
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Hybrid work distribution for parallel programs
Anonymous Author(s)

1 Introduction
In modern computing systems, the increasing number of
cores in processors emphasizes the need for efficient uti-
lization of resources. To achieve this goal, it is important to
distribute the work generated by a parallel algorithm opti-
mally among the cores.
Typically, there are two paradigms to achieve that: static

and dynamic. The standard static way, used in OpenMP [1],
is just the fork barrier that splits the whole work into the
fixed number of presumably “equal” parts, e.g., split into
equally-sized ranges for a parallel_for. The classic dy-
namic approaches are: 1) work-stealing task schedulers like
in OneTBB [2] or BOLT [7], or 2) work-sharing [6]. As
one can guess, the static approach has a very low over-
head on the work distribution, but it does not work well
in terms on parallel programs for general-purpose tasks, e.g.,
nested parallel_for or parallel_for with uneven iter-
ations. When talking about the dynamic approaches, it is
known that work-sharing is good for the initial distribution
in comparison with work-stealing — a thread wants to steal a
task from some thread with a non-empty queue but it doesn’t
know which are and there are lots of threads with empty
queues at thatmoment (the random doesn’t workwell), while
it produces more overhead after the initial distribution — a
thread wants to give a task to a thread with an empty queue
but it doesn’t know which are (again, the random doesn’t
work well). Here, we present a task scheduler that unites
two dynamic work distribution paradigms at the same time
and achieves a low overhead with good task distribution.

2 The Hybrid Approach
In this work, for simplicity, we consider just parallel_for.
Any fork-join primitive can be implemented with it. The
work distribution consists of two phases: the initial range di-
vision among threads and the following load balancing, if nec-
essary. To achieve the best performance of the initial distri-
bution we use work-sharing [6] instead of the classic random
work-stealing: we explicitly distribute task blocks among
other threads by pushing these blocks to per-thread queues.
This approach eliminates contention between threads and
has reduced latency, particularly for the last tasks.We achieve
O(log𝑁 ) complexity on the latency by distributing the work
in a tree rather than in a linear manner. The threads form a
hierarchical tree structure, and the work is distributed along
the tree — each thread that receives a range divides it in half
and passes these parts to its “children” threads.

PL’18, January 01–03, 2018, New York, NY, USA
2018.

After the initialization, we use the standard work-stealing
approach for load balancing. For that, the thread receives its
range of work, divides it into tasks, and puts them into its
queue, so, they are available for other threads.

Here lies the key conflict between work-sharing in the ini-
tial distribution and the followingwork-stealing — a steal can
occur earlier than we distribute the tasks via work-sharing.
In this case, the original deterministic distribution will be
violated leading to unexpected overheads and to worse cache
utilization.
The proposed solution (presented [8, 9] on industry con-

ferences, with no proceedings) delays the creation of load-
balancing tasks for a certain timespan. The idea is that a
thread, after receiving its range of work, does not create
balancing tasks immediately but executes part of the given
range during this timespan and only then creates these tasks.
The value of the timespan is calculated experimentally and
depends on the number of threads and a CPU model, but
does not depend on an application. We evaluate it once us-
ing a script that calls 105 times the parallel_for with the
range of size num_threads. For each loop, a starting thread
reports the start time using an rdtsc instruction-based timer
and then waits for other threads to start executing the body
of the loop. Then, we calculate how long the task scheduling
took as the difference between the start and the latest time
for a thread starting to execute. Based on these results, we
choose a timespan as the 99th percentile of the task distribu-
tion time. It is a good approximation of the time when the
last thread receives its range of work.
Another question is the granularity problem, i.e., how to

define the grain size for balancing tasks — we split a task
if it is bigger than that size. For that, we use an adaptive
strategy — the grain size is chosen based on the number of
executed iterations during the initialization timespan. The
idea is that the more iterations are executed, the bigger the
grain size should be to avoid situations when the task cre-
ation and stealing overheads are more significant than the
task execution time.
Our algorithm is implemented in C++ over the simple

work-stealing thread pool from Eigen library [4].

