A Concurrency-Optimal Binary Search

Tree

Vitaly Aksenov, INRIA Paris / ITMO University
Vincent Gramoli, University of Sydney
Petr Kuznetsov, Telecom ParisTech
Anna Malova, Washington University in St.Louis
Srivatsan Ravi, University of Southern California

Euro-Par 2017

1/67

» How to measure efficiency of the data structure?
» Practically: performance evaluation. Non-portable,
architecture- and workload- dependent.
» Theoretically: lower bounds. Usually worst-case
behaviour, rarely observed in practice.
» Concurrency-optimality [Gramoli et al., SIROCCO 2016].
List-based Set [Gramoli et al., DISC 2015].

» This paper: a concurrency-optimal binary search tree
exists and performs well.

2/67

Sequential partially-external BST
Concurrent Binary Search Tree
Concurrency Optimality
Concurrency-optimal BST
Evaluation

Conclusion

3/67

Sequential partially-external BST

4/67

High-level: Set type.
» Insert(x)

» true if x does not exists
» false if x exist

» Delete(x)

» true if x exists

» false if x does not exist
» Contains(x)

» true if x exists

» false if x does not exist

5/67

Partially-external BST

Data structure: partially-external
binary search tree.

» Key in the node is greater than a
keys in the left subtree and is

less than keys in the right a

subtree.

» Two types of nodes: DATA a a

(white) or ROUTING (grey).
» Invariant: ROUTING nodes G

always have two children.

» Set consists of keys in DATA
nodes.

{1,2,5,6, 8}

6/67

Traverse

At the beginning of the operation we traverse a tree starting
from the root to find a node with x to delete or a position to
insert x:
» If the key in the current node is greater than x then go to
the left subtree.
» If the key in the current node is less than x then go to
the right subtree.
» If the key in the current node equals to x or the node is a
leaf then stop.

7/67

Sequential. Insert leaf. Insert(3)

null

8/67

Sequential. Insert leaf. Insert(3)

9/67

Sequential. Insert ROUTING. Insert(2)

10/67

Sequential. Insert ROUTING. Insert(2)

11/67

Sequential. Delete node with two children.

Delete(2)

12/67

Sequential. Delete node with two children.

Delete(2)

13/67

Sequential. Delete node with one child. Delete(2)

14 /67

Sequential. Delete node with one child. Delete(2)

15 /67

Sequential. Delete leaf with DATA parent.

Delete(3)

16 /67

Sequential. Delete leaf with DATA parent.

Delete(3)

null

17 /67

Sequential. Delete leaf with ROUTING parent.

Delete(3)

18 /67

Sequential. Delete leaf with ROUTING parent.

Delete(3)

19/67

Concurrent Binary Search Tree

20/ 67

Concurrent BST

» Supports Insert, Delete and Contains.
» BST structure and invariants.

» Linearizability [Herlihy et al., TOPLAS 1990] with respect
to Set type.

» State-of-the-art concurrent BSTs: [Bronson et al.,
PPoPP 2010], [Ellen et al., PODC 2010], [Crain et al.,
Euro-Par 2013], [Drachsler et al., PPoPP 2014],
[Natarajan et al., PPoPP 2014].

21/67

Concurrency Optimality

22 /67

Non-linearizable schedule

» Consider for a moment that we run sequential
implementation in a concurrent environment.

» Schedule is an execution of the sequential algorithm in
concurrent environment

p inserts 3 and q inserts 4. They traverse the tree and are
ready to insert a leaf.

7Y

23 /67

Non-linearizable schedule

p sets the leaf link to 3.

24 /67

Non-linearizable schedule

q overwrites the link. Insert(3) is lost: Contains(3) returns

false.
©
(2]
ANNOIO
p q

25 /67

Non-linearizable schedule

[insert(3)] [contains(3) |
| true | [?false]

q [insert(4) |
| true |

26/ 67

Schedules

» Schedule is accepted if some execution of a concurrent
implementation contains it as a subsequence.
» Not all schedules should be accepted. (As the presented
one)

» Observably correct schedules: the prefixes of the
schedule are linearizable and the shared data structure is

a BST.

27 /67

An implementation is concurrency-optimal if it accepts all
observably correct schedules and only observably correct
schedules.

Intuitively: a concurrency-optimal BST employs as much
synchronization as necessary for high-level correctness.

28 /67

Interesting schedule

To illustrate the difficulty of designing a concurrency-optimal
BST consider the following schedule.

p invokes Delete(3), traverses to node 3 and falls asleep.

delete(3)]

/N

29 /67

Interesting schedule

q invokes Delete(3), traverses to node 3, unlinks it and
returns.

[delete(3)]
" T

p [delete(3) |

null @ L :

30/67

Interesting schedule

q invokes Insert(3), links a new node 3 to node 2 and
returns.

b E delete(3) 7
P q [delete(3)] | insert(3) |
L JL l

O

31/67

Interesting schedule

p wakes up and unlinks the new node from the tree.

[delete(3)]
P T]

q [delete(3) | [insert(3) |
L JC i

/
null @

32/67

Interesting schedule

» This schedule is observably correct.

» But it is not accepted by partially-external BSTs [Bronson
et al., PPoPP 2010] and [Crain et al., Euro-Par 2013].

» External BSTs ([Ellen et al., PODC 2010], [Natarajan et
al., PPoPP 2014]) and internal BST ([Drachsler et al.,
PPoPP 2014]) do not accept similar schedule.

