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» Linearization-based helping [Censor-Hillel et al., 2015]: a
process takes a step and fixes the order between two
operations.

» Theorem: stack and queue do not have a wait-free
help-free implementation using compare&swap and
fetch&add.

» Proved for exact order types.
> Stack is not exact order type.
» We give a direct proof for stack.

2/21



Helping
Original proof. Refutation
Correct proof

Conclusion

3/21



Helping

4/21



What is helping?

» Intuitively: an operation performs some work on behalf of
another.

» Often appears in wait-free and lock-free algorithms.

» Examples:

» Universal wait-free construction [Herlihy, 1991];
» Lock-free binary search tree [Ellen et al., 2010].

» How to define helping formally?
» Linearization-based helping.
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Linearization function
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Helping. Decided before

Definition 1
We say that op; is decided before op, in h with respect to f, if
there exists no extension s of h such that op, <¢(s) op1.
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Helping. Definition

Definition 2
An implementation has helping if op; by p; is decided before
op> by p, after a step of ps.
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Original proof. Refutation
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Exact Order Type

There exist an operation op, an infinite sequence W and a
sequence R such that for any n there exists m...
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Exact Order Type. Queue

» op =enq(l), W; = enq(i + 1) and R; = deq().
» Given n, we choose m = n+ 1.
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Exact Order Type

Theorem 3 (Censor-Hillel et al., 2015)

Any exact order type does not have a wait-free help-free
implementation in systems with compare&swap and fetch&add
primitives.

Theorem 4

Stack is not exact order type.
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Stack is not Exact Order Type
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Stack is not Exact Order Type. Construction
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Stack is not Exact Order Type. Construction
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Stack is not Exact Order Type. Construction
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Correct proof
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Theorem 5
Stack does not have a wait-free help-free implementation in a
system with at least three processes and with compare&swap
primitive.
» Programs:
» first process — push(1)

» second process — push(2) o push(3)o...
» third process — pop() o pop()o...

» We build a history in which the first process makes
infinite number of steps, but never finishes.
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Proof. History Construction

1h ¢

2 op; < push(1)

3 id2 — 2

4 while true:

5 opy < push(idy)

6 while true:

7 if op; is not decided before op, in hop;:
8 h<+ hopy

9 continue

10 if op, is not decided before op; in hopy:
11 h< hops

12 continue

13 break

14 h< hop

15 h< hopy

16 while opy is not completed:
17 h<« hops

18 idp < idr + 1
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Conclusion
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Theorem 6

There does not exist a help-free wait-free implementation of
stack in systems:
— with at least three processes and compare&swap
primitive;
— with at least four processes, and compare&swap and
fetch&add primitives.

» We showed that the undirect proof of the theorem
provided by Censor-Hillel et al. does not work for stack.

» We provide the direct proof of the theorem for stack.
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Related work

» Common?2 class of objects. Common2 contains stack.
What about queue?

» Valency-based helping by [Attiya et al., 2016].

» |s there any other useful helping formalizations?
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Thank you for attention!
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