3 Experiments
For the experiments, we use the machine with ARM archi-
tecture and four NUMA nodes with 32 cores each, giving
128 cores in total. Our benchmarks use all available cores.
When the setup was fixed, we calculated the timespan once
before the executions. We compile with GCC15 and -O3
-ffast-math parameters.

We run the same experiments but for the Intel x86machine.
The results are available in Appendix A.

1



111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

PL’18, January 01–03, 2018, New York, NY, USA Anon.

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

We compare our approach against OpenMP (LLVM) and
OneTBB with multiple different settings: 1) static, dynamic,
and guided scheduling strategies for OpenMP, and 2) auto,
affinity, and simple partitioners for OneTBB. Our algorithm
appears on the figures with TIMESPAN_GRAINSIZE label.
We use several benchmarks to evaluate the performance

of the proposed approach (by performance here we mean the
execution time). In the first benchmark, we perform sparse
matrix-vector multiplication (SPMV) on two different square
matrices: a balanced matrix with uniformly distributed non-
zero elements and an unbalanced triangle matrix with a
decreasing number of elements per row. We are interested
in this workload to compare the difference in performance
on balanced and unbalanced workloads which should have
different load distributions. The second benchmark is Scan —
a parallel algorithm that calculates the prefix sum of an array
of integers [3]. This benchmark is interesting for us since it
has multiple (2 log𝑁 ) parallel_for calls, allowing us to ob-
serve how the scheduler behaves in the case of multiple calls.
Additionally, we explore the performance of our approach on
two similar nested parallel algorithms: matrix multiplication
and matrix transposition. All matrices in these benchmarks
are square ones.

We use Google Benchmark [5] with UseRealTime param-
eter: the resulting time (in microseconds) is calculated as an
average over at least 10 tries. Note, that we run small, i.e.,
fast, benchmarks more times to get a stable result.

Figure 1. SPMV Balanced, ARM

Results of the SPMV benchmark are presented in Figures 1
and 2. Absolute time is placed on the Y-axis in binary log-
arithmic scale and the size of the matrix is placed on the
X-axis.

As expected, the static OpenMP scheduler has poor perfor-
mance on the unbalanced matrix. The proposed algorithm,
green-dotted, shows the best performance on the unbalanced
matrix and is comparable with others on the balanced matrix.

In Figure 3, we can see the results of the Scan benchmark.
The Y-axis represents the logarithm of the absolute time,
while the X-axis represents the logarithm of the size of the
array. Our solution works better than other approaches ex-
cept for the static OpenMP, but still close to it.

Figure 2. SPMV Triangle, ARM

Figure 3. Scan, ARM

Figure 4. Matrix Multiplication, ARM

Figure 5. Matrix Transpose, ARM

Finally, we run the algorithms on the nested parallelism
benchmarks: Matrix Multiplication (Figure 4) and Matrix
Transpose (Figure 5), bothwithmatrices of size𝑛𝑢𝑚_𝑡ℎ𝑟𝑒𝑎𝑑𝑠 ·
24. X-axis shows the normalized execution time (higher is
better, the best has 1.0), while Y-axis shows the respective
algorithm. We see that the proposed algorithm is also as fast
as TBB on nested parallelism, in contrast to OpenMP.
4 Conclusion
In this work, we presented a novel algorithm for work distri-
bution that unites the best of two worlds, work-stealing and
work-sharing. Our experiments show, that our algorithm
achieves either the best or competitive performance.

