
Provably and Practically Efficient Granularity Control
Umut A. Acar

Carnegie Mellon University and Inria
USA and France

umut@cs.cmu.edu

Vitaly Aksenov
Inria and ITMO University

France and Russia
vitalii.aksenov@inria.fr

Arthur Charguéraud
Inria & Université de Strasbourg, CNRS, ICube

France
arthur.chargueraud@inria.fr

Mike Rainey
Indiana University and Inria

USA and France
me@mike-rainey.site

Abstract
Over the past decade, many programming languages and
systems for parallel-computing have been developed, e.g.,
Fork/Join and Habanero Java, Parallel Haskell, Parallel ML,
and X10. Although these systems raise the level of abstrac-
tion for writing parallel codes, performance continues to re-
quire labor-intensive optimizations for coarsening the gran-
ularity of parallel executions. In this paper, we present prov-
ably and practically efficient techniques for controlling gran-
ularity within the run-time system of the language. Our
starting point is “oracle-guided scheduling”, a result from
the functional-programming community that shows that
granularity can be controlled by an “oracle” that can pre-
dict the execution time of parallel codes. We give an algo-
rithm for implementing such an oracle and prove that it has
the desired theoretical properties under the nested-parallel
programming model. We implement the oracle in C++ by
extending Cilk and evaluate its practical performance. The
results show that our techniques can essentially eliminate
hand tuning while closely matching the performance of hand
tuned codes.

CCS Concepts • Software and its engineering → Par-
allel programming languages;

Keywords parallel programming languages, granularity
control

ACM Reference Format:
Umut A. Acar, Vitaly Aksenov, Arthur Charguéraud, and Mike
Rainey. 2019. Provably and Practically Efficient Granularity Control.
In PPoPP ’19: Symposium on Principles and Practice of Parallel Pro-
gramming, February 16–20, 2019, Washington, DC, USA. ACM, New
York, NY, USA, 36 pages. https://doi.org/10.1145/3293883.3295725

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
PPoPP ’19, February 16–20, 2019, Washington, DC, USA
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6225-2/19/02. . . $15.00
https://doi.org/10.1145/3293883.3295725

1 Introduction
The proliferation of multicore hardware in the past decade
has brought shared-memory parallelism into the mainstream.
This change has led to much research on implicit threading,
or, alternatively, implicit parallelism, which goes back to
early parallel programming languages such as Id [Arvind
and Gostelow 1978] and Multilisp [Halstead 1985]. Implicit
threading seeks to make parallel programming easier by
delegating certain tedious but important details, such as
the scheduling of parallel tasks, to the compiler and the
run-time system. There has been much work on special-
ized programming languages and language extensions for
parallel systems, for various forms of implicit threading,
including OpenMP [OpenMP Architecture Review Board
2008], Cilk [Frigo et al. 1998], Fork/Join Java [Lea 2000], Ha-
banero Java [Imam and Sarkar 2014], NESL [Blelloch et al.
1994],TPL [Leijen et al. 2009], TBB [Intel 2011], X10 [Charles
et al. 2005], parallel ML [Fluet et al. 2011; Guatto et al. 2018;
Jagannathan et al. 2010; Raghunathan et al. 2016], and paral-
lel Haskell [Chakravarty et al. 2007; Keller et al. 2010].

Nearly all of these languages support a lightweight syntax
for expressing parallelism. For example, in Cilk Plus, the pro-
grammer needs two keywords to express parallelism, spawn
and sync, which respectively indicate a computation that
can be executed in parallel and a computation that must be
synchronized with. These two keywords suffice to express
parallel loops and nested parallelism, wherein parallel com-
putations may themselves start and synchronize with other
parallel computations. When combined with the powerful
features of modern programming languages, these simple
constructs enable elegant expression of parallelism. For ex-
ample, we can implement a “parallel map” that applies some
function f to each element of an array in a C++-like parallel
language by using a parallel-for loop (pfor), as shown in
the map function in Figure 1. By using templates, this imple-
mentation enables many different forms of mapping, e.g.,
map can be used to increment the elements in an input array
of integers or it can be used to implement a matrix-vector
multiplication by passing as an argument an array of arrays
(vectors) representing the matrix.

https://doi.org/10.1145/3293883.3295725
https://doi.org/10.1145/3293883.3295725

PPoPP ’19, February 16–20, 2019, Washington, DC, USA U. Acar, V. Aksenov, A. Charguéraud, M. Rainey

template <F,T,S>

void map(F f, T* a, S* b, int n)

pfor (i = 0; i < n; i++)

b[i] = f(a[i])

int grain = ... // to be determined
template <F,T,S>

void map_coarsened(F f, T* a, S* b, int n)

pfor (i = 0; i < (n + grain - 1) / grain; i++)

for (j = i · grain; j < min(n, (i + 1) · grain); j++)

b[j] = f(a[j]);

Figure 1. Parallel map, uncoarsened and coarsened imple-
mentations.

Even though implicit parallelism can be elegant, and offer
important asymptotic efficiency guarantees [Acar et al. 2002,
2013; Blelloch and Greiner 1996; Blumofe and Leiserson 1999;
Frigo et al. 1998], there remains a key concern: the constants
hidden in these asymptotic analyses, a.k.a., the overheads of
parallelism can easily overwhelm the benefits of parallelism
in practice. This challenge is especially difficult in high-level,
declarative codes, such as map, and is sometimes considered a
“holy grail” in parallelism research (e.g., [Tzannes et al. 2014]).
For example, the simple map example above could run as
much as 10-100x slower than an optimized implementation
due to these overheads.

To control the overheads of parallelism, the current state
of the art requires the programmer to tune the code to per-
form granularity control or coarsening so as to amortize the
overheads [Intel 2011]. To do so, the programmer identifies
for each potential parallel computation a sequential alter-
native, a semantically equivalent sequential piece of code,
and makes sure that this sequential alternative is executed
for small (and only for small) computations. As an example,
imagine an instance of map where the programmer incre-
ments each element of an integer array by one. To perform
this operation efficiently, the programmer should “bunch”
iterations into blocks that are executed sequentially and se-
lect the bunch size to be large enough to amortize the cost of
parallelism. The function map_coarsened in Figure 1 shows
such a tuned implementation of map, where the value grain

determines the bunch size.
The optimized map implementation is far from its elegant

predecessor, but elegance aside, it is not easy to make map

perform well, because the programmer still has to choose
the setting for grain. There are at least two problems with
this approach.

• The optimal setting for the grain depends on the ar-
chitecture as well as the specific inputs and requires a
manual, labor-intensive search [Bergstrom et al. 2012;
Feeley 1992, 1993a; Hiraishi et al. 2009; Intel 2011;

Lopez et al. 1996; Rainey 2010; Sanchez et al. 2010a;
Tzannes et al. 2014].

• As noted by many researchers, such optimizations
could also harm performance portability by overfitting
the code to a particular machine [Acar et al. 2016;
Huelsbergen et al. 1994; Lopez et al. 1996; Pehoushek
and Weening 1990; Tzannes et al. 2014; Weening 1989].

• It can be impractical to tune generic codes such as map,
because the optimal grain depends on the template
parameters as well as the actual arguments to map,
some of which, such as the function argument, might
not be known a priori.

Prior work therefore proposed techniques for (semi-) au-
tomating this process [Huelsbergen et al. 1994; Lopez et al.
1996; Pehoushek and Weening 1990; Weening 1989]. Yet,
these techniques remain heuristics that fall short of deliver-
ing strong theoretical and practical efficiency guarantees. A
more recent paper on oracle-guided scheduling [Acar et al.
2016] shows that strong bounds can be achieved, but assumes
an oracle that can predict the future. The authors do present
an implementation for an oracle, but their implementation
technique can support only certain flat-parallel programs,
where parallel computations cannot be nested in other par-
allel computations. As such, this limitation excludes nearly
all interesting parallel programs expressible in high-level
parallel programs today.
In this paper, we present provably efficient and practical

techniques for controlling granularity for nested-parallel
programs. As in oracle-guided scheduling [Acar et al. 2016],
we ask the programmer to provide an abstract cost function,
e.g., asymptotic cost, for each piece of parallel code. We then
provide an online prediction algorithm that uses such in-
formation to implement the oracle by predicting the actual
work (1-processor run-time) of parallel codes. Our major
contribution is this prediction algorithm and the result that
the algorithm delivers efficient and practical granularity con-
trol, for any nested-parallel program, under a certain number
of assumptions that we present in detail. The key insight
behind our algorithm is to break a circular dependency en-
countered in implementing the oracle in prior work [Acar
et al. 2016] by using an iterative refinement algorithm that,
after a small number of iterations, provably converges to the
desired values. We present a theoretical analysis of the key
efficiency properties of the algorithm and evaluate the ap-
proach by comparison to a highly (hand) optimized suite of
benchmarks from the Problem Based Benchmark Suite [Blel-
loch et al. 2012]. Our results show that our techniques can
eliminate the need for hand tuning in many cases and closely
match the performance of the hand optimized code.

The specific contributions of this paper include:

• an online algorithm for automatic granularity control
in lightly annotated, nested-parallel computations,

• end-to-end tight bounds on run time or parallel codes,

Provably and Practically Efficient Granularity Control PPoPP ’19, February 16–20, 2019, Washington, DC, USA

T f(x) {

T r // local variable to store the result
spguard([&] { return c(x) }, // cost function

[&] { if |x| == 1 ... // parallel body
else (x1, x2) = divide(x)

r1 = spawn f(x1)

r2 = f(x2)

sync

r = conquer(r1, r2) },

[&] { r = g(x) }) // sequential body
return r }

Figure 2. A sample use of spguard. Higher-order functions
are expressed using the C++ lambda-expression syntax.

• an implementation for Cilk Plus, which implements
work stealing for C++, and

• an evaluation on a broad collection of hand-tuned
benchmarks in Cilk Plus.

2 Algorithmic granularity control
Our goal is to transfer the burden of granularity control to
a capable, library implementation. To this end, we ask the
programmer to provide for each parallel function a series-
parallel guard, by using the keyword spguard. A spguard
consists of: a parallel body, which is a lambda function that
performs a programmer-specified parallel computation; a
sequential body, which is a lambda function that performs
a purely sequential computation equivalent to the parallel
body, i.e., performing the same side-effects and delivering the
same result, a cost function, which gives an abstract measure,
as a positive number, of the work (run-time cost) that would
be performed by the sequential body.
At a high level, a spguard exploits the result of the cost

function to determine whether the computation involved
is small enough to be executed sequentially, i.e., without
attempting to spawn any subcomputation. If so, the spguard
executes the sequential body. Otherwise, it executes the par-
allel body, which would typically spawn smaller subcompu-
tations, each of them being similarly guarded by a spguard.

To see the basic idea behind our algorithm, consider the ex-
ample shown in Figure 2, involving a single spguard. Suppose
that we have a parallel function f(x) which, given an argu-
ment x, performs some computation in divide-and-conquer
fashion, by recursively calling itself in parallel, as shown
above. Assume the body of this function to be controlled by
a spguard, with c(x) denoting the cost function, and g(x)

denoting the sequential body, that is, a purely sequential
function that computes the same result as f(x).

The cost function may be any programmer-specified piece
of code that, given the context, computes a value in propor-
tion to the one-processor execution time of the sequential
body. Typically, the cost function depends on the arguments
provided to the current function call. A good choice for the

cost function is the average asymptotic complexity of the
sequential body, e.g., n logn, or n, or

√
n, where n denotes

the size of the input. The programmer need not worry about
constant factors because spguards are able to infer them
on-line, with sufficient accuracy.
In a real implementation, the sequential body can be left

implicit in many cases, because it can be inferred automati-
cally. For example, the sequential body for a parallel-for loop
can be obtained by replacing the parallel-for primitive with
a sequential-for. Likewise, in many instances, the complexity
function is linear, allowing us to set it to the default when
not specified. In our library and experiments, we use this
approach to dramatically reduce the annotations needed.

2.1 Sequentialization decisions
Our algorithm aims at sequentializing computations that
involve no more than a small amount of work. To quantify
this amount, let us introduce the parallelism unit, written κ,
to denote the smallest amount of work (in units of time) that
would be profitable to parallelize on the host architecture.
The value of κ should be just large enough to amortize the
cost of creating and managing a single parallel task. On mod-
ern computers, this cost can be from hundreds to thousands
of cycles. Practical values for κ therefore range between 25
and 500 microseconds.

Intuitively, we aim at enforcing the following policy: if the
result of f(x) can be obtained by evaluating the sequential
body g(x) in time less than κ, then g(x) should be used.
Under a small number of assumptions detailed in further,
this policy leads to provably efficient granularity control.
One central question is how to predict whether a call to

g(x) would take less than κ units of time. Assume, to begin
with, a favorable environment where (1) the hardware is pre-
dictable in the sense that the execution time is in proportion
to the number of instructions, and (2) the cost function c(x)

gives an estimate of the asymptotic number of instructions
involved in the execution of g(x). For a given input x, let N
denote the value of c(x), and letT denote the execution time
of g(x). By definition of “asymptotic”, there exists a constant
C such that: T ≈ C · N . Our algorithm aims at computing C
by sampling executions, and then it exploits this constant
to predict whether particular calls to g(·) take fewer than κ
units of time.
More precisely, for an input x_i being evaluated sequen-

tially, that is, through a call to g(x_i), we may measure the
execution time of g(x_i), written Ti , and we may compute
the value of c(x_i), written Ni . From a collection of sam-
ples of the form (Ti ,Ni), we may evaluate the value of the
constant C by computing the ratios Ti/Ni . In reality, the ac-
tual value of the constant can vary dramatically depending
on the size of the computation, in particular due to cache
effects—we will return to that point. There is a much bigger
catch to be addressed first.

PPoPP ’19, February 16–20, 2019, Washington, DC, USA U. Acar, V. Aksenov, A. Charguéraud, M. Rainey

In order to decide which computations are safe to execute
using the sequential body g(·), our algorithm needs to first
know the constant C . Indeed, without a sufficiently accu-
rate estimate of the constant, the algorithm might end up
invoking g(·) on a large input, thereby potentially destroy-
ing all available parallelism. Yet, at the same time, in order
to estimate the constant C , the algorithm needs to measure
the execution time of invocations of g(·). Thus, determining
the value of C and executing the algorithm g(·) are interde-
pendent. Resolving this critical circular dependency is a key
technical challenge.

At a high level, our algorithm progressively sequentializes
larger and larger computations. It begins by sequentializing
only the base case, and ultimately converges to computations
of duration κ. Each time that we sequentialize a computation
by calling g(·) instead of f(·), we obtain a measure. This
measure may be subsequently used to predict that another,
slightly larger input may also be processed sequentially. We
are careful to increase the input size progressively, in or-
der to always remain on the safe side, making sure that our
algorithm never executes sequentially a computation signifi-
cantly longer than κ.

Because our algorithm increases the cost (as measured by
the cost function) of sequentialized computations each time
at least by amultiplicative factor, calledα , the estimation con-
verges after just a logarithmic number of steps. The growth
rate, α controls how fast sequentialized computations are
allowed to grow. Any α > 1 could be used; values between
1.2 and 5 work well in practice.

2.2 Nested parallelism
When dealing with a single spguard, the process described
above generally suffices to infer the constant associated with
that spguard. However, the process falls short for programs
involving nested parallelism, e.g., nested loops or mutually-
recursive functions. To see why, consider a function h(·) that
consists of a spguard whose parallel body performs some
local processing and then spawns a number of calls to com-
pletely independent functions. Because h(·) is not a recursive
function with a base case, the algorithm described so far does
not have a chance to follow the convergence process; the sp-
guard of h(·) would have no information whatsoever about
its constant, and it would always invoke the parallel body,
consequently failing to control granularity.

To address this issue and support the general case of nested
parallelism, we introduce an additional mechanism. When
executing the parallel body of a spguard, our algorithm com-
putes the sum of the durations of all the pieces of sequential
computation involved in the execution of that parallel body.
This value gives an upper bound on the time that the sequen-
tial body would have taken to execute. This upper bound
enables deriving an over-approximation of the constant. Our

algorithm uses this mechanism to make safe sequentializa-
tion decisions, i.e., to sequentialize computations that cer-
tainly require less than κ time. By measuring the duration of
such sequential runs, our algorithm is then able to refine its
estimate of the constant. It may subsequently sequentialize
computations of size closer to κ.
Overall, our algorithm still progressively sequentializes

larger and larger subcomputations, only it is able to do so by
traversing distinct spguards with different constant factors.

2.3 Dealing with real hardware
Our discussion so far assumes that execution times may be
predicted by the relationship T ≈ C · N . But in reality, this
assumption is not the case. The reason is that the ratiosT /N
may significantly depend on the input size. For example, one
can observe on a microbenchmark that processing an input
that does not fit into the L3 cache may take up to 10 times
longer to execute than a just slightly smaller input that fits
in the cache. In fact, even two calls to the same function on
the same input may have measured time several folds apart,
for example, if the first call needs to load the data into the
cache but not the second one.

We design our algorithm to be robust in the face of large
variations of the execution times typical of modern hardware.
In addition to validating empirically that our algorithm be-
haves well on hundreds of runs of our full benchmark suite,
we formally prove its robustness property. To that end, we
consider a relatively realistic model that takes into account
the variability of execution times typical of current hardware.
More precisely, we develop our theory with respect to an
abstract notion of “work”, which we connect both to runtime
measures and to results of costs functions, as described next.
First, we assume that runtime measures may vary by no

more than a multiplicative factor E from the work, in either
direction. Second, we require that, for the program and the
growth rate α considered, there exists a value β such that,
for any cost function involved in the program, the following
property holds: if the cost function applied to input J returns
a value no more than α bigger than for input I , then the work
associated with input J is at most β times bigger than the
work for input I . Intuitively, this property ensures that the
work increases with the cost, but not exceeding a maximal
rate of increase.
One important feature of our algorithm is that its execu-

tion does not require knowledge of E or β . These parameters
are only involved in the analysis. It may nevertheless be use-
ful to estimate the values of E and β that apply on the target
hardware. In the technical appendix, we show the results of
estimating these parameters on our test harness.