33/67

Concurrency-optimal BST

34 /67

Optimal implementation

» We perform everything optimistically: traverse, load all
the necessary nodes and fields, such as state, choose the
case.

» Right before the modification we take a lock on
everything and check all the necessary conditions:

» link is still present;

» link goes to the node with the proper value;

» proper state: DATA or ROUTING;

» node is not removed, i.e., deleted mark is not set;
» proper number of children.

3567

Optimal implementation

» The critical section consists of one line of sequential
implementation together with “wrapping block”.

» Could be interleaved in any way if the conditions are
satisfied.

» The conditions are satisfied if and only if the schedule is
observably correct.

» Such an implementation is concurrency-optimal.

36 /67

Additional optimizations.

» Can be optimized further.

» Accept more interleavings of the concurrent
implementation.

» Three locks: state, left and right children ([Natarajan et
al., PPoPP 2014]);
» Read/write locks.

37/67

Implementation

» Now, look into more details which locks are taken and
which checks are performed in different cases.

» Assume that an update operation already traversed, read
all the nodes and fields and chose the case.

38/67

Implementation. Insert leaf. Insert(3).

1. lock right edge
compare with null
null

3967

Implementation. Insert leaf. Insert(3).

2. lock state 1. lock right edge
not deleted compare with null

null

40/67

Implementation. Insert leaf. Insert(3).

41/67

Implementation. Insert ROUTING. Insert(2).

lock state
state == ROUTING
not deleted

42 /67

Implementation. Insert ROUTING. Insert(2).

43 /67

Delete node with two children. Delete(2)

lock state
state == DATA

not deleted
A A check for 2 children

44 /67

Delete node with two children. Delete(2)

45 /67

Delete node with one child. Delete(2)

0
O
A

1. lock right edge
check reference

46 /67

Delete node with one child. Delete(2)

. lock left ed
2chec;|C< re?‘e:[reencgee e
O
/\

1. lock right edge
check reference

47 /67

Delete node with one child. Delete(2)

2. lock left edge
check reference

3. lock state
state == DATA
not deleted
check for 1 child

1. lock right edge
check reference

48 /67

Delete node with one child. Delete(2)

/\

49 /67

Delete leaf with DATA parent. Delete(3)

1. lock right edge
check value

50/ 67

Delete leaf with DATA parent. Delete(3)

1. lock right edge
check value

2. lock state
not deleted
check for leaf

51/67

Delete leaf with DATA parent. Delete(3)

1. lock right edge

3. lock state — check value
state == DATA
not deleted 2. lock state
not deleted

check for leaf

52 /67

Delete leaf with DATA parent. Delete(3)

null

53 /67

Delete leaf with ROUTING parent. Delete(3)

/\
A @

1. lock right edge
check%alue &

54 /67

Delete leaf with ROUTING parent. Delete(3)

/\
A e 2. lock state

not deleted

1. lock right edge check for leaf

check value

55 /67

Delete leaf with ROUTING parent. Delete(3)

3. lock left edge
check reference

2. lock state
not deleted

1. lock right edge check for leaf

check value

56 /67

Delete leaf with ROUTING parent. Delete(3)

4. lock left edge
check reference

3. lock left edge
check reference

2. lock state
not deleted

1. lock right edge check for leaf

check value

57 /67

Delete leaf with ROUTING parent. Delete(3)

4. lock left edge
check reference

5. lock state
state == ROUT|NG
not deleted

3. lock left edge
check reference

2. lock state
not deleted

1. lock right edge check for leaf

check value

58 /67

Delete leaf with ROUTING parent. Delete(3)

59 /67

Evaluation

60 /67

80-way Intel machine and 64-way AMD machine.
Update ratio x: 0, 20, 100.

» 5% insert,

» 3% delete,

» 100 — x% contains.

Value range: 2%%, 219 and 221

The tree is prepopulated with range/2 values.

v

v

v

v

v

Metric: throughput (operations per second).

61/67

Algorithms

» Concurrency Friendly, [Crain et al., Euro-Par 2013];
Logical Ordering, [Drachsler et al., PPoPP 2014];
BCCO, [Bronson et al., PPoPP 2010];

EFRB, [Ellen et al., PODC 2010].

v

v

v

62 /67

Intel machine

—e— Concurrency Optimal —#— Concurrency Friendly
—e— Logical Ordering —*— BCCO

—+ EFRB

Update rate: 0% Update rate: 20% Update rate: 100%

T T T T T T T T T T
40 *
_ 60 40 i
5]
™
z 40 | |
%) 2 120
~ 20
U | | | | U | | | L] U | | | L]
0 20 40 60 80 0 20 40 60 &0 0 20 40 60 80

Number of threads

63 /67

AMD machine

Range: 22!

—eo— Concurrency Optimal

—eo— Logical Ordering

I

BCCO

—a— Concurrency Friendly

—+— EFRB

Update rate: 0% Update rate: 20%

Update rate: 100%

Number of threads

64 /67

Conclusion

65 /67

» Provably concurrency-optimal algorithm may perform well
in practice.

» Concurrency-optimality could be an adequate design
principle for efficient concurrent data structures. Besides
BST, Linked List based Set [Gramoli et al., DISC 2015].

» Which other data structures could be optimized using this
approach? What are the limitations?

66 / 67

Thank you for attention!

67 /67

	Sequential partially-external BST
	Concurrent Binary Search Tree
	Concurrency Optimality
	Concurrency-optimal BST
	Evaluation
	Conclusion

