjusting Networks
Sometimes we allow the network to change in between the requests. Thus,

we get a dynamic optimization task.

1.3.1. General definition
Definition 7. In a dynamic optimization task, we assume that we can change

our tree after each request. Before requests, we are provided with an arbitrary graph
T0 ∈ T . Our task is to build an algorithmA that adjusts our network and minimizes
the total cost, which is calculated as sumCost(A, T0, σ) =

m∑
i=1

(li + cost(Ti, Ti+1)),

where li is a length of the path between the nodes in the request σi and cost(Ti, Ti+1)

is an adjustment cost to reconstruct the network from step i, Ti ∈ T , to step i + 1,
Ti+1 ∈ T .
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There are many models that describe how to measure the adjustment cost. In
this work, we consider the Standard Model.

Definition 8. In StandardModel (SM), the cost of changing one edge to another
one is equal to 1. Thus, cost(Gi, Gi+1) = rt, where rt is a number of edge changes
between Gi and Gi+1.

C

v0

v1

v2

v3

v4

v5

Figure 1 – All nodes are (logically and possibly physically) connected to a node C,
which can request arbitrary topology changes and has complete information about

the network and its statistics.

We assume that all changes to the network graph are controlled by a coordina-
tor C. The coordinator is connected to all nodes from V and controls a structure of
the network. We neglect the communication cost with the coordinator. An example
of such a graph is presented on Figure 1.

Definition 9. The algorithm to perform the requests and adjust the network at
each step from Ti ∈ T to Ti+1 ∈ T is called Self-Adjusting (Network) algorithm.

Self-Adjusting algorithm A is called c-statically optimal if for
each sequence of requests σ and for each start configuration G0,
sumCost(A, G0, σ) ⩽ c · sumCost(static, OPT (σ), σ)

1.3.2. SplayNet
We start the discussion of the dynamic networks with the consideration of the

most known state-of-the-art algorithm. In 2015, Schmid et al. [14] presented the
study of self-adjusting data structures and introduced a new self-adjusting Binary
Search Tree under routing requests called SplayNet.
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Hereby, we shortly describe how it works. To start with, we hang the tree by
the specially chosen node root. Consider a request (u, v). Node u asks the coordi-
nator C for the common ancestor of u and v. Let it be node p. The route by which
we pass a packet is u− p− v. After we find the route, we “splay” u to the place of
p and then “splay” v to the position of the son of u. By that, SplayNet is a natural
generalization of the classic Splay Tree algorithm, which “splays” communication
partners to their common ancestor. On Figure 2 you can see an example on how to
process a request from node 1 to node 5.

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

build a route from 1 to 5

1

2 3

4

5

6

7

8

splay 1 to 4

splay 5 to 2

Figure 2 – Example on how to build a route and adjust in the SplayNet algorithm

1.3.3. Goals and Objectives
Nowadays, there are no dynamic communication networks that have theoreti-

cal proof of the static-optimality properties. Most of the state-of-the-art dynamic al-
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gorithms are based on the self-adjusting trees. Unfortunately, in comparison to self-
adjusting trees, these self-adjusting networks do not provide any theoretical guar-
antees and are heuristic. However, we need to care about the static-optimality. The
goal of the work is to try to find some theoretical properties that make the data struc-
tures to be static-optimal. And then, apply the properties to existing self-adjusting
networks.

Conclusions on Chapter 1
In this chapter, we introduced the main definitions used in our work. At first,

we described two notions from the title: dynamic (self-adjusting) and static network
algorithm. After that, we glanced over one of the state-of-the-art self-adjusting al-
gorithm for the tree network topology, SplayNet. Finally, we show that the state-
of-the-art algorithms do not provide static-optimal properties that could potentially
increase the performance of the algorithms.
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CHAPTER 2. NETWORKS BASED ON STATIC OPTIMALITY
In the previous chapter, we defined state-of-the-art self-adjusting network al-

gorithms. However, as mentioned, the algorithms are heuristic, and they do not rely
on the properties of the optimal static algorithms. In this chapter, we show what
information can be extracted from optimal static structures and how it could be used
in self-adjusting algorithms.

