
On Helping and Stacks

Vitaly Aksenov, INRIA Paris / ITMO University
Petr Kuznetsov, Telecom ParisTech
Anatoly Shalyto, ITMO University

NETYS 2018

1 / 21



Takeaway

I Linearization-based helping [Censor-Hillel et al., 2015]: a
process takes a step and fixes the order between two
operations.

I Theorem: stack and queue do not have a wait-free
help-free implementation using compare&swap and
fetch&add.
I Proved for exact order types.
I Stack is not exact order type.
I We give a direct proof for stack.

2 / 21



Outline

Helping

Original proof. Refutation

Correct proof

Conclusion

3 / 21



Outline

Helping

Original proof. Refutation

Correct proof

Conclusion

4 / 21



What is helping?

I Intuitively: an operation performs some work on behalf of
another.

I Often appears in wait-free and lock-free algorithms.
I Examples:

I Universal wait-free construction [Herlihy, 1991];
I Lock-free binary search tree [Ellen et al., 2010].

I How to define helping formally?
I Linearization-based helping.

5 / 21



Linearization function

h

f

6 / 21



Helping. Decided before

Definition 1
We say that op1 is decided before op2 in h with respect to f , if
there exists no extension s of h such that op2 ≺f (s) op1.

op1

op2h

f

s1

f

s2

7 / 21



Helping. Definition

Definition 2
An implementation has helping if op1 by p1 is decided before
op2 by p2 after a step of p3.

op1

op2

op3

f

8 / 21



Helping. Definition

Definition 2
An implementation has helping if op1 by p1 is decided before
op2 by p2 after a step of p3.

op1

op2

op3

f

8 / 21



Helping. Definition

Definition 2
An implementation has helping if op1 by p1 is decided before
op2 by p2 after a step of p3.

op1

op2

op3

f

8 / 21



Helping. Definition

Definition 2
An implementation has helping if op1 by p1 is decided before
op2 by p2 after a step of p3.

op1

op2

op3

f

8 / 21



Helping. Definition

Definition 2
An implementation has helping if op1 by p1 is decided before
op2 by p2 after a step of p3.

op1

op2

op3

f

8 / 21



Helping. Definition

Definition 2
An implementation has helping if op1 by p1 is decided before
op2 by p2 after a step of p3.

op1

op2

op3

f

8 / 21



Outline

Helping

Original proof. Refutation

Correct proof

Conclusion

9 / 21



Exact Order Type

There exist an operation op, an infinite sequence W and a
sequence R such that for any n there exists m...

W1
. . .

Wn Wn+1 R1
. . .

op
. . .

Ri

x

. . .
Rm

W1

. . .
Wn op R1

. . .
Ri

y

. . .
Wn+1

. . .
Rm

10 / 21



Exact Order Type. Queue

I op = enq(1), Wi = enq(i + 1) and Ri = deq().
I Given n, we choose m = n + 1.

W1

enq(2)

. . .
Wn

enq(n + 1)
Wn+1

enq(n + 2)
R1

deq()

2

. . .
op

enq(1)

. . .
Ri

deq()

i + 1

. . .
Rn+1

deq()

n + 2

W1
enq(2)

. . .
Wn

enq(n + 1)
op

enq(1)
R1

deq()

2

. . .
Ri

deq()

i + 1

. . .
Wn+1

enq(n + 2)

. . .
Rn+1
deq()

1

11 / 21



Exact Order Type

Theorem 3 (Censor-Hillel et al., 2015)
Any exact order type does not have a wait-free help-free
implementation in systems with compare&swap and fetch&add
primitives.

Theorem 4
Stack is not exact order type.

12 / 21



Stack is not Exact Order Type

W1

push(2)

. . .
Wn

push(n + 1)

Wn+1

push(n + 2)

R1

pop()

n + 2

. . .
op

push(1)

. . .
Ri

pop()

. . .
Rn+1

pop()

W1
push(2)

. . .
Wn

push(n + 1)

op
push(1)

R1
pop()

1

. . .
Ri

pop()

. . .
Wn+1

push(n + 2)

. . .
Rn+1
pop()

13 / 21



Stack is not Exact Order Type

W1

push(2)

. . .
Wn

push(n + 1)

Wn+1

push(n + 2)
op

push(1)

R1

pop()

1

. . .
Ri

pop()

. . .
Rn+1

pop()

W1
push(2)

. . .
Wn

push(n + 1)

op
push(1)

R1
pop()

1

. . .
Ri

pop()

. . .
Wn+1

push(n + 2)

. . .
Rn+1
pop()

13 / 21



Stack is not Exact Order Type. Construction

. . .

s`

W (n)

. . .

s`

W (n)

14 / 21



Stack is not Exact Order Type. Construction

. . .

s`

a

W (n) ◦Wn+1

push(a)

. . .

s`

b

W (n) ◦ op
push(b)

14 / 21



Stack is not Exact Order Type. Construction

. . .

s`

a

b

W (n) ◦Wn+1 ◦ op
push(b)

. . .

s`

b

W (n) ◦ op

14 / 21



Stack is not Exact Order Type. Construction

. . .

s`

a

b

. . .