2.4 Analysis
Our algorithm relies on several important assumptions. These
assumptions, whose formal statements may be found in the

Provably and Practically Efficient Granularity Control PPoPP ’19, February 16–20, 2019, Washington, DC, USA

technical appendix, are matched by a large class of realistic
parallel algorithms.
First, our algorithm assumes that, for each spguard, the

sequential body evaluates no slower than the corresponding
parallel body on a single processor. (The sequential body
might always be obtained by replacing spawns with se-
quences in the parallel body.) Furthermore, the sequential
body should not run arbitrarily faster than the parallel body
when executed with all of its inner spguards sequentialized.
This assumption is required to know that it is safe to exploit
the execution time of the parallel body to over-approximate
that of the sequential body.
To better understand this latter part of the assumption,

consider the following example. Assume a purely sequential
algorithm, whose cost is a ·N for an input of size N , for some
constant a. Assume also a divide-and-conquer parallel algo-
rithm that recursively divides its input in halves, such that for
an input of size N , the division process (and, symmetrically,
the conquer process) takes time b · N , for some constant b;
the cost of this parallel algorithm is thus b · N logN . On the
one hand, the sequential algorithm may be assumed to be
faster than the parallel algorithm, because it is always possi-
ble to instantiate the sequential algorithm as the sequential
execution of the parallel algorithm. On the other hand, let
us check the requirement that “the sequential body does not
run arbitrarily faster than the parallel body executed with
all its inner spguards being sequentialized.” Executing one
step of the divide-and-conquer process (as described by the
parallel body) and then immediately calling the sequential
body in both branches has cost: b ·N +2 ·a · N2 . Executing the
sequential body directly has cost: a · N . The ratio between
these two costs is equal to: 1 + b

a , which is bounded by a
constant, as required. Many practical algorithms exhibit a
similar pattern.

Second, our algorithm assumes that spguards evaluate in
constant time and are called regularly enough through the
call tree. Without this latter assumption, the program could
have a spguard called on an input that takes much longer
thanκ to process, with the immediately nested spguard called
on an input that takes much less than κ, leaving no oppor-
tunity for our algorithm to sequentialize computations of
duration close to κ.
Third and last, our algorithm assumes some balance be-

tween the branches of a fork-join. Without this assump-
tion, the program could be a right-leaning tree, with all left
branches containing tiny computations. Such an ill-balanced
program is a poorly-designed parallel program that would
be slow in any case.
As we prove through a careful analysis detailed in the

technical appendix, under the aforementioned assumptions,
our algorithm is efficient. Our bound generalizes Brent’s
bound (TP ≤ w

P +s) [Zadeh 2017] by taking into account the

overheads of thread creation (cost of spawning and manag-
ing threads) and granularity control (including the cost of
evaluating cost functions, which are assumed to execute in
constant time). A simplified statement of the bound, using
big-O notation, appears next.
Theorem 2.1. Under the above assumptions, with parallelism
unit κ, the runtime on P processors using any greedy scheduler
of a program involving workw and span s is bounded by:

TP ≤

(
1 +

O(1)
κ

)
·
w

P
+ O(κ) · s + O(log2 κ).

The most important term in this bound is the first term:
the overheads impact the work termw by only a small factor
O(1)/κ, which can be reduced by controlling κ. The second
term states that doing so increases the span by a small fac-
tor O(κ), and that the granularity control comes at a small
logarithmic overhead O(log2κ), which is due to our granu-
larity control algorithm. Although our theorem is stated, for
simplicity, in terms of greedy schedulers, the bound could
be easily adapted, e.g., to work-stealing schedulers.

2.5 Pseudo-code for the estimator and spguard
In what follows, we present pseudo-code for the core of
our algorithm. For each syntactic instance of a spguard, we
require a unique estimator data structure to store the in-
formation required to estimate the corresponding constant
factor. (In the case of templated code, we instrument the
template system to ensure that each template instantiation
allocates one independent estimator data structure.) The top
of Figure 3 shows the code of the estimator data structure.
The estimator data structure maintains only one variable:
Nmax, which tracks the maximum (abstract) work of a sample
computation that took less than κ time.

The function report provides the estimator with samples.
It takes as argument T, the execution time, and N, the abstract
work. If T is less than the parallelism threshold κ and N is
greater than Nmax, then Nmax is updated to N. The function
report is protected against data races by using an atomic

block. Our library implements this atomic block by using a
single compare-and-swap (CAS) operation on Nmax. In the
case of a race, compare-and-swap would fail and our code
would try again until either it succeeds, or Nmax becomes
greater than N.

The function is_small, takes as argument a cost N and re-
turns a boolean indicating whether N is no more than α ·Nmax.
The intention is to allow sequentialization of computations
whose execution is less than α ·κ. Indeed, Nmax is associated
with a previously-sampled computation that took less than κ
time. The multiplicative factor α involved here enables ex-
trapolation. It allows to sequentialize computations whose
abstract work is larger than any previously-seen computa-
tions, although not arbitrarily larger: at most by a factor α .

The bottom of Figure 3 shows the functions fork2join and
spguard. The fork2join function executes its two branches

PPoPP ’19, February 16–20, 2019, Washington, DC, USA U. Acar, V. Aksenov, A. Charguéraud, M. Rainey

1 const double κ // parallelism unit
2 const double α // growth factor
3

4 class estimator

5 int Nmax = 0 // max complexity measure
6 void report(int N, time T)

7 atomic { if T ≤ κ and N > Nmax

8 then Nmax = N }

9

10 bool is_small(int N)

11 return N ≤ α · Nmax

12

13 template <Body_left, Body_right>

14 void fork2join(Body_left bl, Body_right br)

15 spawn bl()

16 br()

17 sync

18

19 template <Complexity, Par_body, Seq_body>

20 void spguard(estimator* es, Complexity c,

21 Par_body pb, Seq_body sb)

22 int N = c()

23 time work = if es.is_small(N)

24 then measured_run(sb)

25 else measured_run(pb)

26 es.report(N, work)

Figure 3. Pseudocode for the core algorithm.

in parallel and resumes after completion of both branches.
The function spguard takes an estimator, a parallel body,
a sequential body and a cost function that return the ab-
stract work of the sequential body. It begins by computing
the abstract cost N for the sequential body and consults the
estimator. If the work is predicted to be small, it runs the
sequential body, else the parallel body. It relies on a func-
tion called measured_run to measure the sum of the duration
of the pieces of sequential code executed. This function is
not entirely trivial to implement, but can be implemented
efficiently with little code (see the technical appendix).

2.6 Robustness with respect to outliers
One crucial aspect of the design of our algorithm is its ro-
bustness. As explained in Section 2.3, a given run might be
much slower than others, e.g., due to cache misses or OS
interference. If such slow runs were taken into account for
making future predictions, it could result in the sequential-
ization of tiny computations running in much less than κ
time (under favorable conditions). Our algorithm deals with
outlier measurements by keeping track of Nmax, which de-
notes the maximal N (i.e., result of the complexity function)
for which a sequential run took less than κ time. Upon en-
countering a run that was much slower than previous runs,

the corresponding time measure exceeds κ time and thus
gets discarded by our algorithm (Figure 3, Line 7).
Observe that our algorithm only ever increases Nmax. As

we observed through experiments, there is an inherent asym-
metry in the distribution of execution times, featuring a long
tail. On the one hand, an execution time can be abnormally
slow by a very large factor, due to, e.g., repeated OS inter-
ference or saturated memory bus. Our algorithm is carefully
designed to be robust to such outliers, which we do observe
in practice. On the other hand, an execution time can be
abnormally fast only by some constant factor. It is possible
that a warmed-up cache, or a data set unusually laid out in
memory, could speed up the execution, but not arbitrarily.
Our theoretical analysis accounts for that possibility through
the error factor E (Section 2.3). As we prove, in the worst
case, a run that would be abnormally fast by a factor E could
only increase the total amount of overheads by a factor E.
We highlight two interesting features of our C++ imple-

mentation. First, to avoid always having to pass a sequential
body explicitly, the spguard provides a default setting. If the
spguard is called with such a default setting, then the parallel
body is called whenever the spguard switches to sequential
execution. However, in this scenario, when it sequentializes,
the spguard executes the parallel body in an environment in
which all fork2join calls are performed sequentially, using
dynamic checks to selectively disable parallelism. Second,
our implementation supports defining higher-level abstrac-
tions on top of fork2join, such as parallel-for, map, reduce,
map_reduce, scan, filter, etc. For these abstractions, the pro-
grammer may either indicate a custom cost function or sim-
ply rely on the default one, which assumes a constant-time
processing for each item or iteration. Because it applies of-
ten, the default cost function greatly reduces the number of
hand-written cost functions.

2.7 Intuition for the proof
Without loss of expressiveness, we assume for the proof that
the parallel body of a spguard consists of a sequence of (1) a
sequential preprocessing, (2) a fork-join operation with left
and right branches, and (3) a sequential postprocessing. (In
practice, this amounts to surrounding every block of source
code featuring a fork-join with a spguard.)

In that setting, we assume that the execution of a spguard
(including the evaluation of its cost function) is assumed
to incur a cost ϕ, and that each execution of a spguard that
evaluates in parallel (i.e., that triggers a fork-join) is assumed
to incur an extra cost τ . In other words, ϕ quantifies the over-
heads of granularity control, and τ quantifies the overheads
of parallelism.
We define the total work, written W, and the total span,

written S, to measure the actual work and span of an exe-
cution, i.e., accounting for the costs τ and ϕ. To derive our
final theorem, we bound the total work and span (W and S)
in terms of the algorithmic work and span (w and s), which

Provably and Practically Efficient Granularity Control PPoPP ’19, February 16–20, 2019, Washington, DC, USA

excludes overheads. We then invoke Brent’s theorem [Zadeh
2017]: Tp ≤ W

P + S, to bound the parallel execution time.
For the span, we establish that the total span can only be

a multiplicative factor larger than the algorithmic span, in
the sense that S is O(κ) · s . More precisely, we establish the
following bound by induction on the program execution:

S ≤ (1 + ϕ +max(τ , Eβκ)) · s .

Recall that κ denotes the parallelism unit (Section 2.1), and
that E and β are constant parameters introduced for the
analysis (Section 2.3). The proof relies on a key lemma, which
asserts that if a spguard executes its sequential body, then
this body involves at most Eβκ sequential work. Intuitively,
this lemma captures the fact that work predictions performed
by our algorithm cannot be under-estimated by more than a
factor Eβ . (We cannot expect tighter bounds in our model,
for the reasons discussed in Section 2.3.)
The intuition for the bound (1 + ϕ + max(τ , Eβκ)) · s is

as follows. At a spguard, the algorithmic span increases by
one unit. If the corresponding spguard executes its parallel
body, then its total span increases by 1+ϕ +τ , to account for
overheads. If, however, the spguard executes its sequential
body, then, because the work involved is at most Eβκ, the
total span increases at most by 1 + ϕ + Eβκ. The bound is
obtained by considering the maximum of these two cases.

For the work, we prove that the total work is only a frac-
tion larger than the algorithmic work, plus a small constant:

W ≤

(
1 + O (1)

κ

)
·w + O(P log2 κ).

To establish this bound, we distinguish the spguard calls that
involve Θ(κ) sequential work from those that involve less.
After the algorithm has converged, spguards are able to

make predictions sufficiently accurate to ensure that the se-
quentialized spguards involve at leastΘ(κ) sequential work.1
When all sequentialized spguards involve Θ(κ) work, the
constant-time overheads associated with each spguard only
amount for a fraction O (1)

κ of the algorithmic work involved.
For example, consider a simple, parallel program performing
binary division of its input. The execution of this program
can be viewed as a binary tree. Let n denote the number of
leaves in the tree. Every non-leaf node induces an overhead
ϕ + τ , to pay for the evaluation of the spguard and the fork.
Every node (including leaves) induces an overhead ϕ, to pay
for the spguard. Because there are n−1 nodes in a binary tree
with n leaves, the overheads amount to n ·ϕ + (n− 1) · (ϕ +τ),
which is O(n · (τ + 2ϕ)). These overheads can be amortized
over the sequential work performed at the n leaves, each of

1Technically, any spguard that involves less than κ/(γDE) work will neces-
sarily execute its sequential body, where E denotes the error factor, whereD
bounds the ratio of the work of the sequential body and the sequential work
of the parallel body of a spguard (first assumption from Section 2.4), and
where γ bounds the ratio between the sequential work of a spguard and that
of the immediately nested spguard (second assumption from Section 2.4).
Formal definitions for D and γ are given in the technical appendix.

which involves Θ(κ) work. More precisely, the ratio between
the overheads and the sequential work isO

(
n ·(τ+2ϕ)

n ·κ

)
, which

simplifies to O
(
τ+2ϕ
κ

)
. Because τ and ϕ are constants, the

relative overheads are O (1)
κ , as claimed.

It remains to bound the overheads involved in the eval-
uation of the spguards that contain less than Θ(κ) sequen-
tial work. Each such evaluation induces an overhead O(1),
because it costs ϕ, plus τ in case of a parallel execution.
We show that the number of these evaluations is at most
O(P log2 κ). To that end, we study parallel small calls: eval-
uations of spguards that involve less than Θ(κ) sequential
work and whose parallel body gets executed. Such parallel
small calls can be nested, but, due to the balance condition
(third assumption from Section 2.4), there can be no more
than O(logκ) levels of nesting. As we argue in the technical
appendix, the evaluation of an innermost parallel small call
(i.e., one that features no nested parallel small call) necessar-
ily multiplies the value of Nmax associated with the estimator
by a factor α . Thus, for each syntactic spguard and for each
processor, the number of innermost parallel small calls on
that estimator is O(logκ). Given that a program contains a
constant number of syntactic spguards, we deduce that there
are at most O(P logκ) innermost parallel small calls during
an execution. Then, because each parallel small call contains
at least one innermost parallel small call, and because an
innermost parallel small call is nested in at mostO(logκ) par-
allel small calls, we deduce that the total number of parallel
small calls is at most O(P log2 κ). Finally, we argue that the
number of sequential small calls (i.e., evaluations of spguards
that involve less than Θ(κ) sequential work and whose se-
quential body gets executed) is at most a constant factor
larger than the number of parallel small calls. By summing
up the bounds for parallel small calls and sequential ones,
we obtain a O(P log2 κ) bound for the overheads associated
with all calls to spguard involving less than Θ(κ) sequential
work. This concludes the proof summary.

3 Experimental evaluation
This section presents a study of eight benchmarks from The
Problem Based Benchmark Suite (PBBS) [Blelloch et al. 2012].
These benchmarks consist of state-of-the-art solutions to
problems on sequences, strings, graphs, and in geometry
and graphics. The implementation of the benchmarks con-
sists of a collection C++ codes that use the linguistic exten-
sions of Cilk Plus to realize parallel execution. Parallelism
is expressed across the source codes in the idiomatic style
of Cilk, namely, nested parallelism, involving, in specific,
parallel loops occurring inside parallel loops mixed with
calls to recursive, parallel functions. As is common in nested
parallelism, the applications generate irregular and, often,
highly data-dependent parallelism, thereby making granu-
larity control a particular challenge. Two of the benchmarks

PPoPP ’19, February 16–20, 2019, Washington, DC, USA U. Acar, V. Aksenov, A. Charguéraud, M. Rainey

we consider, namely ray-cast and delaunay, represent the
largest and most complex codes in PBBS.
The original, authors’ codes leverage a variety of man-

ual techniques to control granularity. These techniques in-
volve program instrumentation along with careful tuning to
achieve efficiency. For our programs, we ported the original
PBBS codes by inserting spguards where necessary, and, for
the spguards, we wrote a total of 24 explicit cost functions.
It was otherwise possible to use default cost functions, as
described in Section 2.6. We summarize the changes:

1. A few divide-and-conquer algorithms involved a man-
ually fixed grain to control granularity. We replaced
each of them with a spguard, thereby eliminating the
hardware-dependent magic numbers.

2. A number of loops were parallelized by splitting in
fixed-size blocks of 2048 items each—a pattern widely
used throughout the PBBS sequence library. We re-
placed all of them with our automatically controlled
parallel-for loops.

3. Other loops exploited Cilk parallel for-loops, which
essentially split the loop range in 8P blocks, where P
is the number of cores. We also replaced all of them
with our automatically controlled loops.

4. A number of inner loops were forced to sequentialize,
even though they could have been parallel. As we
learned from private communication with the authors,
the purpose was to tame the overheads. We restored
parallelism using our automatically-controlled loops.

5. Two loops were forced to always make one spawn
per iteration, using a Cilk for-loop annotated with
#pragma grainsize = 1. Again, we replaced all such
loops with our automatically-controlled loops, which
properly support nested parallelism.

Overall, automatic granularity control enables replacing
careful selection of techniques, such as those listed above,
with a single, uniform technique for controlling granular-
ity, able to handle nontrivial nesting of parallelism con-
structs. Furthermore, the technique automates away the
labor-intensive tuning of grain sizes, and it automatically
adapts to the hardware—performance is portable.
Yet, these benefits are not completely free. The program-

mer must take care to ensure that the algorithm in question
meets the requirements of our approach, as described in
Section 2. Owing to such requirements, we left out eight of
the remaining PBBS benchmarks. Fortunately, for each such
benchmark, the reason for the incompatibility is straightfor-
ward, and in the technical appendix, we explain the reasons.
In spite of such cases, our approach nevertheless remains
sound, even in applications where there are some functions
that use our approach, and some that use, for example, man-
ual granularity control, or perhaps some other method. The
only caveat is that the guarantees associated with our ap-
proach do not apply for regions of the program in which

there are calls to manually-controlled functions from inside
spguards.
In our approach, there are potential overheads related to

the need to infer granularity thresholds online, through a
convergence phase. Nevertheless, as established by our anal-
ysis (and, as we confirm through our experimental results),
the cost of the convergence phase generally accounts for
at most a few percent of the parallel run time. Overheads
associated with manual granularity control pose their own
challenges, but are not backed by guarantees. We observed
that, by removing the pragmas (fifth item in the list above),
performance would sometimes degrade by up to 5%, and we
note that the degradation observed by the PBBS authors may
have been more pronounced. The overheads associated with
the fourth item in the list above are analyzed in detail by
our study of the parallel BFS benchmark, which shows that
our automatic method achieves better performance across a
wider range of inputs than any manual setting.

Experimental setup. Our primary test harness is an Intel
machine with 40 cores. We compiled the code using GCC
(version 6.3) using the extensions for Cilk Plus (options -O2
-march=native -fcilkplus). Our 40-core machine has four
10-core Intel E7-4870 chips, at 2.4GHz, with 32Kb of L1 and
256Kb L2 cache per core, 30Mb of L3 cache per chip, and
32Gb RAM, and runs Ubuntu Linux kernel v3.13.0-66-generic.
For each data point, we report the average running time over
30 runs. The variation in the running times is negligible:
overall, we observed only a few cases where the standard
deviation is 5%, but it was usually below 3%.
To pick settings for parameters κ and α , we developed

a method that involves a one-time-per-machine, automatic
tuning step. The starting point is a benchmark program that
takes as input an array of 32-bit integers and computes the
sum using a parallel reduction. The reduction code uses
a spguard to control granularity. To pick κ, we perform a
series of runs of the reduction benchmark using a single core,
starting with a small setting of κ = 1µs and progressively
trying larger settings. For these initial runs, we pick α = 1.3,
a small setting so that the estimator has plenty of slack to
converge to reach the target κ. We stop this process upon
reaching the first setting of κ for which the program runs
slightly above 5% slower than the sequential elision of the our
reduction benchmark. The sequential elision is (in general)
the version of the parallel program in which all fork-join
and spguard constructs are erased, leaving only the bare
sequential code.
Having picked κ, we then run the same benchmark, but

this time using all available cores and trying a number of
settings in 1.3 ≤ α ≤ 5.0. We then pick α to be the setting
that gives the best running time. On our test machine, this
process gave us κ = 10.2µs and α = 3.0.

