
A Concurrency-Optimal Binary Search
Tree

Vitaly Aksenov, INRIA Paris / ITMO University
Vincent Gramoli, University of Sydney
Petr Kuznetsov, Telecom ParisTech

Anna Malova, Washington University in St.Louis
Srivatsan Ravi, University of Southern California

Euro-Par 2017

1 / 67



Motivation

I How to measure efficiency of the data structure?
I Practically: performance evaluation. Non-portable,

architecture- and workload- dependent.
I Theoretically: lower bounds. Usually worst-case

behaviour, rarely observed in practice.
I Concurrency-optimality [Gramoli et al., SIROCCO 2016].

List-based Set [Gramoli et al., DISC 2015].
I This paper: a concurrency-optimal binary search tree

exists and performs well.

2 / 67



Outline

Sequential partially-external BST

Concurrent Binary Search Tree

Concurrency Optimality

Concurrency-optimal BST

Evaluation

Conclusion

3 / 67



Outline

Sequential partially-external BST

Concurrent Binary Search Tree

Concurrency Optimality

Concurrency-optimal BST

Evaluation

Conclusion

4 / 67



Specification

High-level: Set type.
I Insert(x)

I true if x does not exists
I false if x exist

I Delete(x)
I true if x exists
I false if x does not exist

I Contains(x)
I true if x exists
I false if x does not exist

5 / 67



Partially-external BST

Data structure: partially-external
binary search tree.

I Key in the node is greater than
keys in the left subtree and is
less than keys in the right
subtree.

I Two types of nodes: DATA
(white) or ROUTING (grey).

I Invariant: ROUTING nodes
always have two children.

I Set consists of keys in DATA
nodes.

6

4

52

1

8

{1, 2, 5, 6, 8}

6 / 67



Traverse

At the beginning of the operation we traverse a tree starting
from the root to find a node with x to delete or a position to
insert x :

I If the key in the current node is greater than x then go to
the left subtree.

I If the key in the current node is less than x then go to
the right subtree.

I If the key in the current node equals to x or the node is a
leaf then stop.

7 / 67



Sequential. Insert leaf. Insert(3)

2

null

3

8 / 67



Sequential. Insert leaf. Insert(3)

2

null

3

9 / 67



Sequential. Insert ROUTING. Insert(2)

2

10 / 67



Sequential. Insert ROUTING. Insert(2)

2

11 / 67



Sequential. Delete node with two children.
Delete(2)

2

12 / 67



Sequential. Delete node with two children.
Delete(2)

2

13 / 67



Sequential. Delete node with one child. Delete(2)

6

2

14 / 67



Sequential. Delete node with one child. Delete(2)

6

15 / 67



Sequential. Delete leaf with DATA parent.
Delete(3)

2

3

16 / 67



Sequential. Delete leaf with DATA parent.
Delete(3)

2

null

17 / 67



Sequential. Delete leaf with ROUTING parent.
Delete(3)

6

2

3

18 / 67



Sequential. Delete leaf with ROUTING parent.
Delete(3)

6

19 / 67



Outline

Sequential partially-external BST

Concurrent Binary Search Tree

Concurrency Optimality

Concurrency-optimal BST

Evaluation

Conclusion

20 / 67



Concurrent BST

I Supports Insert, Delete and Contains.
I BST structure and invariants.
I Linearizability [Herlihy et al., TOPLAS 1990] with respect

to Set type.
I State-of-the-art concurrent BSTs: [Bronson et al.,

PPoPP 2010], [Ellen et al., PODC 2010], [Crain et al.,
Euro-Par 2013], [Drachsler et al., PPoPP 2014],
[Natarajan et al., PPoPP 2014].

21 / 67



Outline

Sequential partially-external BST

Concurrent Binary Search Tree

Concurrency Optimality

Concurrency-optimal BST

Evaluation

Conclusion

22 / 67



Non-linearizable schedule

I Consider for a moment that we run sequential
implementation in a concurrent environment.

I Schedule is an execution of the sequential algorithm in
concurrent environment

p inserts 3 and q inserts 4. They traverse the tree and are
ready to insert a leaf.

5

2

null 3 4

p q

3 4

p q

23 / 67



Non-linearizable schedule

p sets the leaf link to 3.

5

2

3 4

p q

24 / 67



Non-linearizable schedule

q overwrites the link. Insert(3) is lost: Contains(3) returns
false.

