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Abstract

Chip removal. Urban Renewal revised. V. Aksenov, K. Kokhas.

We describe a new combinatorial-algebraic transformation on graphs that we call «chip removal».

It generalizes the well known Urban Renewal trick of Propp and Kuperberg. Chip removal is useful

in calculations of determinants of adjacency matrices and matching numbers of graphs. A beautiful

example of this technique is the theorem about removing four-contact chips, this theorem generalizes

Kuo’s graphical condensation method. Numerous examples are given.

Key word!!!: determinant of adjacency matrix, matching number, «Urban renewal», pfaffian, com-

binatorial linear algebra

1 Introduction

Let G be an arbitrary connected (undirected) graph, and let A(G) be it’s adjacency matrix. Graph

G could contain loops and could be weights, in this case A(G) is an arbitrary symmetrical matrix.

In this paper we introduce a combinatorial technique for calculating determinants detA(G), that

generalizes «Urban Renewal» trick created by Kuperberg and Propp, used for counting the number of

matchings of the graph. These techniques are both special cases of diagonalization of block matrices, and

they have a very transparent combinatorial background.

To calculate the determinant detA(G) we introduce a special operation – chip-removal. We assume

that chip H is an arbitrary induced subgraph of the graph G. We call a vertex of the chip, which has an

outgoing edge (i.e. its second endpoint does not belong to H) external the second endpoint of an external

edge is a contact. The operation chip-removal consists od two steps: 1) we remove the chip H and all its

external edges from the graph, and 2) after that we “repair” the remaining part of the graph by joining

some contacts with a new weighted edges. The location and weights of the new edges depend on the chip.

1
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Denote by G′ the graph obtained by the chip-removal. The main property of the chip-removal operation

is

detA(G) = detA(H) detA(G′).

In the second section we describe a modification of Urban Renewal for calculating determinants. In

the third section we describe a general scheme of chip-removal, and in the fourth section we explore the

details of rectangle-chip removal. All these constructions are accompanied by examples. In the fifth

section we apply this technique for calculating of the number of matchings and in particular we prove the

theorem about 4-contacted chip-removal, which generalizes Kuo’s graphical condensation.

2 Urban Renewal for determinants

Let G be an (undirected) graph, the weights of its edges are arbitrary real numbers. A matching is a

set of the graph edges, which splits the whole set of its vertices into pairs, a weight of the matching is a

product of weights of its edges. Let M(G) be the sum of weights of all matchings of the graph G.

Lemma. Let graph G contains a subgraph H, depicted in the picture 1 on the left, the graph could contain

also edges, which are not showed in the picture, but all the black vertices have degree 3, i.e. all their edges

are showed. Let us replace this subgraph by the new subgraph H ′, depicted in the picture 1 on the right,

where the new weights are given by the formulae x′ = y
xy+wz , y

′ = x
xy+wz , z

′ = w
xy+wz and w′ = z

xy+wz . We

denote the resulting graph by G′. Then

M(G) = (xy + zw)M(G′).

This statement is proved by Kuperberg and Propp [5], they call this operation Urban renewal.

We may assume, that the graph G is directed, interpreting each undirected edge as a pair of edges

with opposite directions. 1-factor of the graph G is a directed subgraph, which contains all the vertices of

G, and such that each vertex has in-degree 1 and out-degree 1. The combinatorial definition of detA(G)

is very well known (see [1]), it can be calculated by the formula

detA(G) =
∑

π

(−1)σ(π)W (π),

where the sum runs over the set of all 1-factors of the graph G, W (π) is the weight of 1-factor π, and

σ(π) is the number of even cycles in π.

Lemma 2.1. Let graph G contain subgraph H, depicted in the picture 1 on the left; the graph could

countain also edges, which are not shown in the picture, but all the black vertices have degree 3, i.e. all

x w

z y

1 1

1

1

x′ w′

z′ y′

H H ′

Figure 1. Urban renewal
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Figure 2. Rebuilding of 1-factors

their edges are shown. Let us replace this subgraph by the new subgraph H ′, depicted on the picture 1 on

the right, where the new weights are given by the formulas

x′ =
y

wz − xy
, y′ =

x

wz − xy
, z′ =

w

xy − wz
, w′ =

z

xy − wz
. (1)

Then

detA(G) = (xy − wz)2 detA(G′). (2)

Proof. Split all the 1-factors of graphs G (and G′) into groups, such that in every group the intersection

of factors with subgraphs H (and H ′ respectively) are the same. We will construct a bijection between

the groups (and sometimes between individual 1-facors), which preserves the total weight.

1) If 1-factor of the graph G has a cycles that pass through edges x and y of the subgraph H, we map

this 1-factor to the 1-factor of the graph G′, in which parts of these cycles are replaced by the new edges

x′, y′ (as in picture 2 on the left). The parts of the initial cycles in the subgraph H contribute xy to the

weight of 1-factor. After the replacement the contribution is equal x′y′ = xy
(wz−xy)2

, but we also have the

multiplier (wz − xy)2 on the right hand side of the equation (2). The total weight remains unchanged.

