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Motivation

I How to measure efficiency of the data structure?
I Practically: performance evaluation. Non-portable,

architecture- and workload- dependent.
I Theoretically: lower bounds. Usually worst-case

behaviour, rarely observed in practice.
I Concurrency-optimality [Gramoli et al., SIROCCO 2016].

List-based Set [Gramoli et al., DISC 2015].
I This paper: a concurrency-optimal binary search tree

exists and performs well.
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Specification

High-level: Set type.
I Insert(x)

I true if x does not exists
I false if x exist

I Delete(x)
I true if x exists
I false if x does not exist

I Contains(x)
I true if x exists
I false if x does not exist
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Partially-external BST

Data structure: partially-external
binary search tree.

I Key in the node is greater than
keys in the left subtree and is
less than keys in the right
subtree.

I Two types of nodes: DATA
(white) or ROUTING (grey).

I Invariant: ROUTING nodes
always have two children.

I Set consists of keys in DATA
nodes.
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Traverse

At the beginning of the operation we traverse a tree starting
from the root to find a node with x to delete or a position to
insert x :

I If the key in the current node is greater than x then go to
the left subtree.

I If the key in the current node is less than x then go to
the right subtree.

I If the key in the current node equals to x or the node is a
leaf then stop.
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Sequential. Insert leaf. Insert(3)

2

null

3

8 / 67



Sequential. Insert leaf. Insert(3)
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Sequential. Insert ROUTING. Insert(2)

2
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Sequential. Insert ROUTING. Insert(2)

2
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Sequential. Delete node with two children.
Delete(2)

2
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Sequential. Delete node with two children.
Delete(2)

2

13 / 67



Sequential. Delete node with one child. Delete(2)

6

2
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Sequential. Delete node with one child. Delete(2)

6
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Sequential. Delete leaf with DATA parent.
Delete(3)

2

3
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Sequential. Delete leaf with DATA parent.
Delete(3)

2

null
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Sequential. Delete leaf with ROUTING parent.
Delete(3)
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Sequential. Delete leaf with ROUTING parent.
Delete(3)

6
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Concurrent BST

I Supports Insert, Delete and Contains.
I BST structure and invariants.
I Linearizability [Herlihy et al., TOPLAS 1990] with respect

to Set type.
I State-of-the-art concurrent BSTs: [Bronson et al.,

PPoPP 2010], [Ellen et al., PODC 2010], [Crain et al.,
Euro-Par 2013], [Drachsler et al., PPoPP 2014],
[Natarajan et al., PPoPP 2014].
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Non-linearizable schedule

I Consider for a moment that we run sequential
implementation in a concurrent environment.

I Schedule is an execution of the sequential algorithm in
concurrent environment

p inserts 3 and q inserts 4. They traverse the tree and are
ready to insert a leaf.
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Non-linearizable schedule

p sets the leaf link to 3.
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p q
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Non-linearizable schedule

q overwrites the link. Insert(3) is lost: Contains(3) returns
false.
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Non-linearizable schedule

insert(3)

insert(4)

contains(3)p

q

true

true

?false
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Schedules

I Schedule is accepted if some execution of a concurrent
implementation contains it as a subsequence.

I Not all schedules should be accepted. (As the presented
one)

I Observably correct schedules: the prefixes of the
schedule are linearizable and the shared data structure is
a BST.
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Definition

An implementation is concurrency-optimal if it accepts all
observably correct schedules and only observably correct
schedules.
Intuitively: a concurrency-optimal BST employs as much
synchronization as necessary for high-level correctness.
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Interesting schedule

To illustrate the difficulty of designing a concurrency-optimal
BST consider the following schedule.

p invokes Delete(3), traverses to node 3 and falls asleep.
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3

p

3

p

delete(3)p

q
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Interesting schedule

q invokes Delete(3), traverses to node 3, unlinks it and
returns.

