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Abstract. Designing an efficient concurrent data structure is a chal-
lenge that is not easy to meet. Intuitively, efficiency of an implementation
is defined, in the first place, by its ability to process applied operations
in parallel, without using unnecessary synchronization. As we show in
this paper, even for a data structure as simple as a linked list used to
implement the set type, the most efficient algorithms known so far are
not concurrency-optimal : they may reject correct concurrent schedules.
We propose a new algorithm for the list-based set based on a value-
aware try-lock that we show to achieve optimal concurrency: it only
rejects concurrent schedules that violate correctness of the implemented
set type. We show that reaching this kind of optimality may be benefi-
cial in practice. Our concurrency-optimal list-based set outperforms two
state-of-the-art algorithms: the Lazy Linked List and the Harris-Michael
List.

1 Introduction

Multicore applications require highly concurrent data structures. Yet, the very
notion of concurrency is vaguely defined, to say the least. What do we mean by a
“highly concurrent” data structure? Generally speaking, one could compare the
concurrency of algorithms by running a game where the adversary decides on the
schedules of shared memory accesses from different processes. At the end of the
game, the more schedules the algorithm would accept without hampering high-
level correctness, the more concurrent it would be. The algorithm that accepts
all correct schedules would then be considered concurrency-optimal [1].

To illustrate the difficulty of optimizing concurrency, let us consider one of
the most “concurrency-friendly” data structures [2]: the sorted linked list used
to implement the integer set type. Since any modification on a linked list affects
only a small number of contiguous list nodes, most of update operations on the
list could, in principle, run concurrently without conflicts. For example, one of
the most efficient concurrent list-based set to date, the Lazy Linked List [3],
achieves high concurrency by holding locks on only two consecutive nodes when
updating, thus accepting concurrent modifications of non-contiguous nodes. The
Lazy Linked List is known to outperform the Java variant [4] of the CAS-based



Harris-Michael algorithm [5, 6] under low contention because all its traversals,
be they for read-only look-ups or for locating the nodes to be updated, are wait-
free, i.e., they ignore locks and logical deletion marks. As we show below, the
Lazy Linked List implementation is however not concurrency-optimal, raising
two questions: Is there a more concurrent list-based set algorithm? And if so,
does higher concurrency induce an overhead that precludes higher performance?

The concurrency limitation of the Lazy Linked List is caused by the locking
strategy of its update operations: both insert(v) and remove(v) traverse the struc-
ture until they find a node whose value is larger or equal to v, at which point they
acquire locks on two consecutive nodes. Only then is the existence of the value
v checked: if v is found (resp., not found), then the insertion (resp., removal)
releases the locks and returns without modifying the structure. By modifying
metadata during lock acquisition without necessarily modifying the structure
itself, the Lazy Linked List over conservatively rejects certain correct schedules.
To illustrate that the concurrency limitation of the Lazy Linked List may lead
to poor scalability, consider Figure 1 that depicts the performance of a 25-node
Lazy Linked List (red curve) under a workload of 20% updates (insert/removals)
and 80% contains on a 72-core machine. The list is comparatively small, hence all
updates (even the failed insertions and removals) are likely to contend. We can
see that when we increase the number of threads beyond 40, the performance
drops significantly.

This observation suggests a desirable property that concurrent operations
should conflict on metadata only when they conflict on data. To achieve this, we
need to exploit the semantics of the high-level data type. 6

Our main contribution is the Value-Based List (VBL), the most concurrent
(in fact, optimally concurrent, as we formally prove) and probably the most ef-
ficient list-based set algorithm to date. It exploits the logical deletion technique
of Harris-Michael that divides the removal of a node into a logical step (marking
the node for deletion) and a physical step (unlinking the node from the list),
and the wait-free traversal of the Lazy Linked List. In addition, our approach
relies on a novel value-aware synchronization technique: first the lock, imple-
mented using compare-and-swap, is taken, then the procedure checks whether
the value in the next node has changed, if the validation is successful then the
operation continues, otherwise, the operation restarts. Compared to the Lazy
Linked List, this approach allows for the improvement of performance and even
provides scalability in the highly contended cases (Figure 1). We show that the
resulting algorithm rejects a concurrent schedule only if otherwise the high-level
correctness of the implemented set type (linearizability [8]) is violated. Our al-