The case when the cycles contain edges w and z we consider analogously.

2) Each 1-factor of the graph G , which contains a long cycle, passing through edges x, w in the

subgraph H, and a cycle of the length 2 on the vertical edge (see picture 2 on the right) we map to the

1-factor of the graph G′ obtained by removing the 2-cycle and replacing the part of the long cycle by the

new pair of edges z′, y′. The weight preservation is checked like in the previous point.

We do analogously for the similar configurations.

3) Collect together all 1-factors of the graph G, which coincide outside the subgraph H and contain

a cycle, passing through edges z, y, w, (its contribution of this configuration to the weight of 1-factor

equals yzw) OR contain a long cycle, that passes through x and 2-cycle that occupies the edge y (this

configuration contributes xy2 to the total weight). Observe that these two configurations have opposite

signs, because the numbers of cycles in them differ by 1. We map this set of 1-factors to the set of 1-factors

in G, which have the same structure outside the subgraph H (and so the contribution of the outer part

is the same in both sets of 1-factors), and contain the edge x′ (picture 3). So again we have the equality

of the weights, because yzw − xy2 = (wz − xy)2x′.

4) We consider the remaining cases analogously (picture 4). Let us note, that the right cycle, depicted

in the top of the picture 4, and the left cycle in the bottom of the picture 4 should be considered with

two possible orientation, and that doubles their contribution. The equality of the weights on the picture

4 is due to the following identities 1 = (wz−xy)2(x′2y′2+w′2z′2−2x′y′w′z′) and x2y2+w2z2−2xywz =

(wz − xy)2.
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Figure 3. Rebilding the groups of 1-factors

Remark. The transformation (x, y, z, w) 7→ (x′, y′, z′, w′), given by the formula (1), is an involution. The

multipliers from the formula (2) satisfy the condition (xy − wz)2(x′y′ − w′z′)2 = 1.

Lemma 2.2. Let the graph G contain a vertex v, connected to the vertices of the set Vv = {v1, . . . , vn}.

Split the set Vv into two disjoint subsets VA и VB and replace the vertex v by the 4-element path AC1C2C3B

(where Ci are new vertices, and all the edges of this path have weight 1), and after that connect A to all

the vertices of VA, and connect B to all the vertices of VB (the weights of these edges are equal to the

weights of the corresponding edges of the the former vertex v). Denote the obtained graph by G′. Then

detA(G) = detA(G′).

Proof. Construct a bijection between 1-factors of the graph G and 1-factors of the graph G′, preserving

the weight of 1-factor. For this we rebuild cycles . . . p → v → q → . . ., that pass through the vertex v (p

and q denote two vertices of the graph G, not necessarily distinct).

If p ∈ VA and q ∈ VA, we replace this cycle by the similar cycle in G′, that passes through A, vi и vj.

and append two more 2-cycles: C1 → C2 → C1 и C3 → B → C3. The number of even cycles is increased

by 2, so the contribution to the determinant does not change. The case p ∈ VB , q ∈ VB is similar.

If p ∈ VA и q ∈ VB, we replace this cycle by the cycle . . . p → A → C1 → C2 → C3 → B → q → . . .

The weight and the parity of the length of the cycle do not change, so the contribution to the determinant

does not change too.

Let us mention two more statements about transformations, which preserves the determinants [6,

theorems 2, 3].
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z′ y′

=++

Figure 4. Remaining identities
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Lemma 2.3. Let a graph contain фт edge uv with the weight w. Then if we replace this edge by a path

of the length 5 with edge weights 1, 1, w, 1, 1, then the determinant of the adjacency matrix of the graph

does not change.

The proof is similar to the previous one.

Lemma 2.4. Let graph G contain a vertex v, connected to the vertices of the set V1 and a vertex w,

connected to the vertices of the set V1 ∪ V2. If we remove all the edges from w to V1 then the determinant

of the adjacency matrix does not change.

It follows from this lemma, that if we remove a hanging vertex and its edge then the determinant of

the adjacency matrix should be divided by the weight of the removed edge. But this is obvious form the

point of view of 1-factors.

Example 2.1. Let Dn be the aztec diamond whose edges have weights x, y, w and z as shown on the

left of the picture 5. Then

detA(Dn) = (xy − wz)n(n+1).

To prove this we repeat reasonings of Propp [5], applying lemmas 2.1, 2.2.

First, apply lemma 2.2 to each vertex of the graph and color the rhombi in a chess-coloring order

(picture 6, on the left). Next, apply the urban renewal operation three times in each black rhombus, and

apply it once in each white rombus. Since the iterations of the rule (1) are involutive, the obtained weights

are equal to x′, y′, w′ and z′ (picture 6, on the right). As the result of all operations the determinant

is multiplied by (xy − wz)2n
2
, because the total number of rhombi equals n2. Now remove the hanging

fragments of one and three edges on the boundary of the diamond. This does not affect the determinant,

because the deleted edges have the weight 1. After removal of these fragments the vertices of diamond

on the boundary are removed too, therefore the size of the remaining diamond is decreased by 1, and

the weights arrangement is similar to original one (picture 5, on the right). This gives us the step of

induction.