2.1. Periodic-optimal network
Our first approach is the first approach that comes to mind. We recalculate the

optimal static structure using dynamic programming algorithm shown above after
each request for the prefix. This solution has a problem that each reconfiguration
of the network could costs a lot — up to O(n2) in the Standard Model, in the worst
case. However, we still can use this idea but we have to amortize the reconstruction.
We divide requests into epochs. Epoch continues until the total cost of the requests
inside one epoch exceeds O(n2). At that moment, we can allow us to recalculate
the static optimal structure and apply it to the network.

Unfortunately, this algorithm is no better than its predecessors, it is still based
on the heuristic. The idea was based on the previous work on lazy algorithm [16].
In practice, it obviously adapts to the input workload. The experimental results on
this dynamic network are shown in the Section 3.

2.2. Optimal static networks under the uniform workload
In the first chapter, we introduced an algorithm that can build an optimal static

tree in cubic time. It is hard to analyze the resulting tree since, in general, it does not
have any obvious patterns. Thus, we decide to look onto a more specific workload:
the uniform workload.

Definition 10. The uniform workload is a sequence of requests in which each
pair occurs only once.

Typically, one consider uniform workload is the one that takes each request
uniformly at random. However, to simplify the proofs we use that unconventional
definition. We can argue that if the number of requests is huge that definition per-
fectly approximates the random uniform distribution.

2.2.1. Experimental structure
The first idea was to implement a dynamic programming algorithm with the

cubic complexity, find a pattern and proof that this pattern can build an optimal static
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tree. Our preliminary expectation was that the optimal static tree should be the full
binary tree hang by the root. Surprisingly, this is not the structure that we got. We
got the binary tree that looks like the tree on the Figure 4.

T1 T2

T3

Figure 3 – Structure of the tree for uniform routing requests. Instead of invariant
that all nodes have 2 sons, we can use property that root element have 3 sons (2

sons + a parent).

Now, let’s look thoroughly into that structure.
— From the first glance at Figure 4, we can understand that T1, T2, T3, . . . present

a row of full binary trees. T1 and T2 have the same size, but sizes of T3, T4 . . .

are different, and they decrease till the size 0 or 1.
— The next step of the exploration is to understand the structure of the resulting

tree. Instead of two parts (like in binary tree) the structure has three approxi-
mately equal parts shown on Figure 3.

— Finally, we want to understand how many nodes there are in T1, T2, T3 on
Figure 3. After that, we could provide an algorithm with the linear time com-
plexity instead of the previously presented cubic approach.
We start with counting the sizes of the subtrees. Intuitively, we want to make

three subtrees as full binary trees rooted at the center node. Unfortunately, we have to
deal with the remainder. Assume that we can find such k that k = 3·(2h−1)+1 < n.
Thus, we can build a symmetric network on k nodes, and we are left with n − k

nodes that should be distributed between subtrees. By considering the results of the
cubic algorithm, we should add the nodes one by one to the T3 until the size of T3
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...

T1 T2

T3

T4

Figure 4 – Result of the experiments: tree for uniform requests. Each subtree is a
full binary tree.

becomes 2h+1 − 1. After that, we swap T3 and T1, and continue to move nodes to
the T1 subtree. When it becomes 2h+1 − 1 again, we swap T3 and T2 and repeat.

This algorithm has a linear complexity, but we want to find sizes of subtrees
in constant time. At first, we find the start depth h of our trees, like before. We
need to consider some cases here, but we can omit them for the simplicity of the
presentation. Then, if reminder have more than 2h or 2 · 2h, then we need to push it
to T1 or T1 and T2 respectively. All other nodes we store in T3. The code is presented
in the Appendix A.

After we understand the sizes, we need to construct our subtrees. T1 and T2

from Figure 3 are the easiest parts — they are just a full binary tree.
It becomes interesting With the subtree T3. Assume that the size of T3 is n.

The algorithm iterates over bits: if the i-th bit is one, we create a tree with size 2i−1

as the left child.

Listing 1 – Sketch of the construction algorithm. Its implementation is based on the
recursion

cur_node = n u l l p t r
f o r i = 1 . . . maxb i t ( n ) :

i f i − t h b i t o f n == 1 :
cu r_node . r i g h t = Node (2 ^ i )
cu r_node = cur_node . r i g h t
cu r_node . l e f t = f u l l _ b i n a r y _ t r e e (2 ^ i − 1)
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Unfortunately, we were not able to proof that this structure is optimal. Here
we have a moment, that we don’t know exact structure of the tree: this “many bits”
representation hard to access in the proof. So, we start to work from the other side:
from the theoretical properties that we want, i.e., that we have a special central node.

