On Helping and Stacks

Vitaly Aksenov, INRIA Paris / ITMO University

Petr Kuznetsov, Telecom ParisTech
Anatoly Shalyto, ITMO University

NETYS 2018

1/21

» Linearization-based helping [Censor-Hillel et al., 2015]: a
process takes a step and fixes the order between two
operations.

» Theorem: stack and queue do not have a wait-free
help-free implementation using compare&swap and
fetch&add.

» Proved for exact order types.
> Stack is not exact order type.
» We give a direct proof for stack.

2/21

Helping
Original proof. Refutation
Correct proof

Conclusion

3/21

Helping

4/21

What is helping?

» Intuitively: an operation performs some work on behalf of
another.

» Often appears in wait-free and lock-free algorithms.

» Examples:

» Universal wait-free construction [Herlihy, 1991];
» Lock-free binary search tree [Ellen et al., 2010].

» How to define helping formally?
» Linearization-based helping.

5 /21

Linearization function

,,

I I
h C Y
—]
C *]
OOi @

6 /21

Helping. Decided before

Definition 1
We say that op; is decided before op, in h with respect to f, if
there exists no extension s of h such that op, <¢(s) op1.

e R S
St C T N
[o i [W i
—* T - g

7/21

Helping. Definition

Definition 2
An implementation has helping if op; by p; is decided before
op> by p, after a step of ps.

[Oop1
L
op2

-
L
[op3
L

fl

8 /21

Helping. Definition

Definition 2
An implementation has helping if op; by p; is decided before
op> by p, after a step of ps.

8 /21

Helping. Definition

Definition 2
An implementation has helping if op; by p; is decided before
op> by p, after a step of ps.

8 /21

Helping. Definition

Definition 2
An implementation has helping if op; by p; is decided before
op> by p, after a step of ps.

(o)
['plgi
(o)
o
(0] !
-
!

8 /21

Helping. Definition

Definition 2
An implementation has helping if op; by p; is decided before
op> by p, after a step of ps.

8 /21

Helping. Definition

Definition 2
An implementation has helping if op; by p; is decided before
op> by p, after a step of ps.

8 /21

Original proof. Refutation

9/21

Exact Order Type

There exist an operation op, an infinite sequence W and a
sequence R such that for any n there exists m...

X
R; R

4. 7 ... - 7 [
7 C — —
- i
7 —

I]
[_

<+—

10/ 21

Exact Order Type. Queue

» op =enq(l), W; = enq(i + 1) and R; = deq().
» Given n, we choose m = n+ 1.

2 i+1 n+2
1 T
enq(2) enq(n + 1)enq(n+2) deq() enq(1) deq() deq()
w; w, Wisi R op R Roy1
F ... - - ... 0 ...] F |
[_1 [g . _1 | _ [] [_1
F | F - ar | r] C | F |
C o = e] C | | 1]
Wl Wn op Rl Ri Wn+1 Rn+1
enq(2) enq(n+1) enq(l) deq() deq() enq(n+2) deq()
| ! l
2 i+1 1

1/ 21

Exact Order Type

Theorem 3 (Censor-Hillel et al., 2015)

Any exact order type does not have a wait-free help-free
implementation in systems with compare&swap and fetch&add
primitives.

Theorem 4

Stack is not exact order type.

12 /21

Stack is not Exact Order Type

n+2
1
push(2) push(n + 1) push(n +2) pop() push(1) pop() pop()
Wi w, W1 Ry op R; Rot1
— 1 - [- i I P |] [|
[1 [I g 1 | |] [1
— | [- - | [- | [|
C_JT——C JL JC 3 C C 1 3
Wi W, op Ry R; Wi Rot1
push(2) push(n+1) push(1) pop() pop() push(n +2) pop()
1