Provably and Practically Efficient Granularity Control PPoPP ’19, February 16–20, 2019, Washington, DC, USA

1 2 3 4 5 6 7 8 9
Application/input Sequential elision 1-core execution 40-core execution

PBBS Oracle PBBS Oracle PBBS Oracle Oracle / PBBS
(s) (relative to elision) (s) Idle time Nb threads

samplesort
random 21.765 +7.1% +15.6% -1.9% 0.834 -7.0% -7.1% -18.1%
exponential 15.682 +5.3% +13.1% -1.4% 0.626 -4.4% -4.4% -15.7%
almost sorted 6.799 +19.3% +26.4% -4.3% 0.423 -7.8% -7.8% -3.0%

radixsort
random 3.060 +3.6% +0.5% -5.3% 0.235 +8.8% +9.3% -11.4%
random pair 4.920 -0.3% +0.3% -1.0% 0.469 +4.3% +3.2% +128.0%
exponential 3.135 +3.3% +1.0% -2.6% 0.245 -1.9% -3.1% +23.7%

suffixarray
dna 19.276 +1.4% +2.2% +3.5% 1.494 +3.8% +1.4% +28.2%
etext 70.322 +1.1% +2.0% +2.4% 4.527 -0.0% -1.7% +68.4%
wikisamp 62.112 -1.1% +2.0% +3.7% 4.139 +3.2% +1.4% +64.1%

convexhull
kuzmin 7.040 +24.5% -0.8% -15.1% 0.517 -0.1% +6.0% -81.6%
on circle 130.835 -6.1% +104.8% +6.7% 9.871 -31.5% -31.5% -23.4%

nearestneighbors
kuzmin 19.712 +1.8% +21.7% +13.2% 1.308 -1.8% -3.5% +20.0%
plummer 27.173 -3.4% +6.2% +3.4% 2.444 -4.6% -10.5% -0.3%

delaunay
in square 63.967 -0.1% -0.6% -0.4% 3.150 -0.6% -0.8% +3.2%
kuzmin 69.428 +0.7% +0.5% +1.7% 3.802 -4.0% +0.9% -21.4%

raycast
happy 10.698 +6.3% +3.2% +0.3% 0.473 +5.5% +5.5% -32.7%
xyzrgb 338.920 -1.9% -2.5% +1.2% 9.677 +1.5% +2.0% -67.3%

Table 1. Benchmark results. Column 3 gives an estimate of the difference in performance between our implementation and
the original PBBS version, on a single core, neglecting parallelism-related overheads. Column 4 gives a lower bound on the
overheads of the original PBBS code, with figures relative to Column 2. Column 5 gives an estimate of the thread-creation
and spguard overheads in our approach, with figures relative to Column 3. In the 40-core section, Column 6 gives PBBS
execution time, and Column 7 gives the oracle-guided figure relative to Column 6. Negative figures indicate that our approach
is performing better. Columns 8 and 9 give the ratios between our approach and that of PBBS for two measures: total idle time
and number of threads created.

3.1 Main PBBS results
For input data sets, we reused much from the original PBBS
study [Blelloch et al. 2012], but introduced newly acquired
data in a few cases. The inputs to comparison- and radix-
sort consist of sequences of length 108. For convex-hull, the
inputs consist of 108 2-d points. For nearest neighbors, the
kuzmin input consists of 108 2-d points and plummer, 108 3-d
points. For delaunay, the inputs consist of 107 2-d points. For
ray-cast, we used a two non-synthetic inputs: happy consists
of the Happy Buddha mesh from the Stanford 3D Scanning
Repository, and it consists of 1 million triangles, and xyz-
rgb-manusript comes from the same repository and consists
of 4 million triangles. Finer details appear in the technical
appendix.

The main performance results appear in Table 1. Columns
2 and 3 represent runs of the sequential elision of the original

PBBS code and of our implementation, respectively. The re-
sults in column 3 in particular show the relative performance
of our implementation versus the original PBBS one. A -5%
value indicates that our version performs 5% faster. Although
our code is almost always identical to the original PBBS code,
there are some minor structural differences in the function
bodies that affect performance slightly. Overall, however, the
sequential elisions in both cases perform similarly.

We next evaluate the overheads of thread creation in the
original PBBS codes and in our oracle-guided versions. To
evaluate for original PBBS, we compare the execution time
of the sequential elision of the PBBS code to that of the PBBS
code compiled as a Cilk parallel binary. The estimation of
overheads in Cilk may be incomplete because the Cilk system
in some places detects at runtime that there is only one active
worker thread in the system. Nevertheless, the comparison

PPoPP ’19, February 16–20, 2019, Washington, DC, USA U. Acar, V. Aksenov, A. Charguéraud, M. Rainey

should give us a lower bound on the parallelism overheads
affecting Cilk programs. Column 4 in Table 1 shows that
overheads are sometimes low, but sometimes over 15%, and
in one case 104%.
To examine overheads of our approach, we compare in a

similar fashion the execution time of our sequential elision
to that of our parallel-ready binary, running on a single core.
Our parallel-ready binary includes the overhead costs of
both the Cilk parallel constructs and the estimation-related
overheads of the granularity controller. Column 5 in Table 1
shows that the parallel-ready binary is in one case 13% slower,
but is otherwise close to the overhead of 5% or smaller that
we targeted. There are a number of cases where the parallel-
ready binary is slightly faster than the sequential elision.
The reason is that the sequential elision switches from recur-
sive, parallel-ready to loop-based sequential code when the
complexity function returns a value smaller than 10k, which
is sometimes slightly less efficient than the threshold given
by the parallel-ready binary.

We finally compare the execution time of original PBBS to
that of our binary on 40 cores, using automatic granularity
control. Columns 6 and 7 in Table 1 show the results. The
results show that in all but two cases, our binary is faster
or on par with the PBBS binary. When it is slower, our bi-
nary is slower by 8.8%, whereas when it is faster, it is in one
case 31.5% and another 7.8% faster. These latter two cases
correspond to worst-case inputs in samplesort and convex-
hull, where the original PBBS binary is slower because of
comparatively poor utilization of the cores.
To gain further insight, we included Columns 7 and 8

in Table 1. Column 8 shows the ratio between idle time
(counting periods during which workers are out of work) in
our approach and idle time in PBBS. The figures show that
the idle time is of the same order of magnitude.2 Column 9
shows the ratio between the number of threads created in
our approach and the number of threads created in PBBS.
Taken together, these last two columns indicate that our
approach is able to achieve similar utilization despite having
to modulate the creation of threads online.

3.2 Parallel BFS
In addition to the other PBBS programs, we considered the
non-deterministic BFS benchmark, named ndBFS in the PBBS
paper. We chose ndBFS because it is the fastest among the
alternative BFS implementations in PBBS and, to the best
of our knowledge, the fastest publicly available Cilk imple-
mentation of BFS. To test of the robustness of granularity
control, we picked the input graphs to feature a wide range
of graph structures. These graphs were used in a different

2Because utilization in these benchmarks is generally between 80% and 99%,
the total idle time represents less than 20% of the total execution time, thus
a 20% change in idle time would affect the execution time by less than 4%.

performance study to test the granularity control of a DFS-
like graph-traversal algorithm [Acar et al. 2015]. We picked
a representative subset of the graphs, including small-world
graphs, such as livejournal, twitter, and wikipedia, and high-
diameter graphs, such as europe and cube-grid.
There are two versions of BFS: the flat and the nested

version. In the flat version, the algorithm traverses over the
list of neighbors of a vertex in the BFS frontier sequentially,
whereas, in the nested version, the algorithm uses a parallel
loop, thereby allowing to process in parallel the out-edges
of vertices with high out-degree.
PBBS currently uses the flat version. Via personal com-

munication, we learned that the authors sequentialized the
inner loop because (1) the graphs they considered did not
feature such high-degree vertices, and (2) they observed that
performance improved for some of their test graphs when
this loop was serialized. Columns 2 and 6 from Table 2 give
the execution time for the flat PBBS BFS, and for its nested
counterpart, using a parallel cilk_for loop over the edges.
The figures from these two columns confirm that overheads
of parallelization using Cilk-for are significant, sometimes
above 50%.
In contrast, our algorithm supports nested parallelism

and, even so, delivers significantly better results for nested
PBBS, as reported in Column 7 from Table 2 (“nested - ours”).
The last column from this figure shows our main result: it
compares the performance of the original authors’ flat BFS
versus our nested BFS with automatic granularity control.
Our version either performs about as well or up to 84% faster.

3.3 Summary
Overall, the results show that our technique enables a simple,
uniformmethod for granularity control, whereas the original
PBBS code involves several types of manual intervention.
The main PBBS results show our method delivering similar
or better performance overall, in spite of having to adaptively
adjust grain settings on the fly. The BFS results show our
technique delivering consistently better performance in the
face of fine-grain, nested, and irregular parallelism. In the
technical appendix, we present a portability study, showing
that the technique yields similar results across various test
machines with different core counts and architectures.

4 Related work
Controlling the overheads of parallelism has been an impor-
tant open problem since the early 1980’s, when it was first
recognized that practical overheads can undo the benefits
of parallelism [Halstead 1984; Mohr et al. 1990]. Since then,
researchers have explored two separate approaches.

GranularityControl. Perhaps the oldest technique for gran-
ularity control is to use manual, programmer-inserted “cut-
off” conditions that switch from a parallel to a sequential

Provably and Practically Efficient Granularity Control PPoPP ’19, February 16–20, 2019, Washington, DC, USA

Flat Nested Ours nested

Graph PBBS Ours Oracle / PBBS PBBS Ours Oracle / PBBS vs.
PBBS flat

(sec.) Idle time Nb threads (sec.) Idle time Nb threads
livejournal 0.12 +8.2% −5.5% −16.8% 0.19 −29.0% −2.2% −58.8% +11.3%
twitter 2.02 −7.3% +14.0% −16.0% 2.71 −32.4% −0.1% −57.1% −9.5%
wikipedia 0.11 +5.1% −3.9% −28.1% 0.14 −19.0% −6.4% −55.3% +7.4%
europe 4.28 −38.3% −50.4% −24.8% 4.28 −37.9% −51.3% −27.6% −37.9%
rand-arity-100 0.12 +6.5% −6.8% +9.8% 0.44 −71.3% −20.4% −40.8% +8.0%
rmat27 0.21 +8.4% −3.1% −43.4% 0.41 −46.4% −5.4% −56.3% +4.8%
rmat24 0.36 +5.0% −3.8% +4.8% 0.37 +3.0% −4.6% +8.8% +5.0%
cube-grid 0.79 +0.0% −15.9% +14.4% 0.79 −0.7% −17.4% +10.1% −0.8%
square-grid 4.51 −38.9% −24.5% −31.5% 4.47 −38.1% −25.5% −32.7% −38.7%
par-chains-100 67.7 −71.0% −71.4% −90.9% 69.2 −72.6% −67.7% −79.6% −72.0%
trunk-first 13.1 −47.4% −2.1% −97.4% 13.4 −48.5% −2.1% −97.6% −47.2%
phases-10-d-2 1.40 +8.1% −8.9% −0.4% 0.51 +3.5% −2.6% +10.5% −62.0%
phases-50-d-5 0.67 +5.8% −5.0% +6.9% 0.66 +4.7% −3.6% +16.6% +4.3%
trees-524k 12.9 +21.0% −14.7% −8.2% 1.80 +15.7% −2.5% +23.5% −83.8%

Table 2. Parallel BFS experiment on 40 cores. Depending on the input graph, either Flat PBBS or Nested PBBS is faster. Our
nested-parallel algorithm compares favorably to both of them, as reflected by the last column, and the column “Nested/Ours”.

mode of execution. Researchers have addressed the limita-
tions of such manual granularity control by using various
forms of automation. Duran et al. propose a method for se-
lecting among three parallelization options: outer-loop only,
inner-loop only, or mixed mode, where inner and outer loops
may be parallelized and granularity controlled by a heuris-
tic [Duran et al. 2008]. The cut-off technique of Duran et
al. makes its decisions online and, like our technique, re-
quires neither tuning nor recompiling. An earlier approach
by Huelsbergen, Larus, and Aiken uses list size to determine
the grain size [Huelsbergen et al. 1994], however, their tech-
nique assumes linear work complexity for every parallel
operation. Another approach uses the height and depth of
the recursion tree [Pehoushek and Weening 1990; Weening
1989] to predict the execution time and the grain size, but
lacks crucial information because depth and height are not
a direct measure of execution time. As Iwasaki et al. point
out, because techniques, such as those mentioned here, base
decisions solely on certain dynamically collected data, such
as recursion-tree depth, height, and dynamic load condi-
tions, the granularity controller typically risks decreasing
parallelism adversely [Iwasaki and Taura 2016].

Lopez et al. use a similar approach to ours, but in the con-
text of logic programming [Lopez et al. 1996]. Their cost
estimators, however, rely on the asymptotic cost annota-
tions alone, but not on prediction of wall-clock running
times. Using the asymptotic cost alone is an overly simplis-
tic method, because, on modern processors, execution time
depends heavily on effects of caching, pipelining, etc. Our

technique improves on theirs by defining precise assump-
tions (Section 2) for correct use, backing with theoretical
bounds and with a range of challenging benchmarks.

Iwasaki et al. propose a technique for synthesizing static
cut-offs for divide-and-conquer functions in Cilk-style pro-
grams [Iwasaki and Taura 2016]. The determination ofwhether
or not to cut to serial is made by using cost estimation from
a compiler analysis. As such, this technique relies on having
accurate static analysis and sophisticated compiler support.
Our technique offers an alternative that can, in contrast
to theirs, be implemented entirely as a library, using off-
the-shelf tools, such as GCC, and can adapt its decisions
to changing conditions rather than compile-time estimates.
The main cost of which is sometimes having to write cost
functions.

Lazy task creation. Lazy task creation, lazy scheduling, and
heartbeat scheduling are techniques that aim to reduce the
number of tasks created by observing the load in the system
and creating tasks only when necessary [Acar et al. 2018;
Mohr et al. 1991; Tzannes et al. 2014]. The aim is to reduce
the total overhead of thread creation of a parallel program,
whereas granularity control aims to reduce the same kind of
overhead by instead selectively cutting to serial code.

Lazy task creation has proved to be an indispensable tech-
nique for modern parallel programming systems, many of
which could not perform well without it. Although it can
reduce overheads of parallelism, lazy task creation has some
important limitations that prevent it from being the silver bul-
let. First, there is no way in lazy task creation to account for

PPoPP ’19, February 16–20, 2019, Washington, DC, USA U. Acar, V. Aksenov, A. Charguéraud, M. Rainey

the fact that sequential algorithms are usually both asymp-
totically and practically more work-efficient than their par-
allel counterparts. At best, lazy task creation can reduce
parallelism-related overheads by executing an already paral-
lel algorithm sequentially. Even without parallelism-related
overheads, using the stripped-down parallel algorithm (i.e.,
sequential elision [Frigo et al. 1998]) could lead to suboptimal
performance, because the problem could have been solved
much more efficiently by a faster sequential algorithm. It
is thus reasonably common, even when using lazy task cre-
ation, to observe a 3-10 fold overhead compared to a piece
of code that manually controls granularity of tasks.
Another issue relates to infrastructure requirements. Be-

cause it depends on polling on a regular basis for work re-
quests, there is a need for sophisticated support from the
compiler [Feeley 1993a]. A key component of such compiler
support is the injection of polling checks [Feeley 1993b],
which is generally necessary, unless there is support for a
suitable inter-core interrupt mechanism a la ADM [Sanchez
et al. 2010b], or a suitable interrupt-based alarm mechanism.
We believe, however, that lazy task creation and granu-

larity control, such as our algorithm, are largely comple-
mentary: they could easily coexist and provide benefits to
each other. Lazy task creation could likely improve perfor-
mance in cases where a cost function is difficult to define,
for example, and our oracle-guided algorithm could likely
improve performance by enabling the program to cut in a
safe manner to faster serial code. Additional analysis and
experimentation will help to better understand the tradeoffs.

5 Conclusion
The problem of managing parallelism-related overheads ef-
fectively is an important problem facing parallel program-
ming. The current state-of-the-art in granularity control
places the burden of the tuning on the programmer. The
tuning process is labor intensive and results in highly en-
gineered, possibly performance-brittle code. In this paper,
we show that it is possible to control granularity in a more
principled fashion. The key to our approach is an online
algorithm for efficiently and accurately estimating the work
of parallel computations. We show that our algorithm can
be integrated into a state-of-the-art, implicitly parallel lan-
guage and can deliver executables that compete with and
sometimes even beat expertly hand-tuned programs.

Acknowledgments. This research is partially supported by
the European Research Council (ERC-2012-StG-308246).

References
Umut A. Acar and Guy E. Blelloch. 2017. Algorithm Design: Parallel and

Sequential. http:www.parallel-algorithms-book.com.
Umut A. Acar, Guy E. Blelloch, and Robert D. Blumofe. 2002. The Data

Locality of Work Stealing. Theory of Computing Systems 35, 3 (2002),
321–347.

Umut A. Acar, Arthur Charguéraud, Adrien Guatto, Mike Rainey, and Filip
Sieczkowski. 2018. Heartbeat Scheduling: Provable Efficiency for Nested
Parallelism. In Proceedings of the 39th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI 2018). ACM,
New York, NY, USA, 769–782. https://doi.org/10.1145/3192366.3192391

Umut A. Acar, Arthur Charguéraud, and Mike Rainey. 2013. Scheduling
Parallel Programs by Work Stealing with Private Deques. In Proceedings
of the 19th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP ’13).

Umut A. Acar, Arthur Charguéraud, andMike Rainey. 2015. A work-efficient
algorithm for parallel unordered depth-first search. In Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, SC 2015, Austin, TX, USA, November 15-20, 2015.
67:1–67:12.

Umut A. Acar, Arthur Charguéraud, and Mike Rainey. 2016. Oracle-guided
scheduling for controlling granularity in implicitly parallel languages.
Journal of Functional Programming (JFP) 26 (2016), e23.

