
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

NUMA-aware lock for Java Lightweight Threads
Anonymous Author(s)

1 Introduction
There exist a lot of different implementations of NUMA-
aware locks for standard platform Java threads (“heavy-
weight” threads), e.g., CNA [5], HMCS [4], HCLH [6]. All of
them use the fact that platform threads are rarely suspended
and rarely migrate on another NUMA node: they expect the
control over the suspension and that each thread enters and
leaves the critical section running on the same NUMA node.
If another thread on the current NUMA node tries to acquire
the lock, the ownership is passed to it. This way, threads
rarely access the remote memory on another NUMA node.

In comparison with the platform threads, vthreads or light-
weight threads can share address space and resources with
other vthreads, reducing context switching time during exe-
cution. They work on a pool of platform threads. The plat-
form thread, on which the current vthread is running, is
called a carrier thread. Two main problems standing behind
are that a vthread can be often suspended at an arbitrary
time and can often change a carrier thread during its life-
time. Moreover, Java’s vthreads scheduler is not aware of
the NUMA model and uses a simple work-stealing scheduler.
As a result the previously developed locks have a degraded
performance due to the suspension and the migration. Thus,
our goal is to design an efficient lock for lightweight threads
on NUMA architecture.

Our target platform is ARM-based server TaiShan 200 with
128 HiSilicon Kunpeng-920 processor cores in total. It has
a complex hierarchical NUMA architecture. Four cores are
combined into a group called CCL (CPU Cluster). The change
of cache ownership inside one CCL is fast. Then, 8 CCLs
are combined into a SCCL (Super CPU Cluster) represented
as a NUMA node, where L3 cache is shared. Finally, two
NUMA/SCCL nodes are combined on a socket (SoC package
in a socket). The scheme of this machine is shown in Figure 3.
2 Implementation details
In this paper, we design a new VNA (Virtual NUMA-aware)
lock. At first, we introduce Lock and LockInfo classes, pre-
sented in Listing 1. The lock class provides two functions
lock() and unlock(). The lock stores an atomic boolean
flag (Line 2) that shows whether some vthread owns the lock
and works like the test-and-set lock. Also, it has an array of
MCS locks, one for each NUMA node (Line 3). The MCS is
cooperative and the vthread is parked when acquiring the
lock and unparked by the predecessor.

The helper class LockInfo is returned by the lock() func-
tion and is used in unlock() function. Moreover, there is a

’18, January 01–03, 2018, New York, NY, USA
2023.

Listing 1. Lock and LockInfo structures
1 class Lock:

2 AtomicBool flag = false

3 MCS[] mcs = new MCS[numa_cnt]

4
5 class LockInfo:

6 boolean fastPath

7 int numaId

field fastPath(Line 6) meaning that the lock is acquired via
the fast path and should be unlocked in a special way. A field
numaId (Line 7) is used to point to the corresponding MCS.
A vthread can acquire the lock via a fast or a slow path.

The lock function is presented in Listing 2. At first, a vthread
tries to acquire a lock using atomic compare-and-swap (CAS)
on Line 2. If the operation succeeds then the lock is acquired
via the fast path. Otherwise, it goes via the slow path. The
vthread gets the identifier of the current NUMA node by
executing function getNumaId() (Line 4). When the vthread
gets its NUMA id, it tries to acquire the corresponding MCS
lock (Line 5) and, when acquired, it waits for the successful
CAS on the flag (Line 6).

Function getNumaId() (Line 4) executes a syscall getcpu [1].
However, if we execute the syscall each time we access a
lock, it becomes really expensive. To solve this issue, we
cache this identifier in the local memory of a carrier thread.
After several accesses, the value is updated. To access the
vthread’s carrier we use the thread MethodHandle [2].

The unlock function is presented in Listing 2. First, a
vthread sets the flag to false. If the lock is acquired via
the slow path, the vthread also unlocks the corresponding
MCS. It is important, that the vthread should use numaId
from lockInfo because it can already be moved to another
NUMA node during the execution of the critical section.
Our approach can be seen as a hierarchical lock: inner-

socket MCSs and outer-socket spin-lock. We had two ideas
in mind: 1) we want to decrease the access to the memory on
other NUMA nodes, thus, we use MCS locally, while 2) the
lock should be allowed to be taken by several threads, thus,
helping with the suspension — given several attempting
threads we have more probability that one of them is not
suspended; for that, we chose outer spin-lock. We back up
the chosen design with the experiments.

3 Experiments
For the benchmarks, we used Java Microbenchmark Har-
ness framework [3]. Our benchmarks start many lightweight
threads and each of them runs a work loop. The pseudocode
is presented in Listing 3. On each iteration, the vthread: 1) em-
ulates work by multiplying two outer square matrices of the

1



111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

’18, January 01–03, 2018, New York, NY, USA Anon.