2.2.2. Theoretical structure
We start with the ideas that we come up from the experiments: it has started

to be obvious that our structure needs to be like in Figure 3 and that the task is
symmetric.

At first, we start with a simpler problem: we have only search requests in our
binary tree network.

Definition 11. Consider S to be the root of the tree, then instead of routing
requests we perform search requests from node S (i.e., ui = S for all i).

It is easy to show that the best static tree is a full balanced binary tree (Fig-
ure 5).

T1 T2

Figure 5 – Optimal static solution for the searching requests.

Lemma 12. A full balanced binary search tree is the optimal structure for the
uniform search requests.

Proof. Consider some topology T . We make small actions that reduce the total cost
of the requests. And if we cannot improve anything, then, the structure is optimal.
In the case of the search problem, the action is the following: if we have a node at
level h1 in T1 and we have a space in T2 (Figure 6), i.e., h2 < h1, then we can move
the node from one place to another.

So, we do that action until we can. The final result will be a full binary tree
with height h and some nodes at level h+ 1.
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T1

T2

h2
h1

Figure 6 – Illustration for the proof of searching request.

We try to apply the same idea to the problem with routing requests. We find
the centroid of the tree and instead of the action “move a node closer to the root” we
perform the action: “move a node closer to the center of the network”. In the end,
we have a structure of three full binary trees with depth h. We store the remaining
nodes from the left side on depth h + 1. Why from the left size? Because the total
cost is lower when the nodes from the remainder are located closer to each other.

Figure 7 – Example of the static optimal structure for the uniform routing requests.
In that case, red node is the center of the network and blue node is the root of the

tree

Surprisingly, this structure has the same cost as the tree from Figure 3! You
can see an illustration of the result in Figure 8. Also in Figure 7 you could see an
example of that tree mapped into a binary searching tree. To make one from another,
you need to rotate the upper tree.

Proof of the optimality of these structures is divided into several lemmas. Be-
fore that, let us introduce definitions that are going to be used in them.
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h

h+1

Figure 8 – Optimal structure of the network for the uniform requests. All subtrees
are full and last h+ 1 layer fills from the left. The highest node will be the center

of the network and the left node will be the root of the tree.

Definition 13. The center of the network — a centroid that we have found be-
fore making an improvement operation. d(v) in that case is denoted as distance from
v to the center of the network. Also, C is used as the total cost of uniform requests
on the tree.

Definition 14. The potential of the edge in network ϕ(e) — the number of
paths going through this edge. If the tree is split onto parts with x and y nodes
then ϕ(e) = x · y. The potential of the whole tree is Φ(T ) =

∑
e ϕ(e). Please note

that in the case of the uniform workload the potential of the whole tree is equal to
the total cost.

Lemma 15. Consider some edge e of the tree. This edge divides the tree into
two parts: a tree with x nodes and a tree with y nodes. If we move a node from the
first tree to the second tree, the difference in the potential of e will be y − x+ 1.

Proof. Let cost before and after transformation be Nbefore and Nafter, re-
spectively. The cost before was Nbefore = x · y. The cost after is
Nafter = (x− 1)(y + 1) = x · y + x− y + 1. Thus, the difference is

Nbefore −Nafter = y − x+ 1

Now, we introduce an uplift operation of a vertex. To simplify, by that op-
eration we can move a vertex to the higher level in another subtree. Consequently
using this operation to different vertices the tree will be rolled up.
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Definition 16. Uplift operation of a node u— amoving process of the node to
an empty place v, such that v = maxd(v)d(u) < d(v) and subtrees that lie on a path
between u and v need to be full subtrees.

The algorithm for uplift operation is the following: we take the most distant
leaf. Go to the parent. If another child is not a full binary tree of the corresponding
size and has the space for the node, we try to move that leaf to the lower level of the
child.

u

h1

h2

Z

B

A

Figure 9 – Illustration of an uplift operation.

Lemma 17. Uplift operation does not increase the potential of the tree until
2h1 + 2h2 < n

4 , where h1 is the height of the tree from which the leaf is and h2 is the
height of the tree where we move the leaf.