5

2

3 4

p q

25 / 67



Non-linearizable schedule

insert(3)

insert(4)

contains(3)p

q

true

true

?false

26 / 67



Schedules

I Schedule is accepted if some execution of a concurrent
implementation contains it as a subsequence.

I Not all schedules should be accepted. (As the presented
one)

I Observably correct schedules: the prefixes of the
schedule are linearizable and the shared data structure is
a BST.

27 / 67



Definition

An implementation is concurrency-optimal if it accepts all
observably correct schedules and only observably correct
schedules.
Intuitively: a concurrency-optimal BST employs as much
synchronization as necessary for high-level correctness.

28 / 67



Interesting schedule

To illustrate the difficulty of designing a concurrency-optimal
BST consider the following schedule.

p invokes Delete(3), traverses to node 3 and falls asleep.

2

3

p

3

p

delete(3)p

q

29 / 67



Interesting schedule

q invokes Delete(3), traverses to node 3, unlinks it and
returns.

2

3

p

null

delete(3)

delete(3)

p

q

30 / 67



Interesting schedule

q invokes Insert(3), links a new node 3 to node 2 and
returns.

2

3

p

3

delete(3)

delete(3) insert(3)

p

q

31 / 67



Interesting schedule

p wakes up and unlinks the new node from the tree.

2

3

p

3

p

null

delete(3)

delete(3) insert(3)

p

q

32 / 67



Interesting schedule

I This schedule is observably correct.
I But it is not accepted by partially-external BSTs [Bronson

et al., PPoPP 2010] and [Crain et al., Euro-Par 2013].
I External BSTs ([Ellen et al., PODC 2010], [Natarajan et

al., PPoPP 2014]) and internal BST ([Drachsler et al.,
PPoPP 2014]) do not accept similar schedule.

2

3

p

33 / 67



Outline

Sequential partially-external BST

Concurrent Binary Search Tree

Concurrency Optimality

Concurrency-optimal BST

Evaluation

Conclusion

34 / 67



Optimal implementation

I We perform everything optimistically: traverse, load all
the necessary nodes and fields, such as state, choose the
case.

I Right before the modification we take a lock on
everything and check all the necessary conditions:

I link is still present;
I link goes to the node with the proper value;
I proper state: DATA or ROUTING;
I node is not removed, i.e., deleted mark is not set;
I proper number of children.

35 / 67



Optimal implementation

I The critical section consists of one line of sequential
implementation together with “wrapping block”.

I Could be interleaved in any way if the conditions are
satisfied.

I The conditions are satisfied if and only if the schedule is
observably correct.

I Such an implementation is concurrency-optimal.

36 / 67



Additional optimizations.

I Can be optimized further.
I Accept more interleavings of the concurrent

implementation.
I Three locks: state, left and right children ([Natarajan et

al., PPoPP 2014]);
I Read/write locks.

37 / 67



Implementation

I Now, look into more details which locks are taken and
which checks are performed in different cases.

I Assume that an update operation already traversed, read
all the nodes and fields and chose the case.

38 / 67



Implementation. Insert leaf. Insert(3).

2 1. lock right edge
compare with null

2. lock state
not deleted

null

3

39 / 67



Implementation. Insert leaf. Insert(3).

2 1. lock right edge
compare with null

2. lock state
not deleted

null

3

40 / 67



Implementation. Insert leaf. Insert(3).

2

1. lock right edge
compare with null

2. lock state
not deleted

null

3

41 / 67



Implementation. Insert ROUTING. Insert(2).

2 lock state
state == ROUTING

not deleted

42 / 67



Implementation. Insert ROUTING. Insert(2).

2

43 / 67



Delete node with two children. Delete(2)

2 lock state
state == DATA

not deleted
check for 2 children

44 / 67



Delete node with two children. Delete(2)

2

45 / 67



Delete node with one child. Delete(2)

6

1. lock right edge
check reference

2. lock left edge
check reference

3. lock state
state == DATA

not deleted
check for 1 child

2

46 / 67



Delete node with one child. Delete(2)

6

1. lock right edge
check reference

2. lock left edge
check reference

3. lock state
state == DATA

not deleted
check for 1 child

2

47 / 67



Delete node with one child. Delete(2)

6

1. lock right edge
check reference

2. lock left edge
check reference

3. lock state
state == DATA

not deleted
check for 1 child

2

48 / 67



Delete node with one child. Delete(2)

6

1. lock right edge
check reference

2. lock left edge
check reference

3. lock state
state == DATA

not deleted
check for 1 child

49 / 67



Delete leaf with DATA parent. Delete(3)