Example 2.2. Let us calculate the determinant of the adjacency matrix of the cylinder C4×Pm−1. More

precise, we want to prove that

detA(C4 × Pm−1) =




m2 if m is odd,

0 if m is even.
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Figure 6. The transformation of the diamant

Applying lemma 2.1, we remove 4-cycles on the boundary the cylinder step by step (picture 7). To

avoid zeros in denominators, we assume, that the edges of the first cycle H0 on the boundary have weights

x0 = a, z0 = 1, y0 = a, w0 = 1, and all other edges in the graph have weight 1. After one application

of the lemma the cycle H0 disappears, and we obtain on the boundary a new cycle H1. The weights of

its edges are equal to the sum of the initial weights (i.e. 1) and the new weights a
1−a2

, 1
a2−1

, a
1−a2

, 1
a2−1

obtained by the formula (1). So,

x1 = 1 +
a

1− a2
, z1 = 1 +

1

a2 − 1
, y1 = 1 +

a

1− a2
, w1 = 1 +

1

a2 − 1
.

Then one can check by induction, that after 2n applications of these operations (the induction step size

2 is more convenient, because for even and odd number of iterations the formulae are slightly different)

the weights of edges of the boundary cycle are equal to

x2n = y2n =
na2 + a

2na+ 1
, z2n = w2n =

1 + 2na− na2

2na+ 1
,

and the product of all the determinants of the removed cycles equals detA(H0) detA(H1) . . . detA(H2n−1) =

(2na+ 1)2.

If m is even, say m − 1 = 2n + 1, then after 2n operations the remaining graph consists of the only

a a

1

1

1 +
a

1−a2 1 +
a

1−a2

1 +
1

a2−1

1 +
1

a2−1

Figure 7. Removing the cycle on the border of the cylinder
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4-cycle with the weights given by the formulae above. The determinant of the matrix of this cycle equals

(x2ny2n − z2nw2n)
2 =

( (2n+ 1)a+ 1

2na+ 1

)2
(a− b)2,

and the total determinant equals

detA(H0) detA(H1) . . . detA(H2n)(x2ny2n − z2nw2n)
2 =

(
(2n+ 1)a+ 1

)2
(a− b)2.

For a = b = 1 this expression is equal to 0. If m is odd, by similar reasoning we get, that the determinant

is equal to
(
(m− 1)a+ 1

)2
, and for a = b = 1 this is equal to m2.

3 The general scheme of chip removal

Let G be an arbitrary graph. Chip H is an arbitrary induced subgraph of the graph G. The vertices

of the chip, which has outgoing edges (to the remaining part of the graph G) we call outer vertices, and

the second endpoints of these edges are contacts (which the chip is connected to).

Let the chip H contain h vertices and k contacts, so its adjacency matrix A(G) has block form:

A(G) =



A(H) K 0

K⊺ L ∗

0 ∗ ∗


 , (3)

where K is a h×k block, that encodes connections of the chip to the remaining part of the graph, L is the

k×k block (possibly zero), that encodes edges of the graph G between contacts, and the stars correspond

to other possible edges outside of the chip. Multiplying matrix by D =

(
A(H)−1 0 0

0 E 0
0 0 E

)
from the left , we

obtain the unity block h× h in the right-upper corner:

(
E A(H)−1K 0
K⊺ L ∗

0 ∗ ∗

)
. Then subtract the appropriate

rows to make the block K⊺ to be zero, thess operations change also block L. We obtain the matrix



E A(H)−1K 0

0 L̃ ∗

0 ∗ ∗


 , where L̃ = L−K⊺A(H)−1K. (4)

And finally, multiplying by D−1 from the left, we «get back» the block A(H) and obtain the matrix(
A(H) K 0

0 L̃ ∗

0 ∗ ∗

)
. We interpret the changes in the block L, as «repair» or «bridge installation», i. e. creating

additional edges between contacts. The weights of these edges are specified in the matrix −K⊺A(H)−1K.

Denote the graph, obtained as a result of repair, by G′. Obviously, the determinant of the adjacency

matrix does not change during these operations, and matrix
(
L̃ ∗

∗ ∗

)
is exactly the adjacency matrix of the

repaired graph A(G′). Thus,

detA(G) = detA(H) · detA(G′).

It is not hard to see, that the main obstacle for combinatorial interpretation of this algebraic trans-

formations is a complicated form of the matrix A(H)−1.

Example 3.1. K3,3 removal. Let the chip H be the graph of 6 vertices «hexagon with three main
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diagonals», each vertex has exactly one outgoing edge, the weights of the edges on the sides of the

hexagon are equal to b, and the weights of the diagonals are equals to c (picture 8).

Denote S(b, c) the weighted adjacency matrix of the chip H . Surprisingly, direct calculation shows

that

S(b, c)−1 = S(b′, c′), где b′ =
b

2b2 − bc− c2
, c′ = −

b+ c

2b2 − bc− c2
.