Arvind and K. P. Gostelow. 1978. The Id Report: An Asychronous Language
and Computing Machine. Technical Report TR-114. Department of Infor-
mation and Computer Science, University of California, Irvine.

Lars Bergstrom, Matthew Fluet, Mike Rainey, John Reppy, and Adam Shaw.
2012. Lazy Tree Splitting. J. Funct. Program. 22, 4-5 (Aug. 2012), 382–438.

Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, and Julian Shun.
2012. Internally deterministic parallel algorithms can be fast. In PPoPP
’12. 181–192.

Guy E. Blelloch and John Greiner. 1996. A provable time and space effi-
cient implementation of NESL. In Proceedings of the 1st ACM SIGPLAN
International Conference on Functional Programming. ACM, 213–225.

Guy E. Blelloch, Jonathan C. Hardwick, Jay Sipelstein, Marco Zagha, and
Siddhartha Chatterjee. 1994. Implementation of a Portable Nested Data-
Parallel Language. J. Parallel Distrib. Comput. 21, 1 (1994), 4–14.

Robert D. Blumofe and Charles E. Leiserson. 1999. Scheduling multithreaded
computations by work stealing. J. ACM 46 (Sept. 1999), 720–748. Issue 5.

Richard P. Brent. 1974. The parallel evaluation of general arithmetic expres-
sions. J. ACM 21, 2 (1974), 201–206.

Manuel M. T. Chakravarty, Roman Leshchinskiy, Simon L. Peyton Jones,
Gabriele Keller, and Simon Marlow. 2007. Data parallel Haskell: a status
report. In Proceedings of the POPL 2007 Workshop on Declarative Aspects
of Multicore Programming, DAMP 2007, Nice, France, January 16, 2007.
10–18.

Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Don-
awa, Allan Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek
Sarkar. 2005. X10: an object-oriented approach to non-uniform cluster
computing. In Proceedings of the 20th annual ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and applications
(OOPSLA ’05). ACM, 519–538.

A. Duran, J. Corbalan, and E. Ayguade. 2008. An adaptive cut-off for task
parallelism. In 2008 SC - International Conference for High Performance
Computing, Networking, Storage and Analysis. 1–11.

Marc Feeley. 1992. AMessage Passing Implementation of Lazy Task Creation.
In Parallel Symbolic Computing. 94–107.

Marc Feeley. 1993a. An efficient and general implementation of futures on
large scale shared-memory multiprocessors. Ph.D. Dissertation. Brandeis
University, Waltham, MA, USA. UMI Order No. GAX93-22348.

Marc Feeley. 1993b. Polling efficiently on stock hardware. In Proceedings
of the conference on Functional programming languages and computer
architecture (FPCA ’93). 179–187.

Matthew Fluet, Mike Rainey, John Reppy, and Adam Shaw. 2011. Implicitly
threaded parallelism in Manticore. Journal of Functional Programming
20, 5-6 (2011), 1–40.

Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. 1998. The Imple-
mentation of the Cilk-5 Multithreaded Language. In PLDI. 212–223.

Adrien Guatto, Sam Westrick, Ram Raghunathan, and Umut A.
Acarand Matthew Fluet. 2018. Hierarchical Memory Management for

http:www.parallel-algorithms-book.com
https://doi.org/10.1145/3192366.3192391

Provably and Practically Efficient Granularity Control PPoPP ’19, February 16–20, 2019, Washington, DC, USA

Mutable State. In ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPOPP). ACM Press.

Robert H. Halstead. 1985. MULTILISP: a language for concurrent symbolic
computation. ACM Transactions on Programming Languages and Systems
7 (1985), 501–538.

Robert H. Halstead, Jr. 1984. Implementation of Multilisp: Lisp on aMultipro-
cessor. In Proceedings of the 1984 ACM Symposium on LISP and functional
programming (LFP ’84). ACM, 9–17.

Tasuku Hiraishi, Masahiro Yasugi, Seiji Umatani, and Taiichi Yuasa. 2009.
Backtracking-based load balancing. In PPoPP ’09. ACM, 55–64. https:
//doi.org/10.1145/1504176.1504187

Lorenz Huelsbergen, James R. Larus, and Alexander Aiken. 1994. Using the
run-time sizes of data structures to guide parallel-thread creation. In Pro-
ceedings of the 1994 ACM conference on LISP and functional programming
(LFP ’94). 79–90.

Shams Mahmood Imam and Vivek Sarkar. 2014. Habanero-Java library: a
Java 8 framework for multicore programming. In 2014 International Con-
ference on Principles and Practices of Programming on the Java Platform
Virtual Machines, Languages and Tools, PPPJ ’14. 75–86.

Intel. 2011. Intel Threading Building Blocks. (2011). https://www.
threadingbuildingblocks.org/.

Shintaro Iwasaki and Kenjiro Taura. 2016. A static cut-off for task parallel
programs. In Proceedings of the 2016 International Conference on Parallel
Architectures and Compilation. ACM, 139–150.

Suresh Jagannathan, Armand Navabi, KC Sivaramakrishnan, and Lukasz
Ziarek. 2010. The Design Rationale for Multi-MLton. In ML ’10: Proceed-
ings of the ACM SIGPLAN Workshop on ML. ACM.

Gabriele Keller, Manuel M.T. Chakravarty, Roman Leshchinskiy, Simon
Peyton Jones, and Ben Lippmeier. 2010. Regular, shape-polymorphic,
parallel arrays in Haskell. In Proceedings of the 15th ACM SIGPLAN
international conference on Functional programming (ICFP ’10). 261–272.

Doug Lea. 2000. A Java fork/join framework. In Proceedings of the ACM
2000 conference on Java Grande (JAVA ’00). 36–43.

Daan Leijen,Wolfram Schulte, and Sebastian Burckhardt. 2009. The design of
a task parallel library. In Proceedings of the 24th ACM SIGPLAN conference
on Object Oriented Programming Systems Languages and Applications
(OOPSLA ’09). 227–242.

P. Lopez, M. Hermenegildo, and S. Debray. 1996. A methodology for
granularity-based control of parallelism in logic programs. Journal
of Symbolic Computation 21 (June 1996), 715–734. Issue 4-6. https:
//doi.org/10.1006/jsco.1996.0038

E. Mohr, D. A. Kranz, and R. H. Halstead. 1991. Lazy task creation: a
technique for increasing the granularity of parallel programs. IEEE
Transactions on Parallel and Distributed Systems 2, 3 (1991), 264–280.

Eric Mohr, David A. Kranz, and Robert H. Halstead Jr. 1990. Lazy task
creation: a technique for increasing the granularity of parallel programs.
In Conference record of the 1990 ACM Conference on Lisp and Functional
Programming. ACM Press, New York, New York, USA, 185–197.

OpenMP Architecture Review Board. 2008. OpenMP Application Program
Interface. (2008). https://www.openmp.org/.

Joseph Pehoushek and JosephWeening. 1990. Low-cost process creation and
dynamic partitioning in Qlisp. In Parallel Lisp: Languages and Systems,
Takayasu Ito and Robert Halstead (Eds.). Lecture Notes in Computer
Science, Vol. 441. Springer Berlin / Heidelberg, 182–199.

Ram Raghunathan, Stefan K. Muller, Umut A. Acar, and Guy Blelloch. 2016.
Hierarchical Memory Management for Parallel Programs. In Proceed-
ings of the 21st ACM SIGPLAN International Conference on Functional
Programming (ICFP 2016). ACM, New York, NY, USA, 392–406.

Mike Rainey. 2010. Effective Scheduling Techniques for High-Level Parallel
Programming Languages. Ph.D. Dissertation. University of Chicago.

Daniel Sanchez, Richard M. Yoo, and Christos Kozyrakis. 2010a. Flexible
architectural support for fine-grain scheduling. In Proceedings of the
fifteenth edition of ASPLOS on Architectural support for programming
languages and operating systems (ASPLOS ’10). ACM, New York, NY,

USA, 311–322.
Daniel Sanchez, Richard M. Yoo, and Christos Kozyrakis. 2010b. Flexible

architectural support for fine-grain scheduling. In Proceedings of the
fifteenth edition of ASPLOS on Architectural support for programming
languages and operating systems (ASPLOS ’10). ACM, New York, NY,
USA, 311–322. https://doi.org/10.1145/1736020.1736055

Bjarne Stroustrup. 2013. The C++ Programming Language. (2013).
Alexandros Tzannes, George C. Caragea, Uzi Vishkin, and Rajeev Barua.

2014. Lazy Scheduling: A Runtime Adaptive Scheduler for Declarative
Parallelism. TOPLAS 36, 3, Article 10 (Sept. 2014), 51 pages. https:
//doi.org/10.1145/2629643

Joseph S. Weening. 1989. Parallel Execution of Lisp Programs. Ph.D. Dis-
sertation. Stanford University. Computer Science Technical Report
STAN-CS-89-1265.

Reza Zadeh. 2017. Overview, Models of Computation, Brent’s Theorem.
(2017). https://stanford.edu/~rezab/dao/notes/lecture01/cme323_lec1.
pdf

https://doi.org/10.1145/1504176.1504187
https://doi.org/10.1145/1504176.1504187
https://www.threadingbuildingblocks.org/
https://www.threadingbuildingblocks.org/
https://doi.org/10.1006/jsco.1996.0038
https://doi.org/10.1006/jsco.1996.0038
https://www.openmp.org/
https://doi.org/10.1145/1736020.1736055
https://doi.org/10.1145/2629643
https://doi.org/10.1145/2629643
https://stanford.edu/~rezab/dao/notes/lecture01/cme323_lec1.pdf
https://stanford.edu/~rezab/dao/notes/lecture01/cme323_lec1.pdf

PPoPP ’19, February 16–20, 2019, Washington, DC, USA U. Acar, V. Aksenov, A. Charguéraud, M. Rainey

A Artifact Appendix
This artifact contains scripts for building the executables,
downloading the input data, executing the benchmark pro-
grams, and output tables of results similar to Tables 1 and 2.

A.1 Artifact check-list (meta-information)
• Algorithm: samplesort, radixsort, suffixarray, convexhull,
nearestneighbors, delaunay, raycast, bfs

• Program: nix build scripts, C++ code
• Compilation: nix build scripts
• Data set: Problem Based Benchmark Suite
• Run-time environment: Linux
• Hardware: An x86-64 machine with multiple cores
• Output: Results tables comparing running times, core idle
times, and number of green-thread creations

• How much disk space required (approximately)?: 300GB
• How much time is needed to prepare workflow (approxi-
mately)?: 5-10 hours

• How much time is needed to complete experiments (approx-
imately)?: 4 hours

• Publicly available?: Yes
• Code/data licenses (if publicly available)?: Yes
• Workflow frameworks used?: nix package manager

A.2 Description
How delivered Our source code consists of a several of our open-
source libraries, all of which are under theMIT license. The libraries
are hosted along with documentation on Github. The two main
repositories are available at https://github.com/deepsea-inria/sptl
and https://github.com/deepsea-inria/pbbs-sptl.

Hardware dependencies The experiments require a machine
with multiple x86-64 cores and well-provisioned RAM. Of our test
machines, the one with the minimum amount of RAM has 74GB,
but this amount is likely more than is needed.

Software dependencies Our build scripts depend on the nix pack-
age manager. https://nixos.org/nix/download.html

Data sets The data sets take approximately 300GB on disk.
Although they are taken from the Problem Based Benchmark

Suite, the data sets used in our experiments are represented in our
custom serialized format. As such, the data sets can be accessed only
via either the automatic downloading function of our benchmark
scripts or the manual downloading process described in Section A.6.

A.3 Installation
After you have the nix package manager, clone our repository and
change to the script folder in the clone.
$ git clone https://github.com/deepsea-inria/pbbs-

sptl.git

Then, change to the folder containing the nix build scripts.
$ cd pbbs-sptl/script

Because the current directory is where the input data is going to be
stored, make sure that there is sufficient space on the file system.

Next, to build the benchmarks, run the following command (there
are a number of alternative configuration parameters discussed in
Section A.6).

$ nix-build

If the build succeeds, there will be a symlink named result in the
current directory.

A.4 Experiment workflow
The first step is to run the auto tuner, which picks (machine-specific)
settings for κ and α , following the process described in Section 3.
$./result/bench/autotune

The result of this process is to write to /var/tmp a folder containing
the settings data.

It is important to complete the auto tuning, because otherwise
the default settings are used, and the default settings may lead to
poor performance on the benchmarks.

To start the main benchmarks, run the following command.
$./result/bench/bench.pbench compare

The command will automatically download the input data sets,
and will likely take several hours. We recommend first trying to
complete this process on just one benchmark (defaultly, the script
will try to run all to completion). See Section A.6 for instructions
on how to run individually. If there is a problem downloading the
input data automatically, see Section A.6 for instructions on how
to obtain the input data manually.

After the previous command finishes successfully, there should
appear in the _results folder a number of new text files of the form
results_benchmark.txt and a PDF named tables_compare.pdf.
The source for the table can be found in the same folder, in the file
named latex.tex.

To start the BFS benchmarks, run the following command.
$./result/bench/bench.pbench bfs

This command should generate a text file named results_bfs.txt
and a PDF named tables_bfs.pdf. Like before, the sources for
the latex table can be found in the same folder, named latex.tex.

A.5 Evaluation and expected result
The trends in tables_compare.pdf tables_bfs.pdf should bear
resemblance to the trends in Tables 1 and 2, respectively. The raw
results from benchmark runs should appear in text files in the
_results folder. These results are human readable, but the more
efficient way to interpret them is to look at the generated tables.

A.6 Experiment customization
Running benchmarks individually. The benchmarking script,
namely bench.pbench, supports running one benchmark at a time.
For example, the following command runs just convexhull.
$./result/bench/bench.pbench compare -benchmark

convexhull

To run multiple, use a comma-separated list, such as the following.
$./result/bench/bench.pbench compare -benchmark

convexhull,samplesort

Manually downloading the input dataset. First, download the
input data from http://mike-rainey.site/ppopp19. Then, use the
following command to build the benchmarks.
$ nix-build --argstr pathToData /path/to/data/folder

https://github.com/deepsea-inria/sptl
https://github.com/deepsea-inria/pbbs-sptl
https://nixos.org/nix/download.html
http://mike-rainey.site/ppopp19

Provably and Practically Efficient Granularity Control PPoPP ’19, February 16–20, 2019, Washington, DC, USA

Building with custom modified sources. The interested exper-
imenter may want to edit the source code and benchmark with
their changes. Modifications to three critical repositories used by
our benchmarks can be built by the following process. First, from
the folder containing pbbs-sptl, clone the original Problem Based
Benchmark Suite library code and our library code.
$ git clone https://github.com/deepsea-inria/pbbs-

include.git

$ git clone https://github.com/deepsea-inria/sptl.git

Because the sptl repository may change over time, we recommend
starting with the revision that is used by the default sources. The
revision number can be found in the file at
pbbs-sptl/script/default-sources.nix

Next, build as follows.
$ cd pbbs-sptl/script

$ nix-build --arg sources 'import ./local-sources.

nix'

The library sptl contains our granularity-control algorithm
along with critical data-parallel library functions used across the
benchmarks. Documentation for sptl can be built by following the
instructions in Section A.6.

Buildingwith library documentation. Documentation for sptl
is available either in markdown format or in easier-to-read PDF
and HTML formats. To render PDF and HTML documentation, pass
to the build script the buildDocs flag as follows.
$ cd pbbs-sptl/script

$ nix-build --arg buildDocs true

After completion, the sptl documentation should appear along
with the markdown source in the folder

./result/sptl/share/doc

Running with custom κ, α settings The following command
line overrides the settings generated by the auto tuner.
$./result/bench/bench.pbench compare -sptl_kappa

12.0 -sptl_alpha 3.0

Picking the number of processors manually The number of
cores in the machine is detected by the autotuner, and that number
is used by default for benchmarking. To override this number, say,
to use 12 hardware threads for benchmarking, use the -proc flag,
as follows.
$./result/bench/bench.pbench compare -proc 12

Picking the number of benchmarking runs The default num-
ber of runs per input is 30, and the result reported for every such
batch of runs is the average. To override this number to instead
perform, say, five runs, use the -runs flag, as follows.
$./result/bench/bench.pbench compare -runs 5

Later, to add to the previous results an additional 25 runs per input,
use the -mode append flag.
$./result/bench/bench.pbench compare -runs 25 -mode

append

A.7 Methodology
Submission, reviewing and badging methodology:

• http://cTuning.org/ae/submission-20180713.html
• http://cTuning.org/ae/reviewing-20180713.html
• https://www.acm.org/publications/policies/artifact-review-badging

http://cTuning.org/ae/submission-20180713.html
http://cTuning.org/ae/reviewing-20180713.html
https://www.acm.org/publications/policies/artifact-review-badging

PPoPP ’19, February 16–20, 2019, Washington, DC, USA U. Acar, V. Aksenov, A. Charguéraud, M. Rainey

B Implementation of time measurements
In the description of the algorithm in Section 2, we abstracted over an important detail: measuring the work of a sequential or a parallel
function. In this section, we present the version of the algorithm that performs such measurements. The basic strategy is to store in
processor-local memory a few cells in which to store intermediate timing results, to accumulate some timing results in this processor-local
memory as the program runs, and to combine timing results at join points in the computation. Figure 4 shows the full specification, which
we describe below.

Time measures. We assume a function called now() that returns the current time. Importantly, we never need to assume a global clock
synchronized between the various processors, because all our time measurements are always local to a processor. We nevertheless need to
assume that the clocks on the various processors deliver homogeneous results, that is, that the clocks tick (roughly) at the same pace. The
precision of the clock should be sufficient to measure time interval one or two orders of magnitude smaller than κ, that is, roughly in the
thousands of cycles. In practice, we rely on hardware cycle counters, which are both very precise and very cheap to query.

Sequential work time. We define the sequential work time of a computation to be the sum of the durations of all the sequential subcompu-
tations performed over the scope of that computation.

Invariants. Our algorithm maintains some information as processor-local state. More precisely, each processor manipulates two variables,
called total and timer. These two variables are used for evaluating the sequential work time associated with the innermost call to the
measured_run function, according to the following two invariant. First, the timer variable stores either the time of beginning of the
innermost measured_run call, or a point in time posterior to it. Second, the total variable stores the sequential work time that was
performed between the timestamp associated with the beginning of the innermost measured_run call and the timestamp stored in the
variable timer.

The auxiliary function total_now returns the sequential work time since the beginning of the innermost call to measured_run. It is
implemented by computing the sum of the contents of the total variable and the width of the time interval between the timer and the
current time.

Remark: when outside of the scope of any measured_run call, the two processor local variables keep track of the sequential work time
since the beginning of the program. Our code never exploits such values.