2
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p

null

delete(3)

delete(3)

p

q
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Interesting schedule

q invokes Insert(3), links a new node 3 to node 2 and
returns.
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delete(3) insert(3)

p

q
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Interesting schedule

p wakes up and unlinks the new node from the tree.
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delete(3)

delete(3) insert(3)

p

q
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Interesting schedule

I This schedule is observably correct.
I But it is not accepted by partially-external BSTs [Bronson

et al., PPoPP 2010] and [Crain et al., Euro-Par 2013].
I External BSTs ([Ellen et al., PODC 2010], [Natarajan et

al., PPoPP 2014]) and internal BST ([Drachsler et al.,
PPoPP 2014]) do not accept similar schedule.
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Optimal implementation

I We perform everything optimistically: traverse, load all
the necessary nodes and fields, such as state, choose the
case.

I Right before the modification we take a lock on
everything and check all the necessary conditions:

I link is still present;
I link goes to the node with the proper value;
I proper state: DATA or ROUTING;
I node is not removed, i.e., deleted mark is not set;
I proper number of children.
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Optimal implementation

I The critical section consists of one line of sequential
implementation together with “wrapping block”.

I Could be interleaved in any way if the conditions are
satisfied.

I The conditions are satisfied if and only if the schedule is
observably correct.

I Such an implementation is concurrency-optimal.
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Additional optimizations.

I Can be optimized further.
I Accept more interleavings of the concurrent

implementation.
I Three locks: state, left and right children ([Natarajan et

al., PPoPP 2014]);
I Read/write locks.
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Implementation

I Now, look into more details which locks are taken and
which checks are performed in different cases.

I Assume that an update operation already traversed, read
all the nodes and fields and chose the case.
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Implementation. Insert leaf. Insert(3).

2 1. lock right edge
compare with null

2. lock state
not deleted

null

3
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Implementation. Insert leaf. Insert(3).
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Implementation. Insert leaf. Insert(3).
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Implementation. Insert ROUTING. Insert(2).

2 lock state
state == ROUTING

not deleted
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Implementation. Insert ROUTING. Insert(2).

2
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Delete node with two children. Delete(2)

2 lock state
state == DATA

not deleted
check for 2 children
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Delete node with two children. Delete(2)

2
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Delete node with one child. Delete(2)

6

1. lock right edge
check reference

2. lock left edge
check reference

3. lock state
state == DATA

not deleted
check for 1 child

2
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Delete node with one child. Delete(2)
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Delete node with one child. Delete(2)
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Delete leaf with DATA parent. Delete(3)

2

3

1. lock right edge
check value

2. lock state
not deleted
check for leaf

3. lock state
state == DATA

not deleted
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Delete leaf with DATA parent. Delete(3)

2

3

1. lock right edge
check value

2. lock state
not deleted
check for leaf

3. lock state
state == DATA

not deleted

52 / 67



Delete leaf with DATA parent. Delete(3)
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Delete leaf with ROUTING parent. Delete(3)
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Delete leaf with ROUTING parent. Delete(3)
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Delete leaf with ROUTING parent. Delete(3)
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Delete leaf with ROUTING parent. Delete(3)
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Delete leaf with ROUTING parent. Delete(3)
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Delete leaf with ROUTING parent. Delete(3)

6

1. lock right edge
check value

2. lock state
not deleted
check for leaf

3. lock left edge
check reference

4. lock left edge
check reference

5. lock state
state == ROUTING
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Settings

I 80-way Intel machine and 64-way AMD machine.
I Update ratio x: 0, 20, 100.

I x
2% insert,

I x
2% delete,

I 100 − x% contains.
I Value range: 215, 219 and 221.
I The tree is prepopulated with range/2 values.
I Metric: throughput (operations per second).
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Algorithms

I Concurrency Friendly, [Crain et al., Euro-Par 2013];
I Logical Ordering, [Drachsler et al., PPoPP 2014];
I BCCO, [Bronson et al., PPoPP 2010];
I EFRB, [Ellen et al., PODC 2010].
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Intel machine
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AMD machine
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Conclusion

I Provably concurrency-optimal algorithm may perform well
in practice.

I Concurrency-optimality could be an adequate design
principle for efficient concurrent data structures. Besides
BST, Linked List based Set [Gramoli et al., DISC 2015].

I Which other data structures could be optimized using this
approach? What are the limitations?
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Questions

Thank you for attention!
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