So, after the chip removal the new bridges between contacts give us a new chip of the same form, where

the weights of the sides are equal to − b
2b2−bc−c2

and weights of diagonals equal b+c
2b2−bc−c2

.

Example 3.2. Let us calculate the determinant of the cylinder detA(C6 × Pm−1). We will show that

detA(C6 × Pm−1) =




(−1)m−1m2 if m is not divisible by 3,

0 if m is divisible by 3.

To prove this we consequently apply the operation from the previous example, where in each step we

choose a chip as a 6-vertices graph on the boundary of the cylinder.

Let C = S(1, 0) be the adjacency matrix of the 6-cycle (notations from the previous example) and let

Ak be the adjacency matrix of the 6-vertices graph, located on the border of the cylinder after application

of k steps, in particular, A0 = C. By virtue of (4)

Ak+1 = C −A−1
k .

Solving this recurrence relation, we find, that Ak = Uk(C/2)Uk−1(C/2)−1, where Uk is the Chebyshev

polynomals of the second kind. Thus,

detA(C6 × Pm−1) = detA0 · detA1 · . . . · detAm−1 = detUm−1(C/2).

The determinant of the matrix is the product of the eigenvalues, eigenvalues of the matrix C are equal to

cos 2jπ
6 , j = 1, . . . , 6. By the definition of the Chebyshev polynomial, Um−1(cos θ) =

sinmθ
sin θ . So,

detA(C6 × Pm−1) =
6∏

j=1

sin jmπ
3

sin jπ
3

.

(Incorrect fractions for m = 3, 6 should be understood by continuity.) For m, divisible by 3, many sinuses

are equal to 0; for m, not divisible by 3, all, except incorrect fractions, are reducible, and we obtain the

answer.

b

b

b

b

b

b

c

c

c

b′

b′

b′

b′

b′

b′

c′

c′

c′ b′ =
−b

2b2 − bc− c2

c′ =
b+ c

2b2 − bc− c2

Figure 8. K3,3 and the result of its removal
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Example 3.3. The graph K4,4 with the weights of four different types (picture 9) can be also removed

with reasonable recurrence. Let us denote the weighted adjacency matrix of this type as S(a, b, c, d). The

straightforward calculation shows that

S(a, b, c, d)−1 = S(a′, b′, c′, d),

where a′ = 1
∆(a3 − 2adb− c2a+ d2c+ b2c), b′ = 1

∆(d2b− da2 +2cba− c2d− b3), c′ = 1
∆(d2a− ca2 + b2a+

c3 − 2cdb), d′ = − 1
∆(db2 − a2b+2dca− d3 − c2b), ∆ = detS(a, b, c, d) = (a+ b+ c+ d)(a− b+ c− d)(b2 −

2db − 2ca + d2 + a2 + c2). So, after K4,4 removal, one should add bridges to the contacts in such a way,

that they form the graph K4,4 with weights −a′, −b′, −c′, −d′.

a

a

a a

b b

b b

d d

d d

c

c

c
c

Figure 9. K4,4 removal

4 Rectangle removal

Definition. Denote Hn,m a rectangle-shaped chip which is an induced subgraph of the graph G of the

form of Pn × Pm. We assume for convenience that the chip is constructed by the grid lines. We assume

also that the chip is connected to the remaining part of the graph by 2n outer edges — n horizontal

segments, going to the left, and n horizontal segments, going to the right (picture 10).

For example the removal of H2,2 chip is the same as Urban Renewal operation.

Let A be the adjacency matrix of the path Pm. Then the adjacency matrix of the rectangular chip

Hnm has the form of the n× n block matrix

A(Hn,m) =




A E 0 . . . 0

E A E . . . 0
...

...
. . .

...
...

0 0 . . . E A




, where A = A(Pm).

Lemma 4.1. Let Un(y) be the Chebyshev polynomial of the second kind. Assume that the number 2a ∈ R

is not its root and let B(a) be n× n matrix of the following type B(a) =




a 1 0 ... 0 0
1 a 1 ... 0 0
...
...
. ..

...
...

0 0 ... 1 a 1
0 0 ... 0 1 a


. Then

1) detB(a) = Un(a/2). In particular, matrix B(a) is invertible.
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A E . . . 0 0 E 0 0
E A . . . E 0 0 0 0
. . . . . . . . . . . . . . . . . . . . .
0 E . . . A E 0 0 0
0 0 . . . E A 0 E 0

E 0 . . . 0 0 L11 L12 ∗
0 0 . . . 0 E L21 L22 ∗
0 0 . . . 0 0 ∗ ∗ ∗

Figure 10. The rectangular chip 4 × 8 and its adjacency matrix as a block in the matrix A(G) and the
result of chip removal

2) Let us denote B(a)−1 = (xij). Then x11 = xnn = Un−1(a/2)
Un(a/2)

, x1n = xn1 =
(−1)n+1

Un(a/2)
.