Transitions. When entering the scope of a new call to measured_run (Line 7), the variable total is set to zero, and the variable timer is
set to the current time. When exiting the scope of a measured_run call (Line 11), the auxiliary function total_now is used to compute the
total sequential work time over this call.

When entering the scope of a new call to measured_run, it is essential to save the relevant information associated with the current
(immediately outer) call, otherwise this valuable information would get lost. The variable t_before serves this purpose, by saving the
sequential work time performed so far in the current call, just before entering the scope of the new call (Lines 15 and 31). When subsequently
leaving the scope of this new call, we restore the invariant by setting total to t_before (Lines 19 and 34), and by setting timer to the
current time (Lines 20 and 35).

In case the innermost measured_run call executes a fork-join, the value of the local variable t_before is captured by the join continuation.
In technical terms, the value of t_before is part of the call frame associated with the join thread that executes after the sync. This join
thread could be executed on a different processor than the one that initiated the spawn, but such a possibility does not harm the correctness
of our algorithm. Regardless of potential thread migration, we correctly set the timer and the total immediately after the sync (Lines 19
and 20). More precisely, the processor that executes the join continuation sets its total variable to be the sum of the sequential work time
performed before the spawn, plus that performed in each of the two branches (which may execute on different processors), and it resets its
timer variable to the current time.

In the simple case of a spguard executing its sequential body (Lines 26-29), our algorithm does not bother calling measured_run. Instead,
it directly measures the time before and after the sequential body, and then computes the difference between the two values. This simpler
scheme applies because the sequential body involves no spguard nor any fork-join call.

C Analysis
C.1 Definitions and assumptions
Work and span. To take into account the actual overheads of parallelism that granularity control aims to amortize, our analysis accounts
for the cost of parallel task creation, written by τ , as well as the cost of evaluating cost functions, written by ϕ. Although these costs may
vary in practice, we assume τ and ϕ to be upper bounds for them. In particular, we assume cost functions to evaluate in constant time, and
we exploit the fact that our algorithm makes predictions and handles time measurements in constant time for each spguard call. For the
latter, we make the simplifying assumption that the resolution of data races during reports in an estimator incurs no more than a fixed cost.
(In practice, CAS-conflicts are quite rare in our experiments; a more refined cost model taking contention into account would be required to
account for the cost of CAS conflicts.)

Our analysis establishes bounds on the work and on the span, including the overheads of parallelism, of the execution of a program under
the guidance of our automatic granularity control algorithm. We name these entities total work and total span. Our bounds on the total work
and span are expressed with respect to the work and span of the erasure version of that program, in which all spguards are replaced with

Provably and Practically Efficient Granularity Control PPoPP ’19, February 16–20, 2019, Washington, DC, USA

1 core_local time total = 0

2 core_local time timer = 0

3

4 time total_now(time t)

5 return total + (now() - t)

6

7 time measured_run(f)

8 total = 0

9 timer = now()

10 f()

11 return total_now(timer)

12

13 template <Body_left, Body_right>

14 void fork2join(Body_left bl, Body_right br)

15 time t_before = total_now(timer)

16 time t_left = spawn measured_run(bl)

17 time t_right = measured_run(br)

18 sync

19 total = t_before + t_left + t_right

20 timer = now()

21

22 template <Complexity, Par_body, Seq_body>

23 void spguard(estimator* es, Complexity c,

24 Par_body pb, Seq_body sb)

25 int N = c()

26 if es.is_small(N)

27 time t = now()

28 sb()

29 es.report(N, now() - t)

30 else

31 time t_before = total_now(timer)

32 t_body = measured_run(pb)

33 es.report(N, t_body)

34 total = t_before + t_body

35 timer = now()

Figure 4. Implementation of time measurements.

their parallel bodies. The erasure of a program can be viewed as a program that is not granularity controlled at all, but instead exposes all
available parallelism.

We define the work and span of the erasure program, writtenw and s respectively, as the work and the span of its erasure, where work
and span are defined in the standard manner [Acar and Blelloch 2017]. In short, the work of two expressions composed sequentially is the
sum of the work of the two expressions; the work of two expressions composed in parallel is the sum of the work of the two plus one. The
span of two expressions composed sequentially is the sum of the spans of the two; the span of two expressions composed in parallel is the
maximum of the spans of the two plus one. Note that to avoid ambiguity we callw and s the raw work and the raw span, respectively.

We define the total work, writtenW, and the total span, written S, to measure the actual work and span of an execution (rather than
a program), accounting also for the cost of parallelism and granularity control. More specifically, total work and total span include the
overheads: each fork2join is assumed to incur an extra cost τ (covering in particular the cost of spawning threads and dealing with their
scheduling), and each estimator operation (including the evaluation of the cost function, the call to is_small and to report, and the time
measurements) is assumed to incur an extra cost ϕ. When computing total work and span, we compute work/span of a spguard based on the
branch that it took: if the sequential branch is taken, then the total work/span of the spguard is the total work/span of the sequential branch
plus ϕ. Otherwise, if the parallel branch is taken, then the total work/span of the spguard is the total work/span of the parallel branch plus
“τ + ϕ”.

Finally, for the purpose of stating the assumptions of our theorems, we define the sequential work, writtenWs (t, I), as the work of a piece
of code t executed on input I fully sequentially, that is, where all spguards are forced to execute the sequential body. For such a sequential

PPoPP ’19, February 16–20, 2019, Washington, DC, USA U. Acar, V. Aksenov, A. Charguéraud, M. Rainey

execution, no parallelism is created and no cost function is evaluated, thus the sequential work is equal both to the work and to the total
work.

Accuracy of time measurements. We assume that time measured for a sequential execution may diverge from the sequential work by up
to some multiplicative factor E, in either direction. Formally, we assume the existence of constant E such that, for any sequential execution
of a purely sequential term S on input I , its measured time, writtenM(S, I), satisfies:

M(S, I)

Ws (S, I)
∈ [

1
E
, E].

Well-defined spguards. We say that a spguard is well-defined if the relative sequential work cost of the sequential body and the parallel
body of each spguard can be lower and upper bounded by a constant, i.e., are asymptotically the same. Specifically, consider a spguard д,
with a cost function F , sequential body S , and parallel body B, executed on some input I . LetWs (S, I) denote the sequential work of the
sequential body of this call. LetWs (B, I) denote the sequential work of parallel body of this call, that is, the sequential execution time of the
parallel body when all spguards choose their sequential body. The spguard is well-defined if there exists a constant D such that:

1 ≤
Ws (B, I)

Ws (S, I)
≤ D.

For the analysis, we consider programs where each spguard is well-defined with respect to the same constant D.
The lower bounds assert that the sequential body induces no more work than the parallel body. This is justified because the parallel

body can always serve as a sequential body by replacing fork2join calls with function calls. Note that without this assumption, the
sequentialization of subcomputations can increase the total work making it impossible to control granularity.

The upper bound asserts that the sequential body cannot be arbitrarily faster than executing the parallel body sequentially. This requires
the parallel body to use spguards to fall back to a sequential body without doing too much work. This is not difficult to achieve for many
nested-parallel algorithms, because they present an opportunity to use a sequential body at each nest level, which usually corresponds to a
recursive call. Without this assumption, our algorithm is not guaranteed to converge to the desired constant factor due to the gap between
the parallel and sequential bodies.

Accurate cost functions. We make several accuracy assumptions on cost functions.
• As mentioned previously, we assume that cost functions evaluate in constant time, and that this amount of time does not exceed ϕ.
• We assume that the work increases with the cost. Formally, we assume that, for any spguard д and associated cost function F , and for
any pair of input I and J such that F (I) ≤ F (J), we have:Ws (д, I) ≤Ws (д, J).

• We furthermore assume that the work increases with the cost no faster than at some maximal rate (recall Section 2). Formally,
we require that, for the program and the value considered for the parameter α , there exists a value β such that, for any guard
д and associated cost function F involved in the program, and for any pair of inputs I and J such that F (I) ≤ α · F (J), we have:
Ws (д, I) ≤ β ·Ws (д, J).

Syntactic forms of spguards. For the analysis, we assume that we are given a program written by using the two parallelism primitives
that we offer: fork2join and spguards (described in Section 2). To facilitate and simplify the analysis, we make two syntactic assumptions
about programs. These assumptions are not necessary for the algorithm or our implementation but are used purely to facilitate analysis.

First, we assume that the parallel body of a spguard consists of fork-join call surrounded by two pieces of sequential code, one to split the
input and one to merge the output. In C++ syntax:

spguard(F, [&]{Sp;fork2join(L,R);Sm },S).
This assumption causes no loss of generality because more complex expressions can be guarded by sequencing and nesting spguards.

Second, we treat the body of spguards as functions that operate on some input. More precisely, an execution of the guard above requires
some input I and proceeds by first executing F (I) to compute the cost, and then running with I either the sequential body S(I) or the parallel
body based on the outcome of the estimator as described in Section 2. The parallel body is of the form:

Sp (I); fork2join(L(IL),R(IR));Sm (Im)

where IL and IR are the inputs to branches and Im is the input to Sm . The inputs IL and IR are obtained after processing of the input I by Sp ,
and Im is an output produced by branches L and R.

Regularity of forks. As explained in Section 2, to allow for efficient granularity control, we need to rule out ill-balanced programs. We
assume the existence of a constant γ (with γ ≥ 1), called the regularity factor, satisfying the following requirements.

• When considering a fork-join, there must be at least some balance between the left and the right branch. Formally, for any execution
on input I of a spguard with sequential body S and branches L and R, we assume:

Ws (L, I)

Ws (S, I)
and

Ws (R, I)

Ws (S, I)
∈

[
1
γ
, 1 −

1
γ

]
.

Without this assumption, the program can be a right-leaning tree, with all left branches containing only a tiny subcomputation; in
such a program the overheads of forks cannot be amortized.

Provably and Practically Efficient Granularity Control PPoPP ’19, February 16–20, 2019, Washington, DC, USA

• spguards must be called sufficiently frequently in the call tree. Formally, for any call to a spguard that has sequential body S and
executes on input I , if the immediate outer spguard call has a sequential body S ′ and executes on input I ′, we assume:

Ws (S, I)

Ws (S ′, I ′)
≥

1
γ
.

Without this assumption, the program can have a spguard called on an input that takes much longer than κ to execute, with the
immediate inner spguard called on an input that takes much less than κ, leaving no opportunity to sequentialize a subcomputation
that takes approximately time κ to execute.

• For an outermost call to a spguard, we need to assume that it involves a nontrivial amount of work. Formally, if an outermost call to a
spguard with sequential body S executes on input I , we assumeWs (S, I) ≥ κ. Without this assumption, the program can consist of a
sequential loop that iterates calls to a spguard on tiny input; and, again, the overheads would not be amortized. (Note that, technically,
the requirementWs (S, I) ≥

κ
γDE would suffice.)

C.2 Presentation of the results
Bounds on total span, total work, and execution time. To establish a bound on the parallel execution time of our programs, we first
bound the total span and total work. We then derive a bound on the parallel execution time under a greedy scheduler. For the bounds, we
assume programs that are 1) γ -regular, 2) where spguards are well-defined, and 3) where all cost functions are accurate. We express our
bounds with respect to work and span, which do not account for the overheads as well as the parameters of the analysis that account for
various overheads and factors.

Theorem C.1 (Bound on the total span). S ≤ (1 + ϕ +max(τ , Eβκ)) · s .

The span may grow by a multiplicative factor, but no more. As our final bound will show, for a program with sufficient parallelism (i.e.,
with w

s ≫ P), this increase in the span has no visible impact on the parallel run time.

Theorem C.2 (Bound on the total work). Let κ ′ = κ
DEγ , and F = 1+ logα

κ
DE , andH = logγ /(γ−1)

κ
DE , and P denote the number of processes,

and G denote the number of spguards occuring in the code. Then, we have

W ≤

(
1 +

τ + 2ϕ
κ ′

)
·w + PFGH · (τ + 2γϕ).

The first component of the left hand side asserts that the work grows by no more than a multiplicative factor 1+ ϵ , where ϵ may be tamed
to a couple of percents by the choice of a sufficiently larger κ. The second component asserts that the total overheads associated with the
sequentialization of tiny subcomputations during the convergence phase of the estimators are bounded by some constant cost, proportional
to the number of estimators and to the product P · F · H , which is P ·O(log2 κ).

Remark: in the bound on the work, the value of κ occuring in the definition F and H is to be expressed in cycles; We here exploit the
assumption that a computation with cost N takes at least N cycles to execute. If this was not the case, the bound could easily be adapted by
adding a constant factor to F and H .

To bound the parallel run time, we exploit Brent’s theorem [Brent 1974], which asserts that, for any greedy scheduler,Tp ≤ WP + S, where
P stands for the number of processors. To simplify the final statement, we make some over-approximation, and also we exploit several
inequalities that are always satisfied in practice. We assume κ ≥ τ and κ ≥ 1 + ϕ, since in practice the user always sets κ ≫ max(τ ,ϕ) to
ensure small overheads.

Theorem C.3 (Bound on the parallel run time). Let P denote the number of processors and G denote the number of spguards.

TP ≤

(
1 +

γED · (τ + 2ϕ)
κ

)
·
w

P
+ (Eβ + 1) · κ · s + O(G · log2 κ · (τ + 2γϕ)).

Theorem 2.1 (Simplified bound on the parallel run time). For fixed hardware and any program, all parameters of the analysis except for κ
(the unit of parallelism) can be replaced with constants, leaving us with the following bound:

TP ≤

(
1 +

O(1)
κ

)
w

P
+ O(κ) · s + O(log2 κ).

The most important term in this bound is the first term that says that the overhead of various practical factors impact the work termw by
only a small factor O(1)/κ, which can be reduced by controlling κ. The second term states that doing so increases the span by a small factor
O(κ) and that all of this comes at a small logarithmic overhead, which is due to our granularity control algorithm O(log2 κ).

Our theorem establishes that a non-granularity controlled nested parallel program with workw and span s can be executed on a real
machine to guarantee fast execution by using our granularity control algorithm. Our experiments (Section 3) show that the analysis appear
to be valid in practice.

PPoPP ’19, February 16–20, 2019, Washington, DC, USA U. Acar, V. Aksenov, A. Charguéraud, M. Rainey

C.3 Additional definitions
Syntax of programs The BNF grammar for programs with spguards is thus as follows. For brevity, we focus on the language constructs
that matter to the analysis: sequences, conditionals, and spguards combined with fork-join.

• B ::= a boolean variable
• S ::= a purely sequential piece of code, without forks nor guards.
• t ::= S | (t; t) | if B then t else t | spguard(S, p, S)
• p ::= S; fork2join(t, t); S

∗ ∗ ∗

Detailed definitions of work and span The table below shows the definition of raw work and span, which correspond to the standard
definitions used in parallel program analysis, as well as the definition of total work and span, which include the overheads of thread creation,
written τ , and the overheads associated with the estimator, written ϕ. Note that in the definitions below we are ultimately referring to the
work of a sequential piece of code, writtenW (S), which we assume to be defined as the number of instructions involved in the execution of
S , or as the number of cycles involved if the considered execution model assigns a cost to each instruction.

Definition C.4 (Work and span, raw and total, for each construct).
t: source expression W (t): raw work S(t): raw span W(t): total work S(t): total span

S W (S) W (S) W (S) W (S)

(t1; t2) W (t1) +W (t2) S(t1) + S(t2) W(t1) +W(t2) S(t1) + S(t2)
if B then t1 else t2

when B is true 1 +W (t1) 1 + S(t1) 1 +W(t1) 1 + S(t1)

if B then t1 else t2
when B is false 1 +W (t2) 1 + S(t2) 1 +W(t2) 1 + S(t2)

spguard(F , (Sp ; fork2join(L, R); Sm), S)
when parallel body is chosen

W (Sp) +W (L) +W (R)+

+1 +W (Sm)

S(Sp) +max(S(L), S(R))+
+1 + S(Sm)

W(Sp) +W(L) +W(R)+

+ϕ + τ +W(Sm)

S(Sp) +max(S(L), S(R))+
+ϕ + τ + S(Sm)

spguard(F , (Sp ; fork2join(L, R); Sm), S)
when sequential body is chosen W (S) W (S) W (S) + ϕ W (S) + ϕ

Due to the fact that spguard may dynamically select between the execution of the sequential or the parallel branch, it does not make
sense to speak about the work and span of a program. We may only speak about the work and span of a particular execution of the program,
that is, of the work and span of an execution trace describing which spguards have been sequentialized and which have not.

Definition C.5 (Execution trace). A particular execution of a source term t on an input I corresponds to a trace, written X , that describes,
for each evaluation of a spguard during the program execution, whether the sequential body or the parallel body is selected by the spguard.

Definition C.6 (Work and span, raw and total, of an execution trace). For an execution of a source term t on an input I producing a trace
X , we let:

• W (t, I ,X) denote the raw work,
• S(t, I ,X) denote the raw span,
• W(t, I ,X) denote the total work,
• S(t, I ,X) denote the total span.

The definitions are obtained by applying the appropriate rules from the previous table.

When the arguments t , I and X are obvious from the context, we write simplyW , S ,W, and S.

Definition C.7 (Sequential work). For a term t and an input I , we define the sequential work, writtenWs (t, I), as the raw workW (t, I ,X),
where X is the trace that systematically selects the sequential bodies.

Definition C.8 (Work and span). For a term t and an input O , we define:
• the work w(t, I) as the raw workW (t, I ,X) where X is the trace that systematically selects parallel bodies.
• the span s(t, I) as the raw span S(t, I ,X) where X is the trace that systematically selects parallel bodies.

For a purely sequential subcomputation, the work is equal to the raw work. (It also matches the span since there is no parallelism involved.)
We use this fact implicitly in several places through the proofs.

∗ ∗ ∗

Time measurements In addition to the definition already given for the measurement of a sequential execution time, writtenM(t, I), we
need for the analysis to quantify the total sequential work time involved in a parallel execution, writtenM(t, I ,X). (Recall Appendix B.)

Definition C.9 (Measured time). We let:
• M(t, I) denote the measured time of the sequential execution of the term t on input I .

Provably and Practically Efficient Granularity Control PPoPP ’19, February 16–20, 2019, Washington, DC, USA

• M(t, I ,X) denote the sum of the measured time of all the pieces of sequential sub-computations involved in the evaluation of the term
t on input I according to trace X . The measure thus ignores the overheads of fork-join operations and the overheads associated with
our runtime decisions.

∗ ∗ ∗

Classification of spguard calls

Definition C.10 (Small call). A call to a spguard д on input I is said to be small wheneverWs (д, I) ≤ κ
DE . Otherwise, it is said to be

non-small.
Definition C.11 (Domination of a spguard call).