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

Listing 2. Lock and unlock procedures.
1 LockInfo lock ():

2 if cas(flag ,false ,true):

3 return LockInfo(fastPath=true)

4 numaId = getNumaId ()

5 mcsNode = mcs[numaId ].lock()

6 while !cas(flag ,false ,true):

7 // spin

8 return LockInfo(numaId=numaId ,

9 fastPath=false)

10 void unlock(LockInfo lockInfo ):

11 flag = false

12 if unlockInfo.fastPath:

13 return

14 mcs[unlockInfo.numaId ]. unlock ()

same size (Line 3); 2) calls Thread.yield() to emulate the
vthread interruption (Line 4); 3) acquires the lock (Line 5);
4) emulates work inside the critical section by multiplying
two square matrices (Line 6); 5) calls inner Thread.yield()
to emulate the vthread interruption inside the critical section
(Line 7); and 6) releases the lock (Line 8).

Calling Thread.yield() inside and outside the critical sec-
tion is necessary because otherwise a vthread may never be
interrupted and other vthreads will not run at all.

By changing the sizes of the matrices, we control the con-
tention level on the lock. Before running the benchmark, we
pin platform threads to the cores.

Listing 3. vthread’s procedure in benchmark
1 void run ():

2 for i in 0..10000:

3 matrixA * matrixB

4 Thread.yield()

5 lock.lock()

6 matrixC * matrixD

7 Thread.yield()

8 lock.unlock ()

We run experiments on a systemwith 128HiSilicon Kunpeng-
920 cores (4 NUMA nodes) running CentOS Stream 9 and
OpenJDK Java 19. On the plots, OX axis represents the num-
ber of vthreads and OY axis shows the total number of it-
erations per millisecond (higher is better). Each point was
aggregated on 5 independent runs.
We compare our VNA lock (with a queue per NUMA)

and VNA_2_Q (a queue per socket) against fair and unfair
ReentrantLock, CNA, HMCS (two-tiered, as three-tiered one
works worse), and HSPIN (hierarchical spin) locks. HSPIN
calls Thread.yield() after some spins on the flag, because,
otherwise, the system might be blocked when all carrier
threads are actively spinning.
At first, we consider a low contention case: the size of

outer matrices is 100 while the size of inner matrices is 15
(Figure 1). VNA with four queues is up to 30% more efficient
than other locks when the number of vthreads exceeds 64,
i.e., it uses more than two NUMA nodes.

The results of the benchmark with absent outer work and
inner matrices with size 50 (Figure 2) is the high contention
case. VNA with four queues achieves the best throughput
when the number of vthreads is more than 32.

The experiments support our basic ideas: 1) we need an
outer spin-lock to help with the suspension — HMCS and
VNA with just two MCSs works worse; 2) locally, it is better
to use MCS as HSPIN works worse.
Figure 1. Throughput. 10000 iterations. Outer matrices are
100 × 100, inner matrices are 15 × 15.

Figure 2. Throughput. 10000 iterations. Absent outer matri-
ces, inner matrices are 50 × 50.

4 Conclusion
We designed a NUMA-aware lock for lightweight threads
in Java. Our lock has a higher throughput for lightweight
threads than standard or previously developed NUMA-aware
locks on benchmarks with different levels of contention. As
an additional advantage, our lock is easy to understand.

2



221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

NUMA-aware lock for Java Lightweight Threads ’18, January 01–03, 2018, New York, NY, USA

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

References
[1] [n. d.]. getcpu(2) — Linux manual page. https://man7.org/linux/man-

pages/man2/getcpu.2.html
[2] [n. d.]. Java Reflection, but much faster. https://www.optaplanner.org/

blog/2018/01/09/JavaReflectionButMuchFaster.html
[3] [n. d.]. OpenJDK: JMH. https://openjdk.org/projects/code-tools/jmh/
[4] Milind Chabbi, Michael Fagan, and John Mellor-Crummey. 2015. High

Performance Locks for Multi-Level NUMA Systems. SIGPLAN Not. 50,
8 (jan 2015), 215–226. https://doi.org/10.1145/2858788.2688503

[5] Dave Dice and Alex Kogan. 2019. Compact NUMA-Aware Locks. In
Proceedings of the Fourteenth EuroSys Conference 2019 (Dresden, Ger-
many) (EuroSys ’19). Association for Computing Machinery, Article 12,
15 pages. https://doi.org/10.1145/3302424.3303984

[6] Victor Luchangco, Dan Nussbaum, and Nir Shavit. 2006. A hierarchical
CLH queue lock, Vol. 4128. 801–810. https://doi.org/10.1007/11823285_
84

A Machine Layout

Figure 3. NUMA hierarchy of Kunpeng-920 with 128 cores

3

https://man7.org/linux/man-pages/man2/getcpu.2.html
https://man7.org/linux/man-pages/man2/getcpu.2.html
https://www.optaplanner.org/blog/2018/01/09/JavaReflectionButMuchFaster.html
https://www.optaplanner.org/blog/2018/01/09/JavaReflectionButMuchFaster.html
https://openjdk.org/projects/code-tools/jmh/
https://doi.org/10.1145/2858788.2688503
https://doi.org/10.1145/3302424.3303984
https://doi.org/10.1007/11823285_84
https://doi.org/10.1007/11823285_84

	1 Introduction
	2 Implementation details
	3 Experiments
	4 Conclusion
	References
	A Machine Layout