Proof. Suppose we move u to the position v. We start with an understanding what
changes after the movement
— edge potentials change only on the path from u to v. Edges that are not on the

route do not have their subtrees to change.
— A and B are full binary trees by the construction.

To prove that statement, we need to look to the difference in the potential
function. So, we should consider all the edges on the path between u and v. Let
up(u, v)

We want to prove that the potential decreases with this move, i.e., ∆Φ > 0.
Lets count the left (up(u, v)) and right (down(u, v)) subpaths separately, i.e., the
one that goes “up” from u and the one that goes down to v. Note that we do not
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count the edge (u, p(u)) because it just moves to the place (v, p(v)) and its potential
remains 1 · (n− 1).

∑
e∈u→v

∆Φ(e) =
∑

up(u,v)

∆Φ(e) +
∑

down(u,v)

∆Φ(e)

Consider c1, c2, . . . be the sizes of the other subtrees on the path u− v that are
lower than edge i in the tree. For the left part before the move: it was ci nodes, and
then it becomes ci − 1. Also, other part will be n− ci and, n− ci + 1 respectively.
Here we use Lemma 15.

∆Φleft = (n− 2 · c1 + 1) + (n− 2 · c2 + 1) + . . . ⩾ (1)

Now, we want to find c1, c2, . . . that will get the minimum difference in po-
tential. Because constants are with minus, so we need to maximize constant. From
the construction we know, that our node is the deepest node, so we don’t have nodes
that deeper that our in A tree. So the answer will be if all nodes that are siblings
of our node for each lower subtree of edge. For the first edge it will be 3, for the
second 7 etc.

(1) ⩾ (n− 2 · 3 + 1) + (n− 2 · 7 + 1) + . . .+ (n− 2 · (2h1+1 − 1) + 1)

= h1 +

h1+1∑
i=2

n− 2 · (2i − 1)

The same for the right part of the path. There the potential goes with plus
sign, so we need to minimize them. This value is reached when we don’t siblings.
For the first edge it will be 1, for the second 3 etc.

∆Φright = (2 · c1 − n+ 1) + (2 · c2 − n+ 1) + (2 · c3 − n+ 1) + . . . ⩾

⩾ (2 · 1− n+ 1) + (2 · 3− n+ 1) + (2 · 7− n+ 1) + . . .+ (2 · (2h2 − 1)− n+ 1)

= h2 +

h2∑
i=1

2 · (2i − 1)− n

Let’s insert the result for the left and right part together into the difference in
the potential.
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∆Φ = ∆Φleft +∆Φright ⩾ h1 + h2 + 2 · 1− n+

h1+1∑
i=h2+1

n− 2 · (2i − 1)

= h1 + h2 + 2 · 1− n+ (h1 − h2 + 1) · (n+ 2)− 2h1+3 + 2h2+2

= h1 + h2 + 2 · 1− n+ n+ 2 + 2h1 − 2h2 + (h1 − h2) · n− 2h1+3 + 2h2+2

= 3h1 − h2 + 4 + (h1 − h2) · n− 2h1+3 + 2h2+2

Now, we use the statement that 2h1 + 2h2 < n
4 .

∆Φ > h1 + h2 + 2 + 2 · 1 + 2 + (4(h1 − h2)− 8) · 2h1 + (2(h1 − h2) + 2) · 2h2+1

The worst case is when h1 = h2 + 1, so let’s substitute it to the right part.

(4− 8) · 2h1 + (2 + 2) · 2h1 = 0

The next operation that we need is to push a full binary tree to the center.
Definition 18. Small shift of subtree — the process of moving a constructed

balanced tree (on the illustration it is A subtree) to the center. An illustration of that
process you can see on the Figure 10. Also, shift could be with other orientation,
but the proof for them remains the same.

A
B

D

C
A

B

D

C

Figure 10 – Small shift.

Lemma 19. Consider A, B, C, D be the number of nodes in subtrees. Potential
after small shift will decrease if D > B and A > C (Figure 10).
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Proof. The first point is that the potential of the edges which come out of A, B and
C subtrees do not change. Only one edge remains. Let’s count changing of the
potential of that edge.

(A+B + 1) · (C +D + 1)− (A+D + 1) · (B + C + 1) =

= AD +BC − AB − CD = (D − B) · (A− C) > 0

Definition 20. Full binary subtree of height h with the bottom level with x

elements is a full binary subtree of height h with something higher than the root
of the subtree and at height h + 1 from left one goes nodes. Illustration of that
structure you can see on Figure 11.