W (n) ◦Wn+1 ◦ op ◦ R(x)

. . .

s`

b

. . .

W (n) ◦ op ◦ R(x)

14 / 21



Stack is not Exact Order Type. Construction

. . .

s`

a

b

W (n) ◦Wn+1 ◦ op ◦ R(y − 1)

. . .

s`

b

W (n) ◦ op ◦ R(y − 1)

14 / 21



Stack is not Exact Order Type. Construction

. . .

s`

a

W (n) ◦Wn+1 ◦ op ◦ R(y)

. . .

s`

W (n) ◦ op ◦ R(y)

14 / 21



Stack is not Exact Order Type. Construction

. . .

s`

a

W (n) ◦Wn+1 ◦ op ◦ R(y)

. . .

s`

a

W (n) ◦ op ◦ R(y) ◦Wn+1

push(a)

14 / 21



Outline

Helping

Original proof. Refutation

Correct proof

Conclusion

15 / 21



Proof

Theorem 5
Stack does not have a wait-free help-free implementation in a
system with at least three processes and with compare&swap
primitive.

I Programs:
I first process — push(1)
I second process — push(2) ◦ push(3) ◦ . . .
I third process — pop() ◦ pop() ◦ . . .

I We build a history in which the first process makes
infinite number of steps, but never finishes.

16 / 21



Proof. History Construction

1 h ← ε
2 op1 ← push(1)
3 id2 ← 2
4 while true:
5 op2 ← push(id2)
6 while true:
7 if op1 is not decided before op2 in h ◦ p1:
8 h← h ◦ p1
9 continue

10 if op2 is not decided before op1 in h ◦ p2:
11 h← h ◦ p2
12 continue
13 break
14 h← h ◦ p2
15 h← h ◦ p1
16 while op2 is not completed:
17 h← h ◦ p2
18 id2 ← id2 + 1

17 / 21



Proof. History Construction

1 h ← ε
2 op1 ← push(1)
3 id2 ← 2
4 while true:
5 op2 ← push(id2)
6 while true:
7 if op1 is not decided before op2 in h ◦ p1:
8 h← h ◦ p1
9 continue

10 if op2 is not decided before op1 in h ◦ p2:
11 h← h ◦ p2
12 continue
13 break
14 h← h ◦ p2
15 h← h ◦ p1
16 while op2 is not completed:
17 h← h ◦ p2
18 id2 ← id2 + 1

p1
push(1)

p2

push(2) push(3)
. . .

push(id2)

17 / 21



Proof. History Construction

1 h ← ε
2 op1 ← push(1)
3 id2 ← 2
4 while true:
5 op2 ← push(id2)
6 while true:
7 if op1 is not decided before op2 in h ◦ p1:
8 h← h ◦ p1
9 continue

10 if op2 is not decided before op1 in h ◦ p2:
11 h← h ◦ p2
12 continue
13 break
14 h← h ◦ p2
15 h← h ◦ p1
16 while op2 is not completed:
17 h← h ◦ p2
18 id2 ← id2 + 1

p1
push(1)

p2

push(2) push(3)
. . .

push(id2)

17 / 21



Proof. History Construction

1 h ← ε
2 op1 ← push(1)
3 id2 ← 2
4 while true:
5 op2 ← push(id2)
6 while true:
7 if op1 is not decided before op2 in h ◦ p1:
8 h← h ◦ p1
9 continue

10 if op2 is not decided before op1 in h ◦ p2:
11 h← h ◦ p2
12 continue
13 break
14 h← h ◦ p2
15 h← h ◦ p1
16 while op2 is not completed:
17 h← h ◦ p2
18 id2 ← id2 + 1

p1
push(1)

p2

push(2) push(3)
. . .

push(id2)

17 / 21



Proof. History Construction

1 h ← ε
2 op1 ← push(1)
3 id2 ← 2
4 while true:
5 op2 ← push(id2)
6 while true:
7 if op1 is not decided before op2 in h ◦ p1:
8 h← h ◦ p1
9 continue

10 if op2 is not decided before op1 in h ◦ p2:
11 h← h ◦ p2
12 continue
13 break
14 h← h ◦ p2
15 h← h ◦ p1
16 while op2 is not completed:
17 h← h ◦ p2
18 id2 ← id2 + 1

p1
push(1)

p2

push(2) push(3)
. . .