3) Let B = 1
2B(0), E be the identity n× n matrix and ℓ = 2km− 2, when m = n+ 1. Then

Uℓ−1(B)(Uℓ(B))−1 = 2B, −(Uℓ(B))−1 = E. (5)

Proof. Statement 1) is a well known fact. The formula of the statement 2) can be obtained instantly from

the Kramer’s formulae the elements of the inverse matrix.

We check the identities 3) in the basis consisting of the eigenvectors of the matrix B. The eigenvalues

of the matrix B(0) are 2 cos jπ
m , j = 1, . . . , m − 1. By the definition of the Chebyshev polynomials

Uℓ(cos θ) =
sin(ℓ+1)θ

sin θ . Then the identities (5) follow from the trigonometric identities

sin
(2km− 2)πj

m
= 2cos

πj

m
· sin

(2km − 1)πj

m
, sin

(2km− 1)πj

m
= − sin

πj

m
. �

In particular, we have

detHn,m = detUn

(1
2
A
)
. (6)

Example 4.1. Let us consider the (2km− 2)× (m− 1) chip removal.

So, let the graph G contain the chip H = H(2km−2),(m−1), connected to (m−1) «contacts». Denote for

brevity ℓ = 2km−2. The matrix A(G) in the block form is shown on the picture 10. (We restrict ourselves

by 8× 4 example i. e. here m = 5, k = 2.) The stars denote blocks of the matrix A(G), corresponding to

the edges between the vertices G \H. All blocks except the blocks in the right column and bottom row,

have the dimensions (m− 1) × (m− 1). The adjacency matrix A(H) is cut by the auxiliary lines in the

left-bottom corner.

Due to (6) and the second identity (5) the matrix A(H) is invertible and

detA(H(2km−2),(m−1)) = (−1)m−1.

Let A(H)−1 = (Xij) be ℓ× ℓ block matrix with the blocks of size (m− 1)× (m− 1). Then by lemma 4.1

X11 = Xℓℓ = Uℓ−1(A/2)Uℓ(A/2)
−1 = A,

X1ℓ = Xℓ1 = −Uℓ(A/2)
−1 = E.

(7)

Now, following the general chip removal scheme, we only need to understand what changes we have in

the block L =
(

L11 L12

L21 L22

)
, that describes the new connections between contacts. Due to (4) the elements
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of block L are changed by the formula

L̃ =

(
L11 −X11 L12 −X1ℓ

L21 −Xℓ1 L22 −Xℓℓ

)
. (8)

So, due to equations (7) the repair after the chip removal is surprisingly easy: we need to install a few

bridges between contacts (picture 10), the weights of the new bridges are equal to −1 (if a new bridge

duplicates already existing edge, then its weight is just added to the weight of the edge).

Example 4.2. In examples 2.2, 3.2 we have already calculated the determinants of the cylinders. Now

we calculate the determinant of the adjacency matrix of an arbitrary cylinder Cn × Pm−1, to be more

precise, we check, that

detA(Cn × Pm−1) =





m if n is odd and GCD(m,n) = 1,

(−1)m−1m2 if n is even and GCD(m,n/2) = 1,

0 in other cases.

This result is known, see [2], where this calculation is done in totally algebraic way.

Let us remove from the cylinder a (n− 1)× (m− 1) rectangular chip. After the removal the only one

column of vertices remains in the graph, but after repair we will have also some new edges. The adjacency

matrix of the cylinder A(Cn × Pm−1) can be written in the block form

A(Cn × Pm−1) =




A E 0 . . . 0 E

E A E . . . 0 0
...

...
. . .

...
...

0 0 . . . E A E

E 0 . . . 0 E L




.

The upper-left part of this matrix is the adjacency matrix of the chip Hn−1,m−1, and the matrix L in the

bottom-right corner is the adjacency matrix of the remaining column, therefore L = A.

Denote for brevity fn(x) = Un(x/2), gn(x) = Tn(x/2), where Tn, Un are the Chebyshev polynomials

of the first and second kind. Let A(Hn−1,m−1)
−1 = (Xij), then similarly to the formulae (7) (in our case

ℓ = n− 1 and we use the second statement from lemma 4.1 only) we have:

X1,1 = Xn−1,n−1 = fn−2(A) · f
−1
n−1(A), X1,n−1 = Xn−1,1 = (−1)nf−1

n−1(A).

After the chip removal and the repair we have

A(G′) = L̃ = A−X1,1 −X1,n−1 −Xn−1,1 −X1,n−1.
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And now we can calculate the determinant:

detA(Cn × Pm−1) = detHn−1,m−1 · det(A−X1,1 −X1,n−1 −Xn−1,1 −X1,n−1) =

= det(fn−1(A)) · det
(
A− 2 · fn−2(A) · f

−1
n−1(A) − 2 · (−1)n · f−1

n−1(A)
)
=

= det
(
A · fn−1(A)− 2 · fn−2(A)− 2 · (−1)n · E

)
=

= det
(
fn(A)− fn−2(A)− 2 · (−1)n · E

)
=

= det
(
2gn(A)− 2 · (−1)n ·E

)
= 2m−1 det

(
gn−1(A) − (−1)n · E

)
. (9)

Here we use the recurrence relation for the Chebyshev polynomials and the formula Un − Un−2 = 2Tn.