2



221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

Hybrid work distribution for parallel programs PL’18, January 01–03, 2018, New York, NY, USA

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

Figure 6. SPMV Balanced, Intel

References
[1] 2021. OpenMP Application Programming Interface Specification Ver-

sion 5.2. https://www.openmp.org/wp-content/uploads/OpenMP-API-
Specification-5-2.pdf

[2] 2022. oneTBB - oneAPI Specification 1.2-rev-1 documentation.
https://spec.oneapi.io/versions/latest/elements/oneTBB/source/
nested-gen-info.html

[3] 2023. Chapter 39. Parallel Prefix Sum (Scan) with CUDA | NVIDIA Devel-
oper. https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-
computing/chapter-39-parallel-prefix-sum-scan-cuda

[4] 2023. Eigen C++ Library, Non Blocking Thread Pool. https:
//gitlab.com/libeigen/eigen/-/blob/master/Eigen/src/ThreadPool/
NonBlockingThreadPool.h

[5] 2023. Google Benchmark User Guide, Runtime and Reporting Consider-
ations. https://github.com/google/benchmark/blob/main/docs/user_
guide.md#runtime-and-reporting-considerations

[6] Derek L Eager, Edward D Lazowska, and John Zahorjan. 1986. Adaptive
load sharing in homogeneous distributed systems. IEEE transactions on
software engineering 5 (1986), 662–675.

[7] Shintaro Iwasaki, Abdelhalim Amer, Kenjiro Taura, Sangmin Seo, and
Pavan Balaji. 2019. BOLT: Optimizing OpenMP Parallel Regions with
User-Level Threads. In 2019 28th International Conference on Parallel
Architectures and Compilation Techniques (PACT). 29–42. https://doi.
org/10.1109/PACT.2019.00011

[8] Anton Malakhov. 2022. Fusing Efficient Parallel For Loops with a
Composable Task Scheduler. Hydra Conference (2022).

[9] Anton Malakhov and Evgeny Fiksman. 2013. Pushing the limits of
work-stealing. Compiler, Architecture and Tools Conference (2013).

A Experiments on Intel
We also tested the proposed solution on a machine with
two sockets Intel Xeon Gold 6338 (x86) with 24 cores each,
giving 48 cores in total. We compile with clang16 and -O3
-ffast-math parameters for this platform, all benchmarks
use all 48 cores.

We can see that the proposed algorithm is competitive to
others on the balanced matrix (marked with a black line in
Figure 6) and exhibits the best performance on the triangle
matrix (Figure 7) but with less difference than on 128 cores.
Additionally, it demonstrates the best results after OpenMP
static in almost all parameters of the Scan benchmark (Fig-
ure 8) (yellow line).

Figure 7. SPMV Triangle, Intel

Figure 8. Scan, Intel

Figure 9. Matrix Multiplication, Intel

Figure 10.Matrix Transpose, Intel

Similarly, our solution performs at the TBB level while us-
ing the nested parallelism in Matrix Multiplication (Figure 9)
and Matrix Transpose (Figure 10) benchmarks.

3

https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf
https://spec.oneapi.io/versions/latest/elements/oneTBB/source/nested-gen-info.html
https://spec.oneapi.io/versions/latest/elements/oneTBB/source/nested-gen-info.html
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda
https://gitlab.com/libeigen/eigen/-/blob/master/Eigen/src/ThreadPool/NonBlockingThreadPool.h
https://gitlab.com/libeigen/eigen/-/blob/master/Eigen/src/ThreadPool/NonBlockingThreadPool.h
https://gitlab.com/libeigen/eigen/-/blob/master/Eigen/src/ThreadPool/NonBlockingThreadPool.h
https://github.com/google/benchmark/blob/main/docs/user_guide.md#runtime-and-reporting-considerations
https://github.com/google/benchmark/blob/main/docs/user_guide.md#runtime-and-reporting-considerations
https://doi.org/10.1109/PACT.2019.00011
https://doi.org/10.1109/PACT.2019.00011

	1 Introduction
	2 The Hybrid Approach
	3 Experiments
	4 Conclusion
	References
	A Experiments on Intel