push(id2)

17 / 21



Proof. History Construction

1 h ← ε
2 op1 ← push(1)
3 id2 ← 2
4 while true:
5 op2 ← push(id2)
6 while true:
7 if op1 is not decided before op2 in h ◦ p1:
8 h← h ◦ p1
9 continue

10 if op2 is not decided before op1 in h ◦ p2:
11 h← h ◦ p2
12 continue
13 break
14 h← h ◦ p2
15 h← h ◦ p1
16 while op2 is not completed:
17 h← h ◦ p2
18 id2 ← id2 + 1

p1
push(1)

p2

push(2) push(3)
. . .

push(id2)

17 / 21



Proof. History Construction

1 h ← ε
2 op1 ← push(1)
3 id2 ← 2
4 while true:
5 op2 ← push(id2)
6 while true:
7 if op1 is not decided before op2 in h ◦ p1:
8 h← h ◦ p1
9 continue

10 if op2 is not decided before op1 in h ◦ p2:
11 h← h ◦ p2
12 continue
13 break
14 h← h ◦ p2
15 h← h ◦ p1
16 while op2 is not completed:
17 h← h ◦ p2
18 id2 ← id2 + 1

p1
push(1)

p2

push(2) push(3)
. . .

push(id2)

. . .

. . .

c&s

17 / 21



Proof. History Construction

1 h ← ε
2 op1 ← push(1)
3 id2 ← 2
4 while true:
5 op2 ← push(id2)
6 while true:
7 if op1 is not decided before op2 in h ◦ p1:
8 h← h ◦ p1
9 continue

10 if op2 is not decided before op1 in h ◦ p2:
11 h← h ◦ p2
12 continue
13 break
14 h← h ◦ p2
15 h← h ◦ p1
16 while op2 is not completed:
17 h← h ◦ p2
18 id2 ← id2 + 1

p1
push(1)

p2

push(2) push(3)
. . .

push(id2)

. . .

. . .
c&s

17 / 21



Proof. History Construction

1 h ← ε
2 op1 ← push(1)
3 id2 ← 2
4 while true:
5 op2 ← push(id2)
6 while true:
7 if op1 is not decided before op2 in h ◦ p1:
8 h← h ◦ p1
9 continue

10 if op2 is not decided before op1 in h ◦ p2:
11 h← h ◦ p2
12 continue
13 break
14 h← h ◦ p2
15 h← h ◦ p1
16 while op2 is not completed:
17 h← h ◦ p2
18 id2 ← id2 + 1

p1
push(1)

p2

push(2) push(3)
. . .

push(id2)

. . .

. . .
c&s

c&s

17 / 21



Proof. History Construction

1 h ← ε
2 op1 ← push(1)
3 id2 ← 2
4 while true:
5 op2 ← push(id2)
6 while true:
7 if op1 is not decided before op2 in h ◦ p1:
8 h← h ◦ p1
9 continue

10 if op2 is not decided before op1 in h ◦ p2:
11 h← h ◦ p2
12 continue
13 break
14 h← h ◦ p2
15 h← h ◦ p1
16 while op2 is not completed:
17 h← h ◦ p2
18 id2 ← id2 + 1

p1
push(1)

p2

push(2) push(3)
. . .

push(id2)

. . .

. . .
c&s

c&s

. . .

17 / 21



Proof. History Construction

1 h ← ε
2 op1 ← push(1)
3 id2 ← 2
4 while true:
5 op2 ← push(id2)
6 while true:
7 if op1 is not decided before op2 in h ◦ p1:
8 h← h ◦ p1
9 continue

10 if op2 is not decided before op1 in h ◦ p2:
11 h← h ◦ p2
12 continue
13 break
14 h← h ◦ p2
15 h← h ◦ p1
16 while op2 is not completed:
17 h← h ◦ p2
18 id2 ← id2 + 1

p1
push(1)

p2

push(2) push(3)
. . .

push(id2)

. . .

. . .
c&s

c&s

. . .

17 / 21



Outline

Helping

Original proof. Refutation

Correct proof

Conclusion

18 / 21



Conclusion

Theorem 6
There does not exist a help-free wait-free implementation of
stack in systems:

– with at least three processes and compare&swap
primitive;

– with at least four processes, and compare&swap and
fetch&add primitives.

I We showed that the undirect proof of the theorem
provided by Censor-Hillel et al. does not work for stack.

I We provide the direct proof of the theorem for stack.

19 / 21



Related work

I Common2 class of objects. Common2 contains stack.
What about queue?

I Valency-based helping by [Attiya et al., 2016].
I Is there any other useful helping formalizations?

20 / 21



Questions

Thank you for attention!

21 / 21


	Helping
	Original proof. Refutation
	Correct proof
	Conclusion