The eigenvalues of the matrix A = A(Pm−1) are the numbers {2 cos jπ
m , j = 1, . . . ,m − 1}. Since

gn(2 cos(θ)) = cos(n · θ), and since the determinant is equal to the product of the eigenvalues, we obtain

that

det
(
gn−1(A)− (−1)n · E

)
=

m−1∏

i=1

(
cos
(niπ

m

)
− (−1)n

)
.

If n — even, n′ = n
2 и GCD(n2 ,m) = 1, we obtain

detA(Cn × Pm−1) = 2m−1
m−1∏

i=1

(
cos
(niπ

m

)
− (−1)n

)
= (−1)m−14m−1

m−1∏

i=1

sin2
(n′iπ

m

)
= (−1)m−1m2.

If n — odd and GCD(n,m) = 1, then

detA(Cn×Pm−1) = 2m−1
m−1∏

i=1

(
cos
(niπ

m

)
+1

)
= 4m−1

m−1∏

i=1

sin2(
n(2m− i)π

2m
) = 4m−1

2m−1∏

i=1

sin
(niπ
2m

)
= m.

In other cases the product is equal to zero.

Example 4.3. Let us calculate the adjacency matrix of the torus Cn ×Cm, to be more precise, we check

that

detA(Cn × Cm) =




4GCD(m,n) if m and n are odd,

0 in other cases.

This result is also known [2].

Similarly to the previous example, we remove from the torus a cylindrical chip Pn−1 ×Cm. As in the

formula (9),

detA(Cn × Pm−1) = 2m det
(
gn−1(A)− (−1)n ·E

)
,

where A is the adjacency matrix of the cycle of the length m. We also know that the set of eigenvalues

of the matrix A is the set {2 cos 2jπ
m , j = 1, . . . ,m}. Hence,

detA(Cn × Pm−1) = 2m
m∏

i=1

(
cos
(2niπ

m

)
− (−1)n

)
.

If n or m is even, then the product is equal to zero. Otherwise, let d = GCD(n,m), n′ = n
d and m′ = m

d .
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Then the last product is equal to

2m
m∏

i=1

(
cos
(2niπ

m

)
+ 1

)
= 4m

m∏

i=1

cos2
(niπ

m

)
= 4m

(
m′d∏

i=1

cos
(n′iπ

m′

))2

= 4m
(

1

4m′−1

)d

= 4d.

5 The application to pfaffians

Consider a modification of the lemma 2.4 first. Let the graph G have a pfaffian orientation, and u,

v, w be its three vertices, such that the graph contains edges uw and vw. We say that the vertex w is

significant (with respect to the pair u, v), if the ordered pairs (u,w), (v,w) are both in the right order or

both in the wrong order accordingly the pfaffian orientation, otherwise we call the vertex w insignificant.

Lemma 5.1. Assume that a graph G have a pfaffian orientation. Let vertex v is adjacent to the vertices

of the set V1 and vertex w is adjacent to the vertices of the set V1 ∪ V2, and the weights of all the edges,

which connect v and w to insignificant vertices, are equal to 1. Let G′ be the graph, obtained from G by

the following operations: remove all the edges, which connect w with insignificant vertcies from the set V1,

and increase by 1 weights of all the edges, which connect w with the significant vertices from the set V1.

Then M(G) = M(G′).

Proof. Write the antisymmetric adjacency matrix of the graph G, according to the pfaffian orientation.

Let the first row and the first column of this matrix correspond to v, and the second row and the second

column correspond to v. By subtracting the second row from the first row and the second column from

the first column, we obtain the desired result.

Now let us look at the chip removal, if we try to use that operation for calculating the number of

matchings.

Example 5.1. The 2× 3 chip removal. Let G be a graph on the square grid. Fix the pfaffian orientation

of the graph G. Let the graph G contains chip H2,3, depicted on the picture 11. Assume also, that the

graph G does not contain the edges, which connect the contacts.

✲ ✲ ✲ ✲

✲ ✲ ✲ ✲
✻ ✻

❄
a d g

c f

b e

2 4 6

1 3 5

✻✻

❘✠

dg+ef√
∆

ad+bc√
∆

ec√
∆

bf√
∆

Figure 11. The 2× 3 chip and the repair after its removal

We denote by Ã(G) the antisymmetric adjacency matrix of the graph G, which corresponds to pfaffian

orientation. Then ∆ = det Ã(H2,3) is the square of the number of weighted matchings in the chip H2,3.

So, ∆ = (agd+ gcb+afe)2. Apply the operation of chip removal to calculate determinant of skew matrix

det Ã(G). The distinction with symmetric case is negligible due to the antisymmetry. The straightforward

calculation shows, that after the chip removal, one should append the bridges, shown on the left of the

picture 11. Denote the graph obtained after the repair by G′, we obtain that

det Ã(G) = det Ã(H2,3) · det Ã(G
′).
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AA1 B B1

DD1 C C1

x′
=

#

#

y′
=

#

#w′
=

#

#

z′ =
#

#

Figure 12. 2n× 2m four-contact chip removal when calculating the number of matchings

Or with root extraction,

Pf Ã(G) = Pf Ã(H2,3) · Pf Ã(G′).