13 /21

Stack is not Exact Order Type

1
1
push(2) push(n + 1) push(n +2) push(1) pop() pop() pop()
Wi w, Whi1 op Ry R; Rnt1
— 1 - [- ar i | [] [|
C | [I d0C d0C | [_ [|
[1 [I - 1 [] (N | [1
[I [I - _1 [] | i I _1
Wi W, op Ry R; Wi Rot1
push(2) push(n+1) push(1) pop() push(n + 2) pop()

pop()
!
1

13 /21

Stack is not Exact Order Type. Construction

Sy S¢

14 /21

Stack is not Exact Order Type. Construction

push(a) push(b)
W(n)o W, W(n) o op

<] ,,

Sy S¢

14 /21

Stack is not Exact Order Type. Construction

push(b)
W(n) o W10 o0p W(n) o op

b

g b

Sy Se

14 /21

Stack is not Exact Order Type. Construction

W(n)o W,,10o0po R(x) W (n) o op o R(x)

b

o b

Sy Se

14 /21

Stack is not Exact Order Type. Construction

W(n)o W, 100poR(y —1) W(n)oopoR(y —1)

b

o :

Sy Se

14 /21

Stack is not Exact Order Type. Construction

W(n) o W,100poR(y) W(n) o opo R(y)

Sy S¢

14 /21

Stack is not Exact Order Type. Construction

push(a)
W(n)o W,,100poR(y) W(n)oopoR(y)o W,

Sy S¢

14 /21

Correct proof

15 / 21

Theorem 5
Stack does not have a wait-free help-free implementation in a
system with at least three processes and with compare&swap
primitive.
» Programs:
» first process — push(1)

» second process — push(2) o push(3)o...
» third process — pop() o pop()o...

» We build a history in which the first process makes
infinite number of steps, but never finishes.

16 / 21

Proof. History Construction

1h ¢

2 op; < push(1)

3 id2 — 2

4 while true:

5 opy < push(idy)

6 while true:

7 if op; is not decided before op, in hop;:
8 h<+ hopy

9 continue

10 if op, is not decided before op; in hopy:
11 h< hops

12 continue

13 break

14 h< hop

15 h< hopy

16 while opy is not completed:
17 h<« hops

18 idp < idr + 1

17 /21

Proof. History Construction

1h e r push(1)

2 op; < push(1) -

> ide 2 poL L

4+ while true: - push(2) push(3) push(id>)
5(opy < push(idz))

6 while true:

7 if op; is not decided before op, in hop;:
8 h<+ hopy

9 continue

10 if op, is not decided before op; in hopy:
11 h< hops

12 continue

13 break

14 h< hop

15 h< hopy

16 while opy is not completed:
17 h<« hops

18 idp < idr + 1

17 /21

Proof. History Construction

1h ¢

push(1)

2 op; < push(1)

4 while true:

5
6
7
8
9
10

11
12

13
\

14
15
16
17
18

-
L
3 idy <2 .
2 P2 ————j
p

il [
mE
ush(3) push(idy)

o []]

. ush(2)
opy < push(idy)

while true:

if op; is not decided before op, in hop;:

h(—hopl
continue

if opp is not decided before op; in hopy:

h<+ hop;
continue
break

h< hops

h< hop

while opp is not completed:
h<« hops

idy « idr + 1

17 /21

Proof. History Construction

1h ¢

push(1)

2 op; < push(1)

4 while true:

5
6
7
8
9
10

11
12

13
\

14
15
16
17
18

-
L
3 idy <2 .
2 P2 ————j
p

il [
mE
ush(3) push(idy)

o []]

. ush(2)
opy < push(idy)

while true:

if op; is not decided before op, in hop;:

h(—hopl
continue

if opp is not decided before op; in hopy:

h<+ hop;
continue
break

h< hops

h< hop

while opp is not completed:
h<« hops

idy « idr + 1

17 /21

Proof. History Construction

1h ¢

push(1)

2 op; < push(1)

4 while true:

5
6
7
8
9
10

11
12

13
\

14
15
16
17
18

-
L
3 idy <2 .
2 P2 ————j
p

r’] [7 o

h) push(3) push(ids)
) us pus push(i
opy < push(idy) ’

while true:

if op; is not decided before op, in hop;:

h(—hopl
continue

if opp is not decided before op; in hopy:

h<+ hop;
continue
break

h< hops

h< hop

while opp is not completed:
h<« hops

idy « idr + 1

17 /21

Proof. History Construction

1h ¢

push(1)