6 Note that this property refines the original notion of disjoint access parallelism
(DAP) [7], trivially ensured by most linked-list implementations simply because all
their operations “access” the head node and, thus, are allowed to conflict on the
metadata.



gorithm is thus concurrency-optimal [1]: no correct list-based set algorithm can
accept more schedules. 7

The evaluation of VBL shows
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Fig. 1: The throughput of Lazy Linked List
(red square curve) and VBL (blue circle curve).
We consider the load with only 20% updates.
Lazy Linked List behaves worse, as its oper-
ations potentially contend on meta-data even
when they do not modify the data structure.

that achieving optimal concur-
rency in list-based set implementa-
tions does not necessarily result in
a costly overhead, complementing
the recent analysis of concurrency-
optimality for tree-based dictionar-
ies [9]. Extensive experiments on
two x86-64 architectures machines,
72-way Intel machine and 64-way
AMD machine, confirmed that VBL
outperforms the state-of-the-art al-
gorithms [3, 4]. In particular, VBL
outperforms the Lazy Linked List
performance by 1.6× for 72 threads
on the 20%-update workload of
Figure 1, which can be explained
by the fact that our algorithm val-
idates list data before locking, and
not after. In addition, as our algo-
rithm differs from Harris-Michael
by avoiding metadata accesses during traversals, it outperforms it by up to
1.6× on read-only workloads. We report the performance of the Java variant of
Harris-Michael list-based set with wait-free contains as presented in Shavit and
Herlihy’s book [4] and the Java optimised implementation with RTTI [3], and,
in the technical report [10],on the performance of our own C++ translations of
the Lazy algorithm (without memory management).

Roadmap. The rest of this paper is structured as follows. We present our
methodology on modelling concurrency and prove the suboptimal concurrency
of the Lazy and Harris-Michael linked lists in Section 2. In Section 3, we present
our VBL list implementation. Section 4 presents the methodology for perfor-
mance evaluation of concurrent list implementations and Section 5 presents a
discussion of concurrency w.r.t list-based sets. The full proofs of linearizability
and deadlock-freedom are deferred to the technical report [10]. Synchrobench
benchmark suite [11] contains the code for all the lists considered in this paper.

2 Concurrency analysis of list-based sets

2.1 Preliminaries

We consider a standard asynchronous shared-memory system, in which n >
1 processes (or threads of computation) p1, . . . , pn communicate by applying
operations on shared objects.

7 Here we adapt to list-based sets the notion of concurrency-optimality, introduced
in [1] for generic search data structures.



Sequential list-based set. An object of the set type stores a set of integer
values, initially empty, and exports operations insert(v), remove(v), contains(v)
where v ∈ Z. The update operations, insert(v) and remove(v), return a boolean
response, true if and only if v is absent (for insert(v)) or present (for remove(v)) in
the list. After insert(v) is complete, v is present in the list, and after remove(v) is
complete, v is absent from the list. The contains(v) returns a boolean true if and
only if v is present in the list. The concurrent set implementations considered in
this paper are based on a a specific sequential one. The implementation, denoted
LL, stores set elements in a sorted linked list, where each list node has a next
field pointing to the successor node. Initially, the next field of the head node
points to tail ; head (resp. tail) is initialized with values −∞ (resp., +∞) that
is smaller (resp., greater) than any other value in the list. We follow natural
sequential implementations of operations insert, remove, and contains presented
in detail in [10].

Executions. An event of a process pi (we also say a step of pi) is an invocation
or response of an operation performed by pi on a high-level object (in this paper,
a set) implementation, or a primitive applied by pi to a base object b along with
its response. A configuration specifies the value of each base object and the state
of each process. The initial configuration is the configuration in which all base
objects have their initial values and all processes are in their initial states. An
execution fragment is a (finite or infinite) sequence of events. An execution of
an implementation I is an execution fragment where, starting from the initial
configuration, each event is issued according to I and each response of a primitive
matches the state of b resulting from all preceding events.

A high-level history H̃ of an execution α is the subsequence of α consisting
of all invocations and responses of (high-level) operations.