In this equalities one should understand, that the value detA(G′) doesn’t equal to the square of the

number of the weightd matchings of the graph G′, because the new (diagonal) edges violate the pfaffian

orientation, and so not all the matchings in the graph G′ have the same sign.

We can avoid these issues if we consider the chips, with 4 contacts only, such that in chess coloring of

the vertices one diagonal pair is colored in white and the other one is colored in black.

We will denote the number of matchings of the graph not only by the usual designation M(G), but

also by the symbol # and schematic depiction of the graph.

The following lemma is key for Kuo’s graphical condensation.

Lemma 5.2 ([4, theorem 2.1]). The number of matchings of the 2n × 2m chip and the numbers of

matchings of the figures, obtained by removing two or four corner vertices, satisfy the identity

# · # = # · # + # · # .

Theorem 5.3. Let the rectangular 2n× 2m chip in the graph G have 4 contacts only and these contacts

be connected to the corner vertices of the chip. Denote by G′ the graph, obtained by the chip removal and

the repair (see picture 12), with the weights of new edges

x′ =
#

#
, y′ =

#

#
, w′ =

#

#
, z′ =

#

#
. (10)

Then

M(G) = # ·M(G′). (11)

Proof. Denote the chip by H. Let us construct a bijection between the matching of the graphs G and

G′ as in the proof of the lemma 2.1. Denote the corner vertices of the chip by A, B, C, D, and the

corresponding contacts by A1, B1, C1, D1 (picture 12). Since both sizes of the chip are even the vertices

A and C have the same color in chess coloring (say white), and the vertices B and D are of the opposite

color (black). The chip contains equal number of the white and black vertices. Therefore any matching

of the graph G contains even number of edges AA1, BB1, CC1, DD1. Moreover, if the matching contains

exactly two of edges listed above, then their endpoints are the endpoints of a side of the rectangle ABCD.

Let us consider the cases.
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1) Consider all the matchings of the graph G, that contain both edges AA1 and DD1 and does not

contain both edges BB1, CC1. Fix some placement of edges of matching outside the chip, i. e. in fact we

fix the matching of the graph G′ \ {A1,D1} — denote by µ′ this matching, and by w(µ′) its weight. If we

combine the configuration, consisting of the edges AA1, DD1 and all the edges of the matching µ′, with

an arbitrary matching of the graph H \{A,D}, we obtain a matching of the whole graph G. Denote by µ

the set of matchings of the graph G, obtained by this way, the weighted sum of these matchings is equal

to # · w(µ′).

The set µ of these matchings of the graph G we put into correspondence to one (!) matching from the

graph G′, namely, the matching, that contains all the edges from the set µ′ (with the same weights) and

the new edge A1D1 of weight x′ (as in (10)). Obviously, the weight of this matching is equal to x′w(µ′)

and after multiplying by the term on the right hand side of (11) we obtain the equality of weights.

The similar construction works for matchings that contain other pairs of edges.

2) Consider all the matchings of the graph G, which does not contain any of edges AA1, BB1, CC1,

DD1. Fix some placement of edges of matching outside the chip — i. e. we fix the matching of the graph

G′, denote by µ′ this matching and by as w(µ′) its weight. If we combine the configuration, consisting

of all the edges from the set µ′, with an arbitrary matching of the graph H we obtain a matching of the

whole graph G. Denote by µ the set of matchings of the graph G, obtained by this way. The weighted

sum of these matchings is equal to # · w(µ′). The set of these matchings µ of the graph G we put

into correspondence to one matching from the graph G′, namely, the matching that contains all the edges

from the set µ′ (with the same weights). Obviously, the corresponding objects give the same contribution

to the r.h.s. and the l.h.s of the formula (11).

3) Finally, consider matchings of the graph G, which contain all the four edges AA1, BB1, CC1, DD1.

Fix a placement of edges of matchings outside the chip,i. e. the matching of the graph G′\{A1, B1, C1,D1}

— denote by µ′ this matching, and by w(µ′) its weight. If we combine the configuration that consists

of the edges AA1, BB1, CC1, DD1 and all the edges from the set µ′ with an arbitrary matching of the

graph H \ {A,B,C,D} we obtain a matching of the whole graph G.

Denote by µ the set of matchings of the graph G, obtained by this way, the weighted sum of these

matching is equal to # · w(µ′). Put the set of the matchings µ in the graph G into correspondence

to the pair of the matchings of the graph G′, namely, the matching, that consists of the edges from the

set µ′ (with the same weight) and the edges A1D1, B1C1 (with the weights x′, y′), and the matching,

that consists of the edges from the set µ′ and the edges A1B1, C1D1 (with the weights z′, w′). The sum

of weights of these matchings is equal to (x′y′ +w′z′)w(µ′)

Once again, the corresponding objects give the same contribution to the r.h.s and the l.h.s of (11) due

to lemma 5.2.