X elems

H height

Figure 11 – Full binary subtree of height h with bottom part of x elements.

Lemma 21. If we move a node from the bigger full binary subtree of height
h1 with x1 elements to smaller full binary subtree of height h2 (h1 > h2) with x2

elements, potential will not increase.

Proof. At the start of the proof wewill count potential of arbitrary full binary subtree
with bottom part, so I will omit indexes. Let’s count the potential of each edge in
the subtree. We have three types of edges:



21

a) Edge that connects the subtree with all other part. Its potential is
(2h − 1 + x)(n− 2h + 1− x).

b) Edges that connect bottom nodes with tree. Their potential is 1 · (n−1). Also
we can notice that potential of edges from all bottom nodes the same. That’s
why the potential of that nodes is x · 1 · (n− 1) = x · (n− 1).

c) Edges that are inside the full binary subtree. It is hard to come up with the
generic formula, but we can present a formula for nodes at the same level.
Next, we look only on one level.
Consider i-th level and suppose that it connects nodes at height h and h+ 1.

Figure 12 – Example of the full binary subtree with height 3 and 5 nodes at the
bottom. Look onto 1 level. We have left and right edges. Left edge is full

complected. Right edge is partially complected (only purple node at bottom level).

If we have no bottom nodes (our subtree just full binary) then it’s simpler
to count the potential of inner edges at level i. Let’s look on one edge: the num-
ber of nodes in subtree is 2h−i − 1. Then, then potential function of that edge is
(2h−i − 1)(n− 2h−i + 1) and all edges are the same, so we can simply multiply by
2i. The resulting summary for these edges is:

h−1∑
i=0

2i(2h−i − 1)(n− 2h−i + 1) = 2hh(n+ 2)− (2h − 1)(2h+1 + n+ 1)

If we have bottom edges, i.e., the subtree is not full binary. Edges of one level
can divided into three parts:
— Fully equipped. The lower level is fully filled. Thus, the number of nodes in

the subtree is
2h−i − 1 + 2h−i = 2h−i+1 − 1
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— Partially equipped. Number of nodes in the subtree is:

2h−i − 1 + x% 2h−i = 2h−i − 1 + (x− ⌊ x

2h−i
⌋2h−i)

— No equipped. The lower level is empty. Thus, the number of nodes in the
subtree is

2h−i − 1

Also, we need to calculate the number of edges of each type:
— The number of fully equipped edges is ⌊ x

2h−i⌋;
— There is exactly one partially equipped edge per level;
— The number of non-equipped edges is ⌊2h+1−x

2h−i ⌋.
To get the total results we should multiply the number of edges times their

potentials for each type of edges:

⌊ x

2h−i
⌋ · (2h−i+1 − 1)(n− 2h−i+1 + 1) + 2h−i − 1 + (x− ⌊ x

2h−i
⌋2h−i)+

+⌊2
h+1 − x

2h−i
⌋ · (2h−i − 1)(n− 2h−i + 1) = X

To bound the total cost, we iterate the sum over all the levels from 1 to h− 1

and expand floor operation as following: x−1 ⩽ ⌊x⌋ ⩽ x. At first, we bound from
below.

h−1∑
i=1

X ⩾
h−1∑
i=1

(
x

2h−i
− 1 + 1) · (2h−i+1 − 1)(n− 2h−i+1 + 1)+

+(
2h+1 − x

2h−i
− 1)(2h−i − 1)(n− 2h−i + 1)

= −n(5 · 2h + x− 5) + h(n(2h+1 + x+ 1)+

+2h+2 + 2x+ 1)− 3 · 2hx− 5

3
4h − 2h+2 + 4x+

17

3

Then, we bound from above:
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h−1∑
i=1

X ⩽
h−1∑
i=1

(
x

2h−i
+ 1) · (2h−i − 1 + 2h−i) + (

2h+1 − x

2h−i
)(2h−i − 1)

= −n(2h+1 + x− 1) + h(n(2h+1 + x− 1)+

+2h+2 + 2x− 1)− 3 · 2hx+ 2h+1 − 10

3
4h + 4x+

7

3

As we can see, all parts that depend on x are equal in both parts.

f(x) = −nx+ hnx+ 2hx− 3 · 2hx+ 4x

Let us count how the result changes if we increase x.

f(x+ 1)− f(x) = n(h− 1) + 2h− 3 · 2h + 4

The biggest term in that difference is n(h−1) that depends on h. So if h1 ⩽ h2

then we move node from first subtree to the second subtree and the difference in
potential will be non-negative.