Let α|pi (resp. H|pi) denote the subsequence of an execution α (resp. a histiry
H) restricted to the events of process pi. Executions α and α′ (resp. histories H
and H ′) are equivalent if for every process pi, α|pi = α′|pi (resp. H|pi = H ′|pi).
An operation π precedes another operation π′ in an execution α (resp. history
H), denoted π →α π

′ (resp. , π →H π′) if the response of π occurs before the
invocation of π′ in α (resp. H). Two operations are concurrent if neither precedes
the other.

An execution (resp. history) is sequential if it has no concurrent operations.
An operation is complete in α if the invocation event is followed by a match-
ing response; otherwise, it is incomplete in α. Execution α is complete if every
operation is complete in α.

High-level histories and linearizability. A complete high-level history H̃ is
linearizable with respect to an object type τ if there exists a sequential high-level
history S equivalent to H̃ such that (1) →H̃⊆→S and (2) S is consistent with

the sequential specification of type τ . Now a high-level history H̃ is linearizable
if it can be completed (by adding matching responses to a subset of incomplete
operations in H̃ and removing the rest) to a linearizable high-level history [8].



2.2 Concurrency as admissible schedules of sequential code

Algorithm 1 Sequential implementation LL (sorted linked list) of set type:
Shared memory reads and writes are explicitly depicted

1: Shared variables:
2: class Node: head , tail
3: head .val = −∞
4: tail .val = +∞
5: head .next = tail

6: insert(v):
7: prev ← head
8: curr ← read(prev .next)
9: while (tval ← read(curr .val)) < v do

10: prev ← curr
11: curr ← read(curr .next)

12: if tval 6= v then
13: X ← new-node(v, prev .next)
14: write(prev .next , X)

15: return (tval 6= v)

16: remove(v):
17: prev ← head
18: curr ← read(prev .next)
19: while (tval ← read(curr .val)) < v do
20: prev ← curr
21: curr ← read(curr .next)

22: if tval = v then
23: tnext← read(curr .next)
24: write(prev .next , tnext)

25: return (tval = v)

26: contains(v):
27: curr ← head
28: curr ← read(prev .next)
29: while (tval ← read(curr .val)) < v do
30: curr ← read(curr .next)

31: return (tval = v)

Schedules. Informally, a schedule of a list-based set algorithm specifies the or-
der in which concurrent high-level operations access the list nodes. Consider
the sequential implementation, LL, of operations insert, remove and contains.
Suppose that we treat this implementation as a concurrent one, i.e., simply
run it in a concurrent environment, without introducing any synchronization
mechanisms, and let § denote the set of the resulting executions, we call them
schedules. Of course, some schedules in § will not be linearizable. For example,
concurrent inserts operating on the same list nodes may result in “lost updates”:
an inserted element disappears from the list due to a concurrent insert opera-
tion. But, intuitively, as no synchronization primitives are used, this (incorrect)
implementation is as concurrent as it can get.

We measure the concurrency properties of a linearizable list-based set via
its ability to accept all correct schedules in §. Intuitively, a schedule is correct
if it respects the sequential implementation LL locally, i.e., no operation in it
can distinguish the schedule from a sequential one. Furthermore, the schedule
must be linearizable, even when we consider its extension in which all update
operations are completed and followed with a contains(v) for any v ∈ Z. Let us
denote this extension of schedule σ by σ̄(v).

Given a schedule σ and an operation π, let σ|π denote the subsequence of σ
consisting of all steps of π.



Definition 1 (Correct schedules). We say that a schedule σ of a concurrent
list-based set implementation is locally serializable (with respect to the sequential
implementation of list-based set LL) if for each of its operations π, there exists
a sequential schedule S of LL such that σ|π = S|π. We say that a schedule is
correct if (1) σ is locally serializable (with respect to LL), (2) for all v ∈ Z, σ̄(v)
is linearizable (with respect to the set type).

Note that the last condition is necessary for filtering out schedules with “lost
updates”. Consider, for example a schedule in which insert(1) and insert(2) are
applied to the initial empty set. Imagine that they first both read head , then both
read tail , then both perform writes on the head .next and complete. The result-
ing schedule is, technically, linearizable and locally serializable but, obviously,
not acceptable. However, in the schedule, one of the operations, say insert(1),
overwrites the effect of the other one. Thus, if we extend the schedule with a
complete execution of contains(2), the only possible response it may give is false
which obviously does not produce a linearizable high-level history.