Remark. The statement similar to lemma 5.2 is proved in [4] for arbitrary planar bipartite graphs. It

allows to generalize theorem 5.3 for the four-contacts chip of any form, for which the «diagonally-opposite»

contacts have the same color in chess-coloring.

If the opposite contacts of a chip have different colors, for example A1 and B1 are white, C1 and D1 are

black, the following lemma similar to lemma 5.2 holds (we restrict ourselves with the case of rectangular

chips).

Lemma 5.4 ([4, theorem 2.3]). The number of matchings of the 2n× (2m+ 1) chip and the numbers of
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AA1 B B1

DD1 C C1

x′ y′

w′

z′

Figure 13. The four contacts 2n × (2m+ 1) chip removal, when calculating the number of matchings

matchings of the figures, obtained by removing its two or four corner vertices, satisfy the identity

# · # + # · # = # · # .

If we try to prove an analog of the theorem 5.3 in this case, we should keep in mind the issue, which

we observe in the example 5.1. It is not difficult to fix the reasoning in the point 3) of the proof of the

theorem 5.3, and obtain the following statement.

Theorem 5.5. Let a rectangular 2n × (2m + 1) chip H in the graph G have 4 contacts only and these

contacts be connected to the corner vertices of the chip. Denote by G′ the graph, obtained from the graph G

by removing this chip and by repairing the graph as shown on the right of the picture 13, with the weights

of the edges

x′ =
#

#
, y′ =

#

#
, w′ =

#

#
, z′ =

#

#
.

Moreover, denote by G′′ the graph, obtained from the graph G by removing the chip H and four vertices

A1, B1, C1, D1. Then

M(G) = # ·M(G′)− 2
M(G′′)

M(H)
·# ·# .

Let us give one more example of the application of the chip removal technique.

Example 5.2. The next statement is well-known from times of the work of Cuicu [3].

Theorem 5.6. If N+1 is divisible by n+1 and M +1 is divisible by m+1, then #(PM ×PN ) is divisible

by #(Pm × Pn).

Proof. It is sufficient to consider a case M = m. Let N + 1 = (k + 1)(n + 1). Remove from the

m× (kn + k + n) rectangle k + 1 copies of m× n chip simultaneously (see picture 14 when k = 2). The

resulting graph G′ consists of k copies of the graph Pm and new bridges inside each copy Pm, and new

bridges between neighboring copies.

✲ ✲ ✲ ✲ ✲ ✲ ✲ ✲ ✲ ✲ ✲ ✲ ✲

✲ ✲ ✲ ✲ ✲ ✲ ✲ ✲ ✲ ✲ ✲ ✲ ✲

✲ ✲ ✲ ✲ ✲ ✲ ✲ ✲ ✲ ✲ ✲ ✲ ✲

✲ ✲ ✲ ✲ ✲ ✲ ✲ ✲ ✲ ✲ ✲ ✲ ✲

✻ ✻ ✻ ✻ ✻ ✻ ✻

✻ ✻ ✻ ✻ ✻ ✻ ✻

✻ ✻ ✻ ✻ ✻ ✻ ✻

❄ ❄ ❄ ❄ ❄ ❄ ❄

❄ ❄ ❄ ❄ ❄ ❄ ❄

❄ ❄ ❄ ❄ ❄ ❄ ❄

Figure 14. Remove a lot of chips
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Consider antisymmetric adjacency matrices, which correspond to pfaffian orientation: A(Pm), A(Hm,n),

A(Pm × PN ) and A(G′); let X = A(Hm,n)
−1. If we calculate detA(Hm,n) in the block form, we obtain

similarly to calculations in the example 4.2, that detA(Hm,n) = detF (A), where F is some polynomial

with integer coefficients (actually it is Un(x/2) again up to a sign). Therefore, the matrix F (A) is in-

teger. Let Ak be the block-diagonal matrix, which contains k blocks F (A) on the diagonal. Obviously,

detAk = detA(Hm,n)
k.

The matrix A(G′) is obtained by «the repair» from the block-diagonal matrix, which contains k blocks

±A(Pm) on the diagonal. During the repair we add «correction» blocks to blocks on the main diagonal

and two neighbouring diagonal rows. Similar to (8) these «correction» blocks are determined by the

matrices ±X1,1, ±X1,n, ±Xn,1, ±Xn,n. By the Kramer’s formula for elements of the inverse matrix, we

obtain that the matrices F (A)X1,1, F (A)X1,n, F (A)Xn,1, F (A)Xn,n are integer. So, the matrix AkA(G
′)

is integer.

Thus, as a result of removing the chips we obtain the identity

detA(Pm × PN ) =
(
detA(Hm,n)

)k+1
detA(G′) = detA(Hm,n) det(AkA(G

′)),

which shows, that detA(Pm×PN ) is divisible by detA(Hm,n). Since the matrices are antisymmetric, the

proof works for the pfaffians, too.
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