Theorem 22. The structure from Figure 8 is the optimal structure for the uni-
form routing requests.

Proof. Our proof is iterative. Consider the starting tree topology T . Step by step,
we decrease the potential function that was described before. Let’s describe that
steps:

a) Make a centroid decomposition of T onto T1, T2 and T3.
b) On each Ti we make centroid decomposition onto Ti1, Ti2 and Ti3. Size of Tij

is less than n
4 .

c) For each, Ti we take the deepest Tij and make an uplift operation in it using
Lemma 17. The result is the full binary tree. We can do that because the total
count of nodes is less than n

4 . After that, take small rotations to the center of
the network using Lemma 19, but in Ti. D part will be bigger thanB because
we work inside Ti (Figure 10). If C is bigger that A that means that we are on
our place and C is another Tij .
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d) Now, the structure is the following: not more than 9 subtrees that are con-
nected. We balance them using the move of the node from the bigger subtree
to the smaller one using Lemma 21.

Result structure is like we proposed before.

2.3. Application of the property of optimal static network to the SplayNet
From the previous subsection, we understand that our intuitive understanding

of the routing task on uniform workload was not correct. The center of the network
is not the same as the root of the tree like all algorithms proposed before. Because
of that, we patch the most popular dynamic algorithm, SplayNet — and get a new
dynamic network structure named Central SplayNet.

h

h+1

SplayNet SplayNet SplayNet

Figure 13 – CentralSplayNet algorithm construction.

Now, we have the structure similar to what is presented in the previous section
(Figure 13). We maintain three SplayNet for each subtree of the center node. The
main difference here from the original SplayNet is that we have three edges from
the center: the left child, the right child, and the parent. Since this algorithm is again
heuristic, we show its relevance by the experimental results, presented in the next
chapter.

Conclusions on Chapter 2
In this section, we introduced two self-adjusting network algorithms and

showed that optimal structures has important properties that can be used in dynamic
algorithms on binary trees. Also, we proved that our structure for the uniform work-
load is optimal and that the idea: “the root of the tree is not the same as the center
of the network”.
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CHAPTER 3. SIMULATION BASED ON REAL DATA
In this chapter, we compare our two algorithms: periodic-optimal and Cen-

tralSplayNet, with optimal dynamic programming algorithm (that is adjusted after
each request) and SplyNet presented in Chapter 1. Our main metric is the aver-
age cost of the request for each algorithm. For the request sequences we used open
datasets (Facebook, HPC, pFabric, Microsoft ProjecTor from [11]) from different
data centers to compare our algorithms.

3.1. Datasets
To measure the results we use real datacenter’s traffic in which distribution

of requests are far from random or arbitrary. One of the popular metrics of datasets
is their temporal and non-temporal complexity [11]. Consider σ is the requests that
we want to serve, Γ(σ) is a random permutation of σ and C(σ) is a compressed size
of the σ. In paper they use gzip compression. Then, the temporal complexity is

TC =
C(σ)

C(Γ(σ))

Intuitively, the value of the temporal complexity shows the following. If it
is closer to 0 then similar requests comes in group. If it is closer to 1 then similar
requests are distributed through the whole sequence. For non-temporal complexity
consider the following definition: universe(σ) is a set of nodes that are used as
a source or a destination in some request from σ. Obviously, the universe should
not always be equal to the size of the network. Then, U(σ) is a sequence of re-
quests of the size |σ| and each source and destination are taken randomly from the
universe(σ). For example, σ = {(1, 2); (3, 10); (1, 2); (3, 10); . . . ; (1, 2); (3, 10)},
then universe(σ) = {1, 2, 3, 10}, the size of the network is 10, and U(σ) could
be {(1, 3); (3, 10); (1, 10); (10, 3)...}. Using these definitions we define the non-
temporal complexity:

NTC =
C(Γ(σ))

C(U(σ))

In our work, we use three real traces from three different datacenters: pFabric,
HPC and Microsoft ProjecTor (ML). You can see their properties on the Figure 14.