• We say that a spguard call a is dominated by a spguard call b if a is executed as part of the execution of the parallel body of b.
• We say that a is directly dominated by b if there are no spguard in-between, i.e. if there does not exist a spguard c that dominates a
and at the same time is dominated by b.

Definition C.12 (Covered sequential call). A sequential call to a spguard is said to be covered if it is directly dominated by a parallel small
call. Otherwise, it is non-covered.

Definition C.13 (Classification of spguard calls). Every spguard call falls in one of the four categories:
• parallel non-small call (when the spguard executes its parallel body on a non-small call).
• parallel small call (when the spguard executes its parallel body on a small call).
• covered sequential call (when the spguard executes its sequential body and is dominated by a parallel small call; note that a covered
sequentiall call is a small call).

• non-covered sequential call (when the spguard executes its sequential body but is not directly dominated by a parallel small call; in
this case, it can be dominated by a parallel non-small call, or not dominated at all).

Proof. A call is either parallel or sequential. If parallel, it is either small or non-small. If sequential, it is either covered or non-covered. �

Definition C.14 (Critical parallel calls). A small parallel call to a spguard is said to be a critical if all the calls that it dominates are sequential
small calls.

This classification simplifies the presentation of the proof.
Proof strategy. Any non-small call amortizes the overheads in a standard manner, i.e., provides multiplicative factor to the work and

span. So, our major task is to bound the overhead spend during small calls. Our bound is obtained in several steps.
1. We bound the number of critical parallel calls (that is, a parallel small call that dominates only sequential small calls) in Lemma C.26.

To that end, we exploit the fact that, after each critical parallel call, the algorithm performs a report that increases the value of Nmax
by at least some constant factor.

2. We show that the number of parallel small calls is bounded in terms of the number of critical parallel calls in Lemma C.28. To that end,
we observe that each parallel small call features at least one nested critical parallel call, and that, reciprocally, each critical parallel call
is nested in at most a logarithmic number of small parallel calls.

3. We bound the number of covered sequential calls in terms of the number of parallel small calls in Lemma C.29. We do so by arguing
that each parallel small call can have at most a logarithmic number of nested sequential calls.

4. We independently show that the non-covered sequential calls correspond to non-small calls, so their overheads are properly amortized
in Lemma C.30.

All together, we derive the bound on the overheads associated with all small calls in Lemma C.32.
∗ ∗ ∗

Parameters involved in the statement of the bounds

Definition C.15 (Bound on the number of processors). Let P denote the number of processors involved in the evaluation.

Definition C.16 (Bound on the number of spguards). Let G denote the total number of different spguards occuring in the source code of
the program.

Definition C.17 (Auxiliary parameter F). We define F = 1 + logα
κ
DE , where κ is expressed in number of machine cycles.

Definition C.18 (Auxiliary parameter H). We let H = logγ /(γ−1)
κ
DE , where κ is expressed in number of machine cycles.

Remark: as explained previously, for simplicity, in the definitions of the auxiliary constants F and H introduced below, we assume that the
number of cycles involved in the sequential execution of a spguard always exceeds the number returned by the cost function. The bounds
could be easily adapted by adding a constant factors to F and H if this was not the case.

Proof strategy. To bound the total workW, our proof first bounds the total work excluding overheads involved in parallel small calls
and covered sequential calls, which we callW′, then bounds the excluded overheads, that is, the value ofW −W′.

PPoPP ’19, February 16–20, 2019, Washington, DC, USA U. Acar, V. Aksenov, A. Charguéraud, M. Rainey

Definition C.19 (Total work excluding the overheads involved in parallel small calls). We letW′ denote the subset of the total workW
obtained by excluding the overheads (τ and ϕ) involved in small parallel calls, in the sense that when reaching such a call, we only count the
raw work involved in this call, regardless of the decisions involved in the subcomputations.

∗ ∗ ∗

C.4 Basic auxiliary lemmas
Lemma C.20. If term S does not contain any spguard, thenw(S, I) =Ws (S, I).

Proof. Immediate from the definitions. �

LemmaC.21 (Sequential work associated with a spguard). In the particular case where the term t corresponds to some spguardд, the sequential
work is that of its sequential body S , which does not contain any spguard. Thus, we have:

Ws (д, I) =Ws (S, I) =W (S, I ,X) =W(S, I ,X) − ϕ for any trace X .

Lemma C.22 (Relationship between work and measured time of a computation). For any term t executed on input I according to trace X , we
have:

M(t, I ,X)

W (t, I ,X)
∈ [

1
E
, E].

Proof. Recall our hypothesis: M (S ,I)
W (S ,I) ∈ [1E , E] for all sequential computation S . First, we prove thatM(t, I ,X) ≤ E ·W (t, I ,X) by induction

on the execution tree.
• Case t = S. By assumption on the variability of timemeasurements, we have:M(t, I ,X) = M(S, I ,X) = M(S, I) ≤ E ·Ws (S, I) = E ·Ws (t, I).
Using the factWs (S, I) =W (S, I ,X) from Lemma C.21 we getM(t, I ,X) ≤ E ·W (t, I ,X).

• Case t = (t1, t2). We have:M(t, I ,X) = M(t1, I ,X) +M(t2, I ,X) ≤ E ·W (t1, I ,X) + E ·W (t2, I ,X) = E ·W (t, I ,X).
• Case t = if B then T1 else T2. Similar to the previous case, after performing the case analysis.
• Case t = spguard(F , (Sp ; fork2join(L, R); Sm), S).
– First case: spguard chooses the parallel body. Then,M(t, I ,X) = M(Sp , I ,X)+M(L, I ,X)+M(R, I ,X)+1+M(Sm, I ,X) ≤ E ·W (Sp , I ,X)+

E ·W (L, I ,X) + E ·W (R, I ,X) + 1 + E ·W (Sm, I ,X) ≤ E · (W (Sp , I ,X) +W (L, I ,X) +W (R, I ,X) + 1 +W (Sm, I ,X)) = E ·W (t, I ,X).
– Second case: spguard chooses the sequential body. Similar to the case t = S .

The second inequalityW (t, I ,X) ≤ E ·M(t, I ,X) again can be proved by induction on the execution tree. The proof is identical to the
proof of the inequality above with the only difference:M andW should be swapped. �

We assumed, for each spguard, that the execution of the sequential body is faster than the sequential execution of the parallel body, thus,
when the trace chooses the parallel body the execution should be slower than the corresponding sequential execution.

Lemma C.23. Consider a term t with well-defined spguards. For any execution t on input I with trace X , we have:Ws (t, I) ≤W (t, I ,X).

Proof. We prove this by induction on the execution tree.
• Case t = S. We have:Ws (S, I) =W (S, I ,X).
• Case t = (t1, t2). We have:Ws (t, I) =Ws (t1, I) +Ws (t2, I) ≤W (t1, I ,X) +W (t2, I ,X) =W (t, I ,X).
• Case t = if B then t1 else t2. Similar to the previous case, after performing case analysis.
• Case t = spguard(F , (Sp ; fork2join(L, R); Sm , S). We distinguish two cases:
– First case: spguard chooses the parallel body. Then, using the property of well-defined spguards,Ws (t, I) ≤Ws (Sp , I)+ 1+Ws (L, I)+
Ws (R, I) +Ws (Sm, I) ≤W (Sp , I ,X) + 1 +W (L, I ,X) +W (R, I ,X) +W (Sm, I ,X) =W (t, I ,X).

– Second case: spguard chooses the sequential body. Then,Ws (t, I) =Ws (S, I) =W (S, I ,X) =W (t, I ,X).
�

Because work considers full parallelization, it never selects the sequential bodies of spguards, which are assumed to execute faster than
parallel bodies on one process. Thus, the work always exceeds the raw work.

Lemma C.24. Consider a term t with well-defined spguards. For any execution of t on input I with trace X , we have:w(t, I) ≥W (t, I ,X).

Proof. We prove this by induction on the execution tree.
• Case t = S. We have:w(S, I) =W (S, I ,X).
• Case t = (t1, t2). We have:w(t, I) = w(t1, I) +w(t2, I) ≥W (t1, I ,X) +W (t2, I ,X) =W (t, I ,X)

• Case t = if B then t1 else t2. Similar to the previous case, after performing the case analysis.
• Case t = spguard(F , (Sp ; fork2join(L, R); Sm), S). We distinguish two cases:
– First case: spguard chooses the parallel body. Then,w(t, I) = w(Sp , I)+1+w(L, I)+w(R, I)+w(Sm, I) ≥W (Sp , I ,X)+1+W (L, I ,X)+

W (R, I ,X) +W (Sm, I ,X) =W (t, I ,X).
– Second case: spguard chooses the sequential body. Thus, the raw work corresponds to the sequential work, i.e.W (t, I ,X) =Ws (t, I).
Besides, by definition of work, we know thatw(t, I) =W (t, I ,X ′), where X ′ is the trace that systematically selects parallel bodies.
By Lemma C.23,w(t, I) =W (t, I ,X ′) ≥Ws (t, I) =W (t, I ,X)

Provably and Practically Efficient Granularity Control PPoPP ’19, February 16–20, 2019, Washington, DC, USA

�

C.5 Proof of the main results
Lemma C.25. If a spguard д executes its sequential body, then its sequential work is bounded as follows:

Ws (д, I) ≤ E · β · κ .

Proof. At first, observe thatWs (д, I) =Ws (S, I), where S denotes the sequential body of the spguard.
Let N denote the value of F (I). According to the implementation of function is_small, a spguard selects the sequential body according

to the boolean condition: (N ≤ Nmax) or ((N ≤ α · Nmax) and (N · C ≤ α · κ)), where Nmax and C are the values stored in the estimator for this
spguard.

Since N is non-negative, the condition may only evaluate to true if Nmax is non-zero, indicating that at least one previous report has been
stored for this spguard. Let J be the input on which this previous report has been obtained, in other words Nmax = F (J), let X denote the
trace of spguards choices, and letM(д, J ,X) denote the measured time at this previous report. Since the report was stored, according to the
implementation of function report, we know thatM(д, J ,X) ≤ κ and that C = M (д, J ,X)

F (J) .
By Lemma C.21 on sequential work we know that Ws (S, J) = Ws (д, J). Lemma C.23 provides us with Ws (д, J) ≤ W (д, J ,X). And

Lemma C.22 on measured time in the execution on input J givesW (д, I ,X) ≤ E ·M(д, J ,X). Thus, the raw work on input J can be bounded
as follows:Ws (S, J) =Ws (д, J) ≤W (д, J ,X) ≤ E ·M(д, J ,X).

In what follows, we establish the inequalityWs (S, I) ≤ β ·Ws (S, J). By exploiting thatWs (S, J) ≤ E ·M(д, J ,X) andM(д, J ,X) ≤ κ, this
inequality allows us to conclude as follows:

Ws (д, I) =Ws (S, I) ≤ β ·Ws (S, J) ≤ β · E ·M(д, J ,X) ≤ E · β · κ .

The desired inequality is deduced from the fact that the boolean condition evaluates to true. Indeed, we know that N ≤ Nmax is true, or
that N ≤ α · Nmax and N · C ≤ α · κ are true.

• In the first case, the condition reformulates to F (I) ≤ F (J). By the property of well-defined spguards, we deduceWs (S, I) ≤Ws (S, J).
By exploiting β > 1, we concludeWs (S, I) ≤ β ·Ws (S, J), as desired.

• In the second case, the condition reformulates to: F (I) ≤ α · F (J) and F (I) · M
F (J) ≤ α · κ. By the property of well-defined spguards,

exploiting the first inequality, we deduce:Ws (S, I) ≤ β ·Ws (S, J), the desired inequality.
�

Theorem C.1 (Bound on the total span). For any execution of a program with well-defined spguards, we have:

S ≤ (1 + ϕ +max(τ , Eβκ)) · s

Proof. Let ρ be a shorthand for 1 + ϕ +max(τ , Eβκ). We establish the inequality S ≤ ρ · s by induction on the execution tree.
• Case t = S. The program is sequential, so S = s ≤ ρ · s .
• Case t = (t1; t2). We have: S = S(t1) + S(t2) ≤ ρ · s(t1) + ρ · s(t2) = ρ · s .
• Case t = if B then t1 else t2. Similar to the previous case, after considering the two cases.
• Case t = spguard(F , (Sp ; fork2join(L, R); Sm), S). We have two cases:
– First case: the spguard chooses the parallel body. Then, S = S(Sp) +max(S(L), S(R)) + ϕ + τ + S(Sm) ≤ ρ · s(Sp) +max(ρ · s(L), ρ ·

s(R)) + ρ + ρ · s(Sm) = ρ · (s(Sm) +max(s(L), s(R)) + s(Sp) + 1) = ρ · s .
– Second case: the spguard chooses the sequential body. In this case by Lemma C.25 we know that the sequential work of this spguard
call is bounded:Ws (д, I) ≤ Eβκ. Thus, using the fact that the span is nonnegative (s ≥ 1), we have:

S =Ws (S, I) + ϕ ≤ Eβκ + ϕ ≤ ρ ≤ ρ · s .

�

Lemma C.26 (Bound on the number of critical calls). A given estimator involves no more than P · F critical calls.

Proof. Recall that P denotes the number of processes and that F is defined as 1 + logα
κ
DE , which is O(logκ). In this proof, we show that

each process can perform no more than F critical calls on a given estimator. Multiplying by the number of processes yields the bound P · F .
We remind that our reports are performed by atomic updates (Figure 3 Lines 7-8). By that, the P processes may concurrently interact over a
same estimator and this can only speedup the convergence process.

Let us consider the critical call on input I with measured timeM by process p.
At first, we prove thatM does not exceedκ. From Lemma C.22, we have M

W ≤ E. Because the critical call is small, we know thatWs (S) ≤
κ
DE

and that all directly dominated calls are sequentialized, thusW =Ws (Sp)+Ws (L)+Ws (R)+1+Ws (Sm). By the property of well-defined spguards
Ws (Sp)+Ws (L)+Ws (R)+1+Ws (Sm) ≤ D ·Ws (S). Combining all these facts, we getM ≤ E ·W = E · (Ws (Sp)+Ws (L)+Ws (R)+1+Ws (Sm)) ≤

E · D ·Ws (S) ≤ E · D · κ
DE = κ.

Second, after the report Nmax is at least F (I): either another process updated Nmax to be not less than F (I), or this report successfully
updates Nmax and sets it to F (I). This report can be successful since the reported timeM does not exceed κ.

Next, we show that the cost of the next critical call by process p increases at least by a factor α . Suppose that the input of the next critical
call is J . Our goal is to show F (J) > α · F (I). For the spguard to choose parallel body on J , the boolean condition in is_small function

PPoPP ’19, February 16–20, 2019, Washington, DC, USA U. Acar, V. Aksenov, A. Charguéraud, M. Rainey

(F (J) ≤ α · F (Y), where Y is the latest reported input), needs to evaluate to false. This means that the following condition needs to be
satisfied: F (J) > α · F (Y). Note that F (I) ≤ F (Y), since after the last report by process p the value of Nmax was at least F (I). Thus, we get the
desired inequality F (J) > α · F (Y) ≥ α · F (I).

Since critical calls are small calls, their work cannot exceeed κ
DE . By the assumption that the number of cycles exceeds the cost, the value

of the cost function cannot exceed κ
DE , with κ expressed in cycles. The cost associated with the first critical report is at least 1 unit, and

since the value increases by a factor α at least between every two consecutive critical call by the same process, the number of such critical
calls cannot exceed P · (1 + logα

κ
DE).

�

Lemma C.27 (Bound on the number of nested small calls). Small spguard calls may be nested at no more than on depth H .

Proof. Consider a set of nested small calls. The outermost call is small, so it involves work at most κ
D ·E . As we argue next, the ratio between

the work of a call directly nested into another one is at least γ
γ−1 . Combining the two, we can deduce that the number of nested small calls is

bounded by logγ /(γ−1)
κ

D ·E .
To bound the ratio between two directly nested calls, we proceed as follows. Consider a spguard with sequential body S on input I ,

directly dominated by a call to a spguard with sequential body S ′ on input I ′. Assume, without loss of generality, that the inner spguard call
occurs in the left branch, call it L, of the outer spguard call. From the γ -regularity assumption, we know that Ws (L′,I ′)

Ws (S ′,I ′)
≤ 1 − 1

γ . Furthermore,
since S executes as a subcomputation of the sequential execution of L′, we have:Ws (S, I) ≤Ws (L

′, I ′). Combining the two inequalities gives:
Ws (S, I) ≤ (1 − 1

γ) ·Ws (S
′, I ′), which can be reformulated as Ws (S ′,I ′)

Ws (S ,I)
≥

γ
γ−1 , meaning that the ratio between the two nested calls is at least

γ
γ−1 . �

Lemma C.28 (Bound on the number of parallel small calls). A given spguard involves no more than P · F · H parallel small calls.

Proof. First, we observe that each parallel small call must dominate at least one critical call. Indeed, when following the computation tree,
there must be a moment at which we reach a spguard such that all dominated spguards choose sequential bodies, or such that there are no
dominated spguards in the body.

Thus, we may bound the number of parallel small calls by multiplying the number of critical calls with the number of parallel small calls
that dominate it (including the critical call, which is itself a parallel small call). Of course, we may be counting a same parallel call several
times, but this over-approximation is good enough to achieve our bound. More precisely, we multiply the bound from Lemma C.27 with the
bound from Lemma C.26. �

Lemma C.29 (Bound on the number of covered sequential calls). A given spguard involves no more than P · F ·H · (2γ − 2) covered sequential
calls.

Proof. A covered sequential call is dominated by a parallel small call. The claimed bound follows from the bound of Lemma C.28 and the fact
that, for each parallel small call, we can have at most 2γ − 2 directly dominated sequential small calls. We next prove this last claim.

Consider a parallel small call on input I ′ to a spguard with sequential body S ′ and branches L′ and R′. Consider a directly dominated call
on input Ic to a spguard with sequential body Sc . By γ -regularity, we have:Ws (Sc , Ic) ≥

1
γ ·Ws (S

′, I ′). From the structure of the program,
we know:Ws (L

′) +Ws (R
′) ≥

∑
c ∈C

Ws (Sc , Ic), where C is the set of all directly dominated sequential small calls. Also, by the first property of

γ -regular programs:Ws (L
′),Ws (R

′) ≤ (1− 1
γ) ·Ws (S

′, I ′), giving us additional inequalityWs (L
′)+Ws (R

′) ≤ (2− 2
γ) ·Ws (S

′, I ′). By combining
the facts, we get: |C | · 1

γ ·Ws (S
′, I ′) ≤

∑
c ∈C

Ws (Sc , Ic) ≤Ws (L
′) +Ws (R

′) ≤ (2 − 2
γ) ·Ws (S

′, I ′). Thus, we deduce that the number of directly

dominated sequential small calls |C | does not exceed 2γ − 2. �

Lemma C.30 (Work involved in a non-covered sequential call). If a call to a spguard д on input I is a non-covered sequential call, then it
involves at least some substantial amout of work, in the sense that:

Ws (д, I) ≥
κ

γDE
.