2

3

1. lock right edge
check value

2. lock state
not deleted
check for leaf

3. lock state
state == DATA

not deleted

50 / 67



Delete leaf with DATA parent. Delete(3)

2

3

1. lock right edge
check value

2. lock state
not deleted
check for leaf

3. lock state
state == DATA

not deleted

51 / 67



Delete leaf with DATA parent. Delete(3)

2

3

1. lock right edge
check value

2. lock state
not deleted
check for leaf

3. lock state
state == DATA

not deleted

52 / 67



Delete leaf with DATA parent. Delete(3)

2

1. lock right edge
check value

2. lock state
not deleted
check for leaf

3. lock state
state == DATA

not deleted

null

53 / 67



Delete leaf with ROUTING parent. Delete(3)

6

2

3

1. lock right edge
check value

2. lock state
not deleted
check for leaf

3. lock left edge
check reference

4. lock left edge
check reference

5. lock state
state == ROUTING

not deleted

54 / 67



Delete leaf with ROUTING parent. Delete(3)

6

2

3

1. lock right edge
check value

2. lock state
not deleted
check for leaf

3. lock left edge
check reference

4. lock left edge
check reference

5. lock state
state == ROUTING

not deleted

55 / 67



Delete leaf with ROUTING parent. Delete(3)

6

2

3

1. lock right edge
check value

2. lock state
not deleted
check for leaf

3. lock left edge
check reference

4. lock left edge
check reference

5. lock state
state == ROUTING

not deleted

56 / 67



Delete leaf with ROUTING parent. Delete(3)

6

2

3

1. lock right edge
check value

2. lock state
not deleted
check for leaf

3. lock left edge
check reference

4. lock left edge
check reference

5. lock state
state == ROUTING

not deleted

57 / 67



Delete leaf with ROUTING parent. Delete(3)

6

2

3

1. lock right edge
check value

2. lock state
not deleted
check for leaf

3. lock left edge
check reference

4. lock left edge
check reference

5. lock state
state == ROUTING

not deleted

58 / 67



Delete leaf with ROUTING parent. Delete(3)

6

1. lock right edge
check value

2. lock state
not deleted
check for leaf

3. lock left edge
check reference

4. lock left edge
check reference

5. lock state
state == ROUTING

not deleted

59 / 67



Outline

Sequential partially-external BST

Concurrent Binary Search Tree

Concurrency Optimality

Concurrency-optimal BST

Evaluation

Conclusion

60 / 67



Settings

I 80-way Intel machine and 64-way AMD machine.
I Update ratio x: 0, 20, 100.

I x
2% insert,

I x
2% delete,

I 100 − x% contains.
I Value range: 215, 219 and 221.
I The tree is prepopulated with range/2 values.
I Metric: throughput (operations per second).

61 / 67



Algorithms

I Concurrency Friendly, [Crain et al., Euro-Par 2013];
I Logical Ordering, [Drachsler et al., PPoPP 2014];
I BCCO, [Bronson et al., PPoPP 2010];
I EFRB, [Ellen et al., PODC 2010].

62 / 67



Intel machine

0 20 40 60 80

0

20

40

60

R
an

ge
:
22

1

Update rate: 0%

0 20 40 60 80

0

20

40

Number of threads

Update rate: 20%

0 20 40 60 80

0

20

40

Update rate: 100%

Concurrency Optimal Concurrency Friendly
Logical Ordering BCCO EFRB

63 / 67



AMD machine

0 20 40 60
0

5

10

15

R
an

ge
:
22

1

Update rate: 0%

0 20 40 60
0

5

10

15

Number of threads

Update rate: 20%

0 20 40 60

0

5

10

15

Update rate: 100%

Concurrency Optimal Concurrency Friendly
Logical Ordering BCCO EFRB

64 / 67



Outline

Sequential partially-external BST

Concurrent Binary Search Tree

Concurrency Optimality

Concurrency-optimal BST

Evaluation

Conclusion

65 / 67



Conclusion

I Provably concurrency-optimal algorithm may perform well
in practice.

I Concurrency-optimality could be an adequate design
principle for efficient concurrent data structures. Besides
BST, Linked List based Set [Gramoli et al., DISC 2015].

I Which other data structures could be optimized using this
approach? What are the limitations?

66 / 67



Questions

Thank you for attention!

67 / 67


	Sequential partially-external BST
	Concurrent Binary Search Tree
	Concurrency Optimality
	Concurrency-optimal BST
	Evaluation
	Conclusion