3.2. Metric
Due to the current limitations of network switch technologies in datacenters,

we cannot measure the real time of how much our algorithms work. Instead, we
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Figure 14 – The complexity map of six real traces and four reference points from
Chen et al. paper [11]. pFab is a pFabric dataset, ML is Microsoft dataset, HPC is

HPC.

present a simulation in a Standard Model that is described in the Chapter 1. We
remind that the routing cost counts in edges. The final metric for i-th request is the
average cost of all requests before i-th request:

avgCost(Ti, σ) =
totalCost(Ti, σ)

i

3.3. Results of the simulations
For each of our experiments, we compare two known structures, i.e., the op-

timal static structure at each request (explained later) and SplayNet, and two others
introduced in this paper structures, i.e., the periodic-optimal network and Central
SplayNet. Also, for the uniform distribution, we look onto our theoretical periodic-
optimal structure and show that static optimal structure tends to it.

Before going forward, the optimal structure need to be described. Consider
we have sequence of request σ and prefix of size iwas executed. Then static optimal
structure for the prefix is a result of dynamic programming for that prefix. It means
that after each request, the network is regenerated: for the first i requests it is one
structure, for the first i + 1 it could be totally different structure. Despite that, it is
a perfect baseline with which we can compare our results.
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Figure 15 – Result plots for the uniform distribution workload.

3.3.1. Uniform distribution
We start with the uniformly distributed input sequence, i.e., we choose a re-

quest as a pair of nodes with uniform probability. The results are presented on Figure
15. Let us describe the result.
— At first, we can see that dynamic algorithms work worse than the static ones.

It is understandable, since we do not have the locality, i.e, the probability of
taking the same request to which we adjust is low.

— Secondly, we can see that our definition of uniformworkload is a good approx-
imation for the honest uniform distribution. Static optimal structure average
cost goes to our structure cost.
Now let’s look deeper into the plot and look at each structure separately.
At first, the optimal data structure increases at the start, because for the small

amount of requests it could build more optimal structure (for example, if we don’t
use some nodes, they lie at deeper levels). After all nodes start to take part in re-
quests, then the plot starts to become the constant. If we look at the structure, it
doesn’t change a lot, too.

Secondly, the period-optimal structure at the start don’t reconfigure so the
cost of the request increases. After some epochs, it starts to use properties of the
distributions, so it starts to tend to the optimal network.
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Then, we need to describe the uniform structure, which is our structure from
the Figure 8. At the start, the distribution is not near “all pair communicates once”,
so it loses to the optimal structure. But in the future it starts to move to the static
optimal one. It means that our approximation of the requests is working.

Finally, let’s describe the behavior of the SplayNet and CentralSplayNet al-
gorithms. At the start, they are trying to reconfigure starting configuration to the
uniform. After some time, they make an almost optimal configuration.

3.3.2. Real workloads
In this subsection, we consider the workloads that were described in the pre-

vious subsection. You can see the simulation results on the Figures 16, 17 and 18.
We can state the following results:
— The difference in the average cost between the periodic-optimal network and

the static optimal network decreases with the number of requests.
— Central SplayNet works better on requests with high non-temporal complex-

ity. Intuitively it is true since the main idea of Central SplayNet is in its lower
depth, but if not all the nodes communicate, then this effect is as good as it
can be.

Figure 16 – Result plots of the simulation process for the HPC dataset
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Now let us look deeper in each plot. At first, consider the HPC dataset from
the Figure 16. Here we have 500 nodes and the workload has three phases of the
distributions:

a) At the start (first 30k requests) of the dataset it uses only first 30 nodes, so all
the plots are constant, and we can see that optimal is the better one, because on
the small number of nodes optimal is better than the self-adjusting networks.

b) the second one (30k - 100k) is when we start to communicate nodes with big
difference in their keys (for example, 5 and 450).

c) the third one is about communicating all nodes, but pairs are near each other.
Then distribution of requests changes, and we see a fast cost increase cost in
all plots.
Let’s look onto each structure separately.
The highest one is the period optimal network. Why it has higher average

cost? Because epoch size here is 25k requests, so we can see that after 25-50k re-
quests it starts to increase slower and slower and, then, finally, decreases. It happens
due to the fact that optimal static network starts to change slower and lazy structure
slowly catches up to the optimal static structure.