Proof. A call can be a non-covered sequential call for one of two reasons.

• First case: the call is directly dominated by another spguard call. This spguard call is necessarily parallel, and by assumption it is a
non-small call (otherwise, the inner call would be covered). This non-small parallel call occurs on some spguard д′ with sequential
body S ′ executed on input I ′. This call is not small, meaning thatWs (S

′, I ′) > κ
DE holds. Besides, by the definition of γ -regularity, we

have: Ws (S ,I)
Ws (S ′,I ′)

≥ 1
γ . Combining the two inequalities gives:Ws (S, I) >

κ
γDE .

• Second case: the call is not dominated by any other spguard call. Then, by the last assumption from the definition of γ -regularity, we
haveWs (S) ≥

κ
γDE .

�

Provably and Practically Efficient Granularity Control PPoPP ’19, February 16–20, 2019, Washington, DC, USA

Lemma C.31 (Bound on the work excluding overheads during small calls).

W′ ≤

(
1 +

DEγ · (τ + 2ϕ)
κ

)
·w

Proof. Let us introduce the shorthand κ ′ = κ
γDE . The bound is equivalent toW′ ≤

(
1 + 1

κ′ τ +
2
κ′ϕ

)
·w .

Let B(w) = w + (w−κ′)+

κ′ τ + (2w−κ′)+

κ′ ϕ, where x+ is defined as x if x is non-negative, and 0, otherwise.
We establish the slightly tighter inequalityW′ ≤ B(w), by induction on the execution tree.
• Case t = S. The program is sequential, soW′ =W = w ≤ B(w).
• Case t = (t1; t2).W′ =W′(t1) +W′(t2) ≤ B(w(t1)) + B(w(t2)) ≤ B(w1 +w2). The last inequality holds, because B(x) + B(y) ≤ B(x +y)
due to the fact (x − k)+ + (y − k)+ ≤ (x + y − k)+.

• Case t = if B then t1 else t2. Considering two different cases, similar to the previous case.
• Case t = spguard(F , (Sp ; fork2join(L, R); Sm), S). Let I be the input and X be the trace for this call. Thereafter, we writeWs (S) as
short forWs (S, I) adw as short forw(t, I).
By Lemma C.23, we know that:Ws (t, I) ≤W (t, I ,X). By Lemma C.24, we haveW (t, I ,X) ≤ w . Combining the two givesWs (t) ≤ w .
We then distinguish four cases:
– First case: the call is the parallel non-small call. By definition of small, this means:Ws (S) >

κ
DE . Let us focus first on the left

branch. By the definition of γ -regularity, we know Ws (L)
Ws (S)

≥ 1
γ . Besides, for the same reason as we haveWs (t) ≤ w , we have

Ws (L) ≤ w(L). Combining these results, we get:w(L) ≥ 1
γ ·Ws (S) >

κ
γDE = κ

′. By symmetry, we havew(R) > κ ′. Also, we know
that B(x) + B(y) ≤ B(x + y). Putting everything together gives: W′ = W(Sp) +W

′(L) +W′(R) + τ + ϕ +W(Sm) ≤ B(w(Sp)) +

B(w(L))+B(w(R))+τ +ϕ+B(w(Sm)) = B(w(Sp))+(w(L)+w(R))+ (w (L)−κ′)+(w (R)−κ′)+κ′

κ′ τ + (2w (L)−κ′)+(2w (R)−κ′)+κ′

κ′ ϕ+B(w(Sm)) ≤

B(w(Sp)) + B(w(L) +w(R)) + B(w(Sm)) ≤ B(w(Sp) +w(L) +w(R) +w(Sm)) = B(w − 1) ≤ B(w).

– Second case: the call is the parallel small call. By definition ofW′, we do not count the overheads within the scope of this call
and only count the raw work, thusW′ ≤ W (t, I ,X). Recall thatW (t, I ,X) ≤ w . Besides, by definition of B, we have: w ≤ B(w).
Combining these results gives:W′ ≤ B(w).

– Third case: the call is the covered sequential call. In this case, the call is dominated by a parallel small call. Thus, such calls are never
reached by our proof by induction, because to reach them one would necessarily first go through the case that treats parallel small
calls, case which does not exploit an induction hypothesis. (Recall that the definition ofW′ excludes all the overheads involved
throughout the execution of a parallel small call.)

– Fourth case: the call is the non-covered sequential call. In this case, the work equals to the sequential work,w =Ws (S), andW′

does not exclude the overheads, soW′ =Ws (S) + ϕ. By Lemma C.30, we have:Ws (S) ≥
κ

γDE . In other words,Ws (S) ≥ κ ′. This

inequality may be reformulated as: 2Ws (S)−κ′

κ′ ≥ 1. Recall that we haveWs (S) ≤ w , since hereWs (t) =Ws (S). Combining all these
results yields:

W′ =Ws (S) + ϕ ≤Ws (S) +
2Ws (S) − κ ′

κ ′
ϕ ≤ B(Ws (S)) ≤ B(w).

�

Lemma C.32 (Bound on the overheads associated with small calls).

W −W′ ≤ PFGH · (τ + (2γ − 1) · ϕ)

Proof. This bound on the overheads associated with small calls is obtained as the sum of the overheads associated with covered sequential
calls and the overheads associated with parallel small calls. For the former, each covered sequential call induces an overhead of ϕ, and there
are at most PFH · (2γ − 2) of them per spguard, by Lemma C.29. For the latter, each parallel small call induces an overhead of τ + ϕ, and
there are at most PFH of them per spguard, by Lemma C.28. Multiplying by G , the number of spguards, and factorizing the sum leads to the
aforementioned bound. �

Theorem C.2 (Bound on the total work using our algorithm).

W ≤

(
1 +

DEγ · (τ + 2ϕ)
κ

)
·w + PFGH · (τ + 2γ · ϕ)

Proof. Obtained by summing the bound onW′ obtained from Lemma C.31 and the bound onW −W′ obtained from Lemma C.32 with the
fact that 2γ − 1 < 2γ . �

Theorem C.33 (Bound on the running time of γ -regular program). Consider the γ -regular program with well-defined spguards. Let TP be
the running time of the program on a machine with P processors and a greedy scheduler. Let w and s be the work and span of the program,
correspondingly. G, F and H are as defined in C.16, C.17 and C.18. We have:

TP ≤

(
1 +

γED · (τ + 2ϕ)
κ

)
·
w

P
+ (1 + ϕ +max(τ , Eβκ)) · s + FGH · (τ + 2γϕ).

PPoPP ’19, February 16–20, 2019, Washington, DC, USA U. Acar, V. Aksenov, A. Charguéraud, M. Rainey

Proof. Combining Theorem C.1 about the total span and Theorem C.2 about the total work together with Brent’s theorem [Brent 1974], we
get our main theorem. �

Theorem C.3 (Bound on the parallel run time). Under two assumptions κ ≥ τ and κ ≥ 1 + ϕ, the bound on the parallel running time from
the previous theorem can be slightly simplified:

TP ≤

(
1 +

γED · (τ + 2ϕ)
κ

)
·
w

P
+ (Eβ + 1) · κ · s + O(G · log2 κ · (τ + 2γϕ)).

Proof. The proof is straightforward. At first, since κ ≥ τ , κ ≥ 1 + ϕ and E, β ≥ 1 we obtain: (1 + ϕ +max(τ , Eβκ)) ≤ (1 + Eβ) · κ. Secondly,
F = 1 + logα

κ
DE and H = logγ /(γ−1)

κ
DE , thus F · H = O(log2 κ). �

Theorem 2.1. For fixed hardware and any program, all parameters of the analysis except for κ which represents the unit of parallelism can be
replaced with constants, leaving us with the following bound:

TP ≤

(
1 +

O(1)
κ

)
w

P
+ O(κ) · s + O(log2 κ).

Proof. Immediate from the previous theorem. �

Provably and Practically Efficient Granularity Control PPoPP ’19, February 16–20, 2019, Washington, DC, USA

D Input data
For radix-sort, we used a variety of inputs of 108 items. The input random kvp 256 consists of integer pairs (k,v) such that k ∈ [0, 231) and
v ∈ [0, 256), and random kvp 108 with v ∈ [0, 108). The exponential input consists of 32-bit integers ∈ [0, 231) drawn from the exponential
distribution.

For comparison-sort, we used a variety of inputs of 108 items. The random input consists of 64-bit floats ∈ [0, 1) from a uniform distribution,
and exponential from an exponential distribution. The almost sorted input consists of a sorted sequence 64-bit floats ∈ [0, 108) that is updated
with 104 random swaps. The trigrams input consists of strings generated using trigram distribution.

For suffix-array, we used three inputs. The dna input consists of a DNA sequence and has about 32 million charachters. The etext input
consists of about 105 million characters drawn from Project Gutenberg. The wikisamp input consists of 100 million characters taken from
wikipedia’s xml source files.

For convex-hull, we used a variety of inputs of 108 2-d points. The on circle consists of points on the unit circle centered on the origin, and
kuzmin consists of points from Kuzmin’s distribution.

For nearest neighbors, we used a variety of inputs of 108 2-d and 3-d points. The input kuzmin consists of 2-d points drawn from the
Kuzmin distribution. The input plummer consists of 3-d points drawn from the Plummer distribution.

For ray-cast, we used two non-synthetic inputs. The input happy consists of the Happy Buddha mesh from the Stanford 3D Scanning
Repository, and it consists of 1087716 triangles. The input xyz-rgb-manusript comes from the same repository and consists of 4305818
triangles. For each of the mesh with n triangles, n rays were generated: the start of each ray is randomly drawn from the lowest side of the
bounding box of the mesh and the end of each ray is randomly drawn from the upper side of the bounding box of the mesh.

For delaunay, we used two inputs consisting of 107 2-d points. The input in square consists of points in the unit square, and kuzmin
consists of points drawn from the Kuzmin distribution.

PPoPP ’19, February 16–20, 2019, Washington, DC, USA U. Acar, V. Aksenov, A. Charguéraud, M. Rainey

E Portability study
To test the portability of our approach, we ran the benchmarks on three additional machines:

• a 48-core AMD machine with four 12-core AMD Opteron 6172 processors, at 2.1GHz, with 64Kb of L1 and 512Kb L2 cache per core,
2x6Mb of L3 cache per processor, and 128Gb RAM in total (κ = 12.2µs, α = 1.4), ;

• a 72-core Intel machine with four 18-core Intel Xeon E7-8867 chips, at 2.40GHz, with 32Kb of L1 and 256Kb L2 cache per core, 45Mb
of L3 cache per chip, and 1Tb RAM in total (κ = 8.2µs, α = 1.4); and

• a 12-core Intel machine with two 6-core Intel Xeon E5-2609 chips, at 1.9GHz, with 32Kb of L1 and 256Kb of L2 cache per core and
2x15Mb of L3 cache per chip, and 31Gb of RAM (κ = 10.2µs, α = 3.0).

The results across these three machines are overall qualitatively similar to those of our main 40-core test harness.
Application/input Sequential elision 1-core execution 48-core execution

PBBS Oracle PBBS Oracle PBBS Oracle Oracle / PBBS
(s) (relative to elision) (s) Idle time Nb threads

samplesort
random 24.338 +9.9% +16.0% -2.4% 0.861 -1.4% -0.4% -44.2%
exponential 17.450 +6.2% +19.5% -0.5% 0.723 -13.0% -12.4% -51.8%
almost sorted 9.506 +18.9% +35.1% +1.6% 0.537 +4.8% +3.1% +13.8%

radixsort
random 4.927 +4.4% +0.6% -4.0% 0.328 -0.6% +0.1% -16.9%
random pair 8.193 +0.6% -0.8% -1.1% 0.711 +2.1% +2.1% -0.3%
exponential 4.916 +3.8% +1.8% -3.5% 0.332 +1.9% +0.7% +7.1%

suffixarray
dna 33.141 -4.5% -0.6% +9.6% 2.738 -1.2% +0.6% -17.8%
etext 127.117 -1.3% -0.9% +5.5% 7.495 +0.3% +0.7% +2.3%
wikisamp 102.287 -2.1% -0.7% +6.6% 6.757 +0.6% -0.9% +23.1%

convexhull
kuzmin 8.053 +1.7% -3.9% +21.1% 1.361 +3.3% +33.0% -77.5%
on circle 192.416 +13.4% +82.2% +12.9% 15.230 -1.1% -0.9% -66.0%

nearestneighbors
kuzmin 28.796 +1.3% +12.0% +11.2% 1.771 -0.2% +4.8% -13.7%
plummer 44.455 -0.7% +3.2% +1.4% 5.602 -5.1% +0.2% -11.0%

delaunay
in square 103.483 -0.6% -3.7% +1.7% 4.844 -3.0% -1.5% -22.8%
kuzmin 111.264 +1.0% +0.4% +2.9% 6.247 -5.8% +2.9% -31.9%

raycast
happy 18.379 +5.3% +2.1% +3.1% 0.747 +4.8% +6.9% -45.3%
xyzrgb 469.700 +1.0% +0.6% +1.3% 14.751 +0.3% +0.9% -59.4%
Table 3. Results from PBBS benchmarks, executed on the 48-core AMD machine.

Provably and Practically Efficient Granularity Control PPoPP ’19, February 16–20, 2019, Washington, DC, USA

Application/input Sequential elision 1-core execution 72-core execution
PBBS Oracle PBBS Oracle PBBS Oracle Oracle / PBBS
(s) (relative to elision) (s) Idle time Nb threads

samplesort
random 14.290 +5.7% +20.0% +1.2% 0.422 -8.6% -8.7% -15.5%
exponential 10.347 +4.1% +18.6% +0.9% 0.320 -8.9% -9.1% -19.4%
almost sorted 3.915 +20.0% +31.3% -3.6% 0.179 -3.7% -4.5% -12.4%

radixsort
random 2.149 +1.5% +1.0% -7.8% 0.107 -3.3% -3.6% -15.3%
random pair 3.428 +1.2% +0.2% -8.6% 0.209 -5.3% -5.7% -7.6%
exponential 2.148 +3.2% +1.4% -6.6% 0.102 +4.6% +3.8% +7.1%

suffixarray
dna 13.471 +1.5% +1.3% +5.0% 0.609 -1.0% -2.0% +7.0%
etext 51.637 +1.1% +0.7% +3.6% 2.008 +3.3% +2.1% +27.8%
wikisamp 45.232 +0.9% +0.8% +3.3% 1.886 +0.2% -1.0% +30.5%

convexhull
kuzmin 3.074 -0.2% +1.5% +9.8% 0.280 -16.5% -12.0% -74.0%
on circle 74.340 -3.3% +128.8% +16.6% 5.206 -41.6% -41.8% -29.1%

nearestneighbors
kuzmin 11.100 -1.9% +9.4% +4.2% 0.541 +9.5% +11.0% -10.9%
plummer 14.267 -1.3% +9.1% +2.9% 1.302 +7.6% +8.2% -13.1%

delaunay
in square 45.347 -0.3% -0.2% -0.0% 1.702 +0.8% +3.5% -16.9%
kuzmin 49.418 -0.6% -0.1% +1.1% 2.130 -4.6% +3.4% -26.5%

raycast
happy 6.304 +5.7% +2.7% +0.4% 0.226 +3.8% +6.8% -56.8%
xyzrgb 190.822 +0.2% -0.1% +0.2% 3.954 -1.3% -0.3% -70.5%
Table 4. Results from PBBS benchmarks, executed on the 72-core Intel machine.

PPoPP ’19, February 16–20, 2019, Washington, DC, USA U. Acar, V. Aksenov, A. Charguéraud, M. Rainey

Application/input Sequential elision 1-core execution 12-core execution
PBBS Oracle PBBS Oracle PBBS Oracle Oracle / PBBS
(s) (relative to elision) (s) Idle time Nb threads

samplesort
random 22.929 +5.3% +19.8% +0.2% 2.473 -11.3% -11.2% -51.7%
exponential 16.414 +4.0% +18.6% -0.0% 1.803 -12.3% -12.2% -69.0%
almost sorted 6.069 +21.4% +31.3% -1.2% 0.869 -9.7% -9.5% -43.0%

radixsort
random 3.130 +0.1% +0.2% -3.0% 0.482 -6.1% -6.1% -57.4%
random pair 5.085 +0.5% -0.6% -6.3% 1.040 -6.2% -6.4% -4.6%
exponential 3.346 +0.6% +0.0% -2.9% 0.435 -0.1% +0.0% -18.9%

suffixarray
dna 21.592 +19.1% +1.1% -13.4% 3.437 +1.2% +0.4% +29.8%
etext 82.698 +1.4% +0.3% +2.0% 11.370 +0.5% +0.0% +26.9%
wikisamp 67.672 +0.2% +1.1% +2.5% 10.540 -0.3% -0.7% +34.2%

convexhull
kuzmin 5.185 -1.0% -4.0% +3.6% 0.813 +9.3% +14.1% -89.4%
on circle 172.796 -3.4% +55.3% +4.4% 26.637 -23.5% -23.5% -66.9%

nearestneighbors
kuzmin 18.145 +7.0% +14.3% +3.1% 2.313 -2.4% -3.1% +10.5%
plummer 25.570 +3.5% +9.5% +2.8% 3.301 +0.3% -1.5% +11.7%

delaunay
in square 75.902 +0.9% -0.4% -0.1% 8.148 -0.2% +3.1% -53.5%
kuzmin 82.553 +0.3% +0.9% +1.3% 8.985 -1.1% +2.5% -45.9%

raycast
happy 13.574 +3.7% +1.1% +6.8% 1.303 +3.3% +3.5% -38.7%
xyzrgb 350.074 +2.5% +0.4% +9.2% 32.790 +1.0% +1.2% -86.3%
Table 5. Results from PBBS benchmarks, executed on the 12-core Intel machine.