2 op; < push(1)

4 while true:

5
6
7
8
9
10

11
12

13
\

14
15
16
17
18

-
L
3 idy <2 .
2 P2 ————j
p

il [
J e L 07
ush(3) push(id,

o []]

. ush(2)
opy < push(idy)

while true:

if op; is not decided before op, in hop;:

h(—hopl
continue

if opp is not decided before op; in hopy:

h<+ hop;
continue
break

h< hops

h< hop

while opp is not completed:
h<« hops

idy « idr + 1

17 /21

Proof. History Construction

h(1)
1h «e - Pus OO0t

L *
2 op; < push(1) &s
3 idy =2 p 1 o o
4 while true: push(2) push(3) push(idy)

5 opy < push(idy)

6] while true:

7 if op; is not decided before op, in hop;:

8 h<+ hopy

9 continue

10 if opp is not decided before op; in hopy:
11 h<+ hop;

12 continue

13(break)

14 h< hop

15 h< hopy

16 while opy is not completed:
17 h<« hops

18 idp < idr + 1

17 /21

Proof. History Construction

1h <€ F push(1) SO

2 op; < push(1)

3 idy < 2 P —— 1 il [oe
. . L 1L I e

4 while true: pUSh(Z) push(3) pUSh(fdQ) c&s

5 opy < push(idy)

6 while true:

7 if op; is not decided before op, in hop;:
8 h<+ hopy

9 continue

10 if op, is not decided before op; in hopy:
11 h< hops

12 continue

13 break

(e hops)

15 h< hop

16 while opy is not completed:
17 h<« hops

18 idp < idr + 1

17 /21

Proof. History Construction

b e -) ks

2 op; < push(1)

3 idy <2 p oo
.) IR I E I

4 while true: pUSh(Z) push(3) pUSh(fdQ) c&s

5 opy < push(idy)

6 while true:

7 if op; is not decided before op, in hop;:
8 h<+ hopy

9 continue

10 if op, is not decided before op; in hopy:
11 h< hops

12 continue

13 break

14 h< hop

(Chhom)

16 while opy is not completed:
17 h<« hops
18 idp < idr + 1

17 /21

Proof. History Construction

b - P ks
2 op; < push(1)

3 idy <=2 [B N

4 while true: push(2) push(3) push(idy) ces

5 opy < push(idy)

6 while true:

7 if op; is not decided before op, in hop;:
8 h<+ hopy

9 continue

10 if op, is not decided before op; in hopy:
11 h< hops

12 continue

13 break

14 h< hop

15 h< hopy

16/ while opy is not completed:
17[h<+ hop;]
18 idp < idr + 1

17 /21

Proof. History Construction

b - P ks
2 op; < push(1)

3 idy <=2 [B N

4 while true: push(2) push(3) push(idy) ces

5 opy < push(idy)

6 while true:

7 if op; is not decided before op, in hop;:
8 h<+ hopy

9 continue

10 if op, is not decided before op; in hopy:
11 h< hops

12 continue

13 break

14 h< hop

15 h< hopy

16 while opy is not completed:
17 h<« hops

18 idp < idr + 1

17 /21

Conclusion

18 / 21

Theorem 6

There does not exist a help-free wait-free implementation of
stack in systems:
— with at least three processes and compare&swap
primitive;
— with at least four processes, and compare&swap and
fetch&add primitives.

» We showed that the undirect proof of the theorem
provided by Censor-Hillel et al. does not work for stack.

» We provide the direct proof of the theorem for stack.

19 /21

Related work

» Common?2 class of objects. Common2 contains stack.
What about queue?

» Valency-based helping by [Attiya et al., 2016].

» |s there any other useful helping formalizations?

20 /21

Thank you for attention!

21 /21

	Helping
	Original proof. Refutation
	Correct proof
	Conclusion