Then, we look at the CentralSplayNet. Why it has higher average cost than
SplayNet? It happens because that in the second phase we request the pairs of keys
with high difference. It means that they will be from different subSplayNet, and
they can’t be as near as they can be in default SplayNet. But after this phase is
ended, CentralSplayNet cost decreases and all the requests start to go to the same
subSplayNet. We suppose that if requests continue with the similar patter, Central-
SplayNet should beat SplayNet.

The next trace is the Microsoft dataset (Figure 17). The size of the network in
that case is 121. This dataset is interesting because it has popular nodes that are asked
more frequently. Because of that, static optimal network wins over others: we can
pull popular nodes near the center. In SplayNet and CentralSplayNet these poplar
nodes can be not at the top, so the average cost is higher. Also, CentralSplayNet
is better than SplayNet because a lot of requests are near each other (half of the
sequence).

The interesting thing here is period-optimal network. The start configuration
for that network is the optimal static network for the uniform workload. Because
the real workload is not uniform we start from some high cost and after each epoch,
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Figure 17 – Result plots of the simulation process for the Microsoft dataset

the network adapts to the input distribution. At the end, we can see that lazy adapted
for the input distribution and cost is similar to the static optimal structure.

Figure 18 – Result plots of the simulation process for the pFabric dataset

The last trace is the pFabric dataset. The network has 144 nodes. The requests
can be split into two parts: requests of the first part (140k requests) are repeatable,
i.e., the same request can repeat 5-10 times, then the second part of requests is taken
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from the normal distribution, when some nodes are requested more frequently than
another.

The first part is not interesting, SplayNet and CentralSplayNet beat optimal
and periodic-optimal structures, because on each pattern ({(x, y); (x, y); (x, y)...})
after first request structures splay nodes to each other. After that, the requests cost
one. Central version works worse, because most of the pairs are from other subtrees.

Then we can see that the big difference in plots starts to decrease, because re-
peated patterns ended. And we can see that CentralSplayNet is better that SplayNet
because a lot of pair keys are near each other.

Conclusions on Chapter 3
In this chapter, we show that self-adjusting network algorithms based on static

optimal properties have competitive results with the current solutions for the task.
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CONCLUSION
In this work, we looked onto optimal static networks. We proposed a new

lazy version of Self-Adjusting algorithm that uses the static optimal structure. Also,
we presented an algorithm that constructs an optimal static network under a uni-
form workload in linear time (also we prove that it is optimal). Finally, we found
a property that leads to optimality and apply it to the known implementation of a
self-adjusting network algorithm. Our version has better cost on synthetic and real
workload. Please see the comparison in Chapter 3.

As for the future work, it would be interesting to consider the following re-
search questions. At first, we would like to design new version of algorithm that use
our splays and center property. Secondly, we want to apply the same ideas to the k-
ary trees. Finally, we hope that ideas, found in this work, will help us to understand
and to prove the optimality of self-adjusting algorithms.
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APPENDIX A. COUNTING PHASE CODE OF THE STATIC OPTIMAL
STRUCTURE CONSTRUCTION ALGORITHM

/ / we c a l c u l a t e s t a r t h and t a k e i t t o t h e i
s t d : : s i z e _ t mb = maxbi t ( n ) , i ;
i f ( ( n & (1 << (mb − 1) ) ) != 0 )
{

i = mb − 1 ;
}
e l s e
{

i = mb − 2 ;
}

s t d : : s i z e _ t s t a r t = (1 << i ) − 1 ;
/ / a l l t r e e s have s t a r t nodes
s t d : : a r r a y < s t d : : s i z e _ t , 3> s i z e s = { s t a r t , s t a r t , s t a r t } ;

s t d : : s i z e _ t cn = n − 2 − 3 * s t a r t , i nd = 0 ;

/ / u n t i l we have a l o t o f nodes we push them to bot tom t r e e s
wh i l e ( cn > 1 + (1 << i ) )
{

s i z e s [ i nd ] += (1 << i ) ;
cn −= (1 << i ) ;
i nd = ( i nd + 1) % 3 ;

}

/ / up == T_3 , l e f t = T_1 , r i g h t = T_2
s t d : : s i z e _ t u p_ s i z e = s i z e s [ 2 ] + cn − 1 , l e f t _ s i z e = s i z e s [ 1 ] ,

r i g h t _ s i z e = s i z e s [ 0 ] ;