Flat Nested Ours nested

Graph PBBS Ours Oracle / PBBS PBBS Ours Oracle / PBBS vs.
PBBS flat

(sec.) Idle time Nb threads (sec.) Idle time Nb threads
livejournal 0.25 +31.1% −0.3% +4.3% 0.32 +5.2% −7.6% −8.0% +35.1%
twitter 5.94 −10.5% +7.1% −15.6% 5.67 −10.0% +1.2% −68.5% −14.2%
wikipedia 0.21 +42.6% −0.3% −12.5% 0.25 +14.7% −7.2% −25.9% +42.0%
europe 6.27 +0.7% −28.6% +19.2% 6.21 +0.4% −28.6% +19.0% −0.5%
rand-arity-100 0.21 +44.9% −5.8% +1.1% 0.54 −39.1% −28.5% −5.3% +55.0%
rmat27 0.50 +22.2% +4.4% −20.7% 0.64 −10.6% −1.5% −40.7% +15.5%
rmat24 0.70 +16.2% −2.7% +3.0% 0.70 +20.9% −3.2% +14.3% +19.7%
cube-grid 1.38 +11.9% +0.5% +15.7% 1.37 +14.6% −1.5% +15.3% +13.5%
square-grid 6.13 −8.6% −6.2% −2.0% 6.17 −7.3% −9.7% +0.2% −6.6%
par-chains-100 74.9 −59.7% −46.3% −55.0% 74.9 −59.6% −46.8% −55.0% −59.6%
trunk-first 10.5 +0.0% +22.2% +0.3% 10.5 +0.0% +24.5% −0.5% +0.4%
phases-10-d-2 3.07 +8.5% −5.2% +3.1% 1.14 −5.6% −0.1% −45.0% −64.8%
phases-50-d-5 1.57 +15.2% +1.8% −19.5% 1.41 +14.5% −1.4% −23.3% +3.3%
trees-524k 73.6 +6.0% +4.2% +5.0% 6.30 −1.2% +0.4% −14.6% −91.6%

Table 6. Results from the BFS experiment, executed on the 48-core AMD machine.

Provably and Practically Efficient Granularity Control PPoPP ’19, February 16–20, 2019, Washington, DC, USA

Flat Nested Ours nested

Graph PBBS Ours Oracle / PBBS PBBS Ours Oracle / PBBS vs.
PBBS flat

(sec.) Idle time Nb threads (sec.) Idle time Nb threads
livejournal 0.06 +49.2% −6.3% −3.3% 0.12 −36.0% +1.2% −71.5% +17.3%
twitter 1.19 −19.6% +30.7% −15.2% 1.51 −42.3% −0.8% −68.2% −27.0%
wikipedia 0.06 +4.6% +4.9% −45.9% 0.10 −41.8% +1.6% −68.7% +2.9%
europe 3.11 −42.2% −54.0% −32.0% 3.09 −41.9% −54.3% −33.5% −42.3%
rand-arity-100 0.06 +14.2% −4.7% +1.9% 0.22 −68.0% −22.4% −42.7% +8.7%
rmat27 0.11 +12.4% −1.7% −57.8% 0.22 −46.0% −7.4% −69.9% +12.3%
rmat24 0.16 +9.4% −5.1% −20.8% 0.18 +0.7% −3.9% −39.7% +9.6%
cube-grid 0.49 −6.7% −13.3% +2.2% 0.51 −11.0% −13.7% +3.3% −7.2%
square-grid 2.98 −40.4% −44.2% −31.2% 3.12 −42.4% −43.5% −31.0% −39.5%
par-chains-100 49.5 −86.3% −72.3% −94.2% 50.1 −85.2% −71.4% −91.2% −85.1%
trunk-first 7.46 −15.3% −0.3% −39.6% 7.89 −20.6% −0.8% −39.7% −16.0%
phases-10-d-2 0.99 +9.8% +6.0% −3.3% 0.20 +2.7% −2.6% −24.0% −79.4%
phases-50-d-5 0.30 +22.8% −5.4% −1.6% 0.30 +7.6% −6.4% +7.4% +11.0%
trees-524k 12.9 +7.1% +7.1% +4.2% 0.93 +9.0% −4.4% +23.9% −92.2%

Table 7. Results from the BFS experiment, executed on the 72-core Intel machine.

Flat Nested Ours nested

Graph PBBS Ours Oracle / PBBS PBBS Ours Oracle / PBBS vs.
PBBS flat

(sec.) Idle time Nb threads (sec.) Idle time Nb threads
livejournal 0.22 +6.1% −1.9% −28.6% 0.29 −19.6% −0.2% −68.2% +7.5%
twitter 4.24 +16.3% +0.7% −3.1% 5.49 −9.6% −0.1% −7.6% +17.0%
wikipedia 0.15 +3.9% +0.6% −59.4% 0.20 −21.1% +1.2% −71.3% +3.8%
europe 3.35 −4.2% −16.3% +15.3% 3.36 −4.4% −16.3% +14.7% −4.2%
rand-arity-100 0.16 +8.8% −2.2% +17.2% 0.72 −75.6% −3.3% −58.9% +8.5%
rmat27 0.53 +3.9% +1.8% −61.8% 0.80 −29.9% +0.6% −66.5% +5.1%
rmat24 0.93 +4.4% +0.1% −36.9% 0.94 +3.9% −0.1% −31.5% +5.4%
cube-grid 2.02 −0.4% +1.5% −11.4% 2.02 −0.0% +1.4% −13.1% −0.4%
square-grid 4.76 −10.3% +5.4% −15.5% 4.75 −10.4% +5.7% −15.8% −10.5%
par-chains-100 37.8 −47.2% −41.4% −36.8% 37.9 −47.2% −41.4% −36.6% −47.1%
trunk-first 10.8 −33.4% +0.1% −90.2% 10.6 −32.0% +0.1% −88.3% −33.5%
phases-10-d-2 2.19 +7.0% −1.0% +0.5% 1.58 +9.9% +0.7% −70.2% −20.9%
phases-50-d-5 2.20 +21.4% +0.3% −14.6% 2.43 +8.7% −0.0% −34.8% +20.2%
trees-524k 13.2 +4.7% −1.4% +5.3% 3.90 +4.3% +2.1% −27.5% −69.2%

Table 8. Results from the BFS experiment, executed on the 12-core Intel machine.

PPoPP ’19, February 16–20, 2019, Washington, DC, USA U. Acar, V. Aksenov, A. Charguéraud, M. Rainey

F Other PBBS benchmarks
• The n-body and delaunay-refine benchmarks have critical code regions that do not readily admit a cost function.
• The remove-duplicates and dictionary benchmarks shows high variability in the running time of their critical loops, the cause of which
is the heavy use of atomic operations that, in turn, triggers massive bus contention.

• The deterministic-reservation benchmarks consist of maximal independent set, spanning forest, and minimal spanning tree. These
benchmarks make heavy use of atomic compare-and-exchange operations on a shared array, and as such show high variablility
in their execution times. Even so, we found through experimentation that minimal spanning tree and spanning forest performed
reasonably well on our test machines.

Provably and Practically Efficient Granularity Control PPoPP ’19, February 16–20, 2019, Washington, DC, USA

Figure 5. Example taken from a collection of measured runs for a given spguard. The x-axis corresponds to the asymptotic
complexity of a sequentialized computation, while the y-axis corresponds to the sequential execution time measured for that
computation. The value of E corresponds to the maximal (vertical) deviation from the line going through the mean of the
execution times. The ratio β/α corresponds to the maximal slope of that line.

G Estimating E and β
Estimating E and β on the target hardware enables one to estimate the worst-case bounds predicted by our theoretical analysis, either on the
overheads or on the increase in the span. To estimate these two parameters, we generate, for each spguard from each of our benchmark
programs, a plot summarizing the distribution of the execution time of the sequentialized computation. One representative plot is shown in
Figure 5. The x-axis indicates the asymptotic complexity of computations sequentialized by the spguard considered. The y-axis corresponds
to the measure of the sequential execution time. Note that both axes are on a logarithmic scale. In particular, moving by one unit to the
right on the x-axis corresponds to doubling the input size. To evaluate E and β , we draw an interpolation line going through the mean of
the measured execution times. Then, the maximal vertical distance between the line and a point gives the value of E, and the maximal
slope of that line gives bounds the value of the ratio β/α . Multiplying this ratio by the value set for α yields the value of β . To evaluate the
worst-case bound from the theoretical analysis for a given benchmark program, we instantiate E and β with the maximal values observed
for all spguards involved in that program.

PPoPP ’19, February 16–20, 2019, Washington, DC, USA U. Acar, V. Aksenov, A. Charguéraud, M. Rainey

Type T Size grain Time Comment

char 800M 1 1.963 100x slower
10 0.330 17x slower
5000 (TBB-rec.) 0.020 optimal
auto (ours) 0.020 optimal

char[64] 200M 1 0.129 78% slower
10 (TBB-rec.) 0.077 6% slower
5000 0.072 optimal
auto (ours) 0.073 optimal

char[2048] 0.4M 1 (TBB-rec.) 0.049 optimal
10 0.050 optimal
5000 0.057 16% slower
auto (ours) 0.050 optimal

char[131072] 0.01M 1 (TBB-rec.) 0.075 optimal
10 0.075 optimal
5000 1.419 19x slower
auto (ours) 0.075 optimal

Table 9. Running times on 40 cores for inputs of various sizes, for manually-fixed grain sizes, including the one obtained
following Intel’s TBB manual, and for our algorithm.

H The granularity-control problem and our solution, by example
We present an overview of the challenges of the granularity problem and a detailed description of our proposed solution. As an example, we
use an instance of the generic map function from the introduction and make it concrete by using our implementation.

H.1 Example program
Consider a simple, data-mining problem: given an array of elements of type T, find the number of elements that satisfy a given predicate p.
Using C++ templates, we specify such a generic function as follows:
template<T,P>

int match(T* lo, T* hi, P p) { ... }

Because match is generic, we can set T to be char, and define the predicate to be a function (a C++ lambda function [Stroustrup 2013,
Sec.11.4]) that tests equality of the character to ’#’ as follows.
p = [&] (char* c) { return *c == '#' }

Similarly, we can perform matches over arrays whose elements are 1024-character strings, by setting T to be char[1024]. For example, we
may count the strings whose hash code matches a particular value, say 2017, by instantiating the predicate as follows.

p = [&] (T* x) { return hash(x, x+sizeof(T)) == 2017 }

A classic way to implement a parallel match is to divide the input array into two halves, recur on each half, and compute the sum of the
number of occurrences from both halves. Figure 6 shows the code for such an implementation, where match takes as arguments the input
string, specified by lo and hi, and a predicate function, p. To control granularity, we stop the recursion when the input contains fewer
than grain elements and switch to a fast sequential algorithm, match_seq. When the input string is large, it is divided in half and solved
recursively in parallel using fork2join.

H.2 Choice of the grain size
To ensure good performance, the programmer must choose the setting for grain; but what should this setting be? The challenge is that
there is no a priori suitable setting for the grain, because the suitability depends on the particular hardware and software environment and,
in fact, on the inputs to the function match. Applying the established practice of manual granularity control leads to poor results even on the
same machine and with the same software environment.

Table 9 illustrates the issue. It shows the 40-core run times for different types T and different grain settings. (The experiment is run on an
Intel machine described in Section 3.) We picked the input size (total number of characters) to ensure a sequential execution time of a few
seconds. When T is the type char, we use character equality as predicate. When T is an array of characters, we compare the hash values, for
a simple hashing function. For each setting of T, we consider various values of grain, including the “recommended” grain value determined
by following the process described in Intel’s TBB manual [Intel 2011]: start by setting the grain to the value 10, 000 and halve it until the
1-processor run-time stops decreasing by more than 10%. Such tuning maximizes the exposed parallelism by considering the smallest grain
value for which the overheads are not prohibitive.

Provably and Practically Efficient Granularity Control PPoPP ’19, February 16–20, 2019, Washington, DC, USA

1 int grain = ... // determined by tuning
2 template <T, P>

3 int match(T* lo, T* hi, P p)

4 int result

5 int n = hi - lo

6 if n ≤ grain

7 result = match_seq(lo, hi, p)

8 else

9 T* mid = lo + (n / 2)

10 int result1, result2

11 fork2join([&] {

12 result1 = match(lo, mid, p)

13 }, [&] {

14 result2 = match(mid, hi, p)

15 })

16 result = result1 + result2

17 return result

Figure 6. Match, with manual granularity control.

1 // no grain size needed
2 template <T, P>

3 int match(T* lo, T* hi, P p)

4 int result

5 int n = hi - lo

6 spguard([&] { // complexity function
7 return n

8 }, [&] { // parallel body
9 if n ≤ 1

10 result = match_seq(lo, hi, p)

11 else

12 T* mid = lo + (n / 2)

13 int result1, result2

14 fork2join([&] {

15 result1 = match(lo, mid, p)

16 }, [&] {

17 result2 = match(mid, hi, p)

18 })

19 result = result1 + result2

20 }, [&] { // sequential body
21 result = match_seq(lo, hi, p)

22 })

23 return result

Figure 7. Match, with automatic granularity control.

First, observe that the TBB-recommended value of grain changes for different settings of T. For char, it is 5000; for char[64], it is 10;
for char[2048], it is 1. Second, observe that a grain optimal in one setting may induce a very significant slowdown in a different setting. For
example, when T is char, setting the grain to 1 instead of 5000 results in a 100-fold slowdown. We thus conclude that, there is no single
value of grain that works well for all instances of match.

One might attempt to select the grain size based on the arguments provided to the match function. For example, the grain could be set
to C/sizeof(T), for some constant C, to ensure use of a smaller grain size when processing bigger elements. This approach helps in some
cases, but it does not solve the problem in general: note that in match, the grain depends not only on the type T, but also on the predicate
passed as second argument. If T is set to char[64] and the predicate is instantiated as a simple hash function, the optimal grain size is
10; however, providing a different, more computationally expensive predicate function causes the optimal grain size to be 1. Selecting the
right grain for different predicates would require the ability to predict the run-time behavior of a function, an intractable problem. To
control granularity in cases of nested-parallel programs, the programmer will likely have to specialize the code for each predicate and apply
granularity control to each such specialization, thus losing the key benefits of generic functions.

The problems illustrated by the simple example above are neither carefully chosen ones nor isolated cases. They are common; more realistic
benchmarks exhibit even more complex behavior. For example, arguments to parallel functions can be parallel, leading to nested parallelism,
making granularity control more difficult. In fact, as discussed in more detail in Section 3, in the state-of-the-art PBBS benchmarking [Blelloch
et al. 2012], nearly every benchmark relies on carefully written, custom granularity control techniques.

H.3 Our approach
Our goal is to delegate the task of granularity control to a smart, library implementation. To this end, we ask the programmer to provide
for each parallel function a series-parallel guard, by using the keyword spguard. A spguard consists of: a parallel body, which is a lambda
function that performs a programmer-specified parallel computation; a sequential body, which is a lambda function that performs a purely
sequential computation equivalent to the parallel body, i.e. performing the same side-effects and delivering the same result. a cost function,
which gives an abstract measure, as a positive number, of the work (run-time cost) that would be performed by the sequential body.

At a high level, a spguard exploits the result of the cost function to determine whether the computation involved is small enough to be
executed sequentially, i.e. without attempting to spawn any subcomputation. If so, the spguard executes the sequential body. Otherwise, it
executes the parallel body, which would typically spawn smaller subcomputations, each of them being similarly guarded by a spguard.

The cost function may be any programmer-specified piece of code that, given the context, computes a value in proportion to the
one-processor execution time of the sequential body. Typically, the cost function depends on the arguments provided to the current function
call. A good choice for the cost function is the average asymptotic complexity of the sequential body, e.g., n lgn, or n, or

√
n, where n denotes

the size of the input. The programmer need not worry about constant factors because spguards are able to infer them on-line, with sufficient
accuracy.

PPoPP ’19, February 16–20, 2019, Washington, DC, USA U. Acar, V. Aksenov, A. Charguéraud, M. Rainey

1 template <T, P>

2 int match(T* lo, T* hi, P p)

3 return map_reduce(lo, hi, 0, [&] (int x, int y) {

4 return x + y // associative combining operator
5 }, [&] (T* i) {

6 if p(*i) return 1 else return 0 // leaf−level operation
7 })

Figure 8. Match, using map_reduce with our automatic granularity control.

In a real implementation, the sequential body can be left implicit in many cases, because it can be inferred automatically. For example,
the sequential body for a parallel-for loop can be obtained by replacing the parallel-for primitive with a sequential for. Likewise, in many
instances, the complexity function is linear, allowing us to set it to the default when not specified. In our library and experiments, we use
this approach to reduce dramatically the annotations needed.

Figure 7 shows the code for our example match function using spguards. Compared with the original code from Figure 6, the only
difference is the code being structured as a spguard with three arguments: cost function, parallel body, and sequential body. There, the cost
function simply returns the input size, written n, because the sequential body (match_seq) uses a linear-time, sequential matching algorithm.

As we show in this paper, once a parallel algorithm is modified with the insertion of spguards like in Figure 7, the information provided
by the cost function suffices for our run-time system to control granularity effectively for all settings of the parameters. As shown in Table 9,
our oracle-guided version matches the performance achieved by the grain settings recommended by the TBB method, but without any of
the manual tuning effort and code modifications.

In Section 2.6, we described the higher-level interface provided by our implementation. The code below shows how we can use the
higher-level interface provided by our library to implement a more concise version of the match function in Figure 7. The solution in Figure 8
uses a call to the map_reduce provided by our sequence library. The map_reduce implementation uses the default sequential body and
default cost function, but can optionally be called with a custom sequential body or custom complexity function.

Having the ability to write such high-level code in our approach turned out to be a crucial piece of the implementation. It allowed us to
write code that is almost always as concise as original PBBS code, is sometimes even more concise, and offers automatic granularity control.
Thanks to the so-called zero-cost abstraction features of C++ (e.g., cheap higher order functions) codes, such as the code in Figure 8, perform
as well as the lower-level counter parts, such as the code shown in Figure 7.

	Abstract
	1 Introduction
	2 Algorithmic granularity control
	2.1 Sequentialization decisions
	2.2 Nested parallelism
	2.3 Dealing with real hardware
	2.4 Analysis
	2.5 Pseudo-code for the estimator and spguard
	2.6 Robustness with respect to outliers
	2.7 Intuition for the proof

	3 Experimental evaluation
	3.1 Main PBBS results
	3.2 Parallel BFS
	3.3 Summary

	4 Related work
	5 Conclusion
	References
	A Artifact Appendix
	A.1 Artifact check-list (meta-information)
	A.2 Description
	A.3 Installation
	A.4 Experiment workflow
	A.5 Evaluation and expected result
	A.6 Experiment customization
	A.7 Methodology

	B Implementation of time measurements
	C Analysis
	C.1 Definitions and assumptions
	C.2 Presentation of the results
	C.3 Additional definitions
	C.4 Basic auxiliary lemmas
	C.5 Proof of the main results

	D Input data
	E Portability study
	F Other PBBS benchmarks
	G Estimating E and
	H The granularity-control problem and our solution, by example
	H.1 Example program
	H.2 Choice of the grain size
	H.3 Our approach