Note also that, as linearizability is a safety property [12], if σ̄(v) is lineariz-
able, σ is linearizable too. (In the following we omit mentioning set and LL when
we talk about local serializability and linearizability.)

Concurrency-optimality. A concurrent list-based set generally follows LL:
every high-level operation, insert, remove, or contains, reads the list nodes, one
after the other, until the desired fragment of the list is located. The update
operation (insert or remove) then writes, to the next field of one of the nodes,
the address of a new node (if it is insert) or the address of the node that follows
the removed node in the list (if it is remove). Note that the (sequential) write
can be implemented using a CAS primitive [5].

Let α denote an execution of a concurrent implementation of a list-based
set. We define the schedule σ exported by α as the subsequence of α consisting
of reads, writes and node creation events (corresponding to the sequential im-
plementation LL) of operations insert, remove and contains that “take effect”.
Intuitively, taking effect means that they affect the outcome of some operation.
The exact way an execution α is mapped to the corresponding schedule σ is
implementation specific.

An implementation I accepts a schedule σ if there exists an execution of I
that exports σ.

Definition 2 (Concurrency-optimality). An implementation is
concurrency-optimal if it accepts every correct schedule.

2.3 Concurrency analysis of the Lazy and Harris-Michael Linked
Lists

In this section, we show that even state-of-the-art implementations of the list-
based set, namely, the Lazy Linked List and the Harris-Michael Linked list are
suboptimal w.r.t exploiting concurrency. We show that each of these two algo-
rithms rejects some correct schedules of the list-based set.



Lazy Linked List. In this deadlock-free algorithm [3], the list is traversed in
the wait-free manner and the locks are taken by update operations only when
the desired interval of the list is located. A remove operation first marks a node
for logical deletion and then physically unlinks it from the list. To take care of
conflicting updates, the locked nodes are validated, which involves checking if
they are not logically deleted. If validation fails, the traversal is repeated. The
schedule of an execution of this algorithm is naturally derived by considering
only the last traversal of an operation.

Figure 2 illustrates how the post-locking validation strategy employed by
the Lazy Linked List makes it concurrency sub-optimal. As explained in the
introduction, the insert operation of the Lazy Linked List acquires the lock on
the nodes it writes to, prior to the check of the node’s state.

R(h) R(X1) new(X2)

R(h) R(X1)

insert(2)

insert(1) false

E′ E

insert(2) is incomplete

insert(1) must acquire
the lock on X1 prior to
returning false in E

insert(2) holds the lock
on X1 after E′

Fig. 2: A schedule rejected by the Lazy Linked List; initial list state is {X1} that
stores value 1; R(X1) refers to reads of both val and next fields; new(X2) creates a
new node storing value 2

One can immediately see that the Lazy Linked List is not concurrency opti-
mal. Indeed, consider the schedule depicted in Figure 2. Two operations, insert(1)
and insert(2) are concurrently applied to the list containing a single node X1

storing value 1. Both operations first read h, the head of the list, then operation
insert(2) reads node X1 and creates a new node, X2, storing 2. Immediately after
that, operation insert(1) reads X1 and returns false.

The schedule is correct: it is linearizable and locally serializable. However,
it cannot be accepted by the Lazy Linked List, as insert(1) needs a lock on X1

previously acquired by insert(2). Thus, the implementation is concurrency sub-
optimal: an operation may engage in synchronization mechanisms even if it is
not going to update the list.

R(X2) R(X3)W (X1)

R(X2) R(X3)W (X1) R(X4)

R(h) R(X2) W (X2)

R(h) R(X2) W (h)

remove(2) true

insert(1) true

insert(3) false

insert(4) false

Fig. 3: A schedule rejected by the Harris-Michael Linked List; the initial state of the
list is {X2, X3, X4}; each Xi stores value i; note that not all schedules are depicted for
succinctness.



Harris-Michael Linked List. Like the Lazy Linked List, the lock-free Harris-
Michael algorithm (cf. [4, Chapter 9]) separates logical deletion of a node from
its physical removal (both steps use CAS primitives). If a CAS associated with
logical deletion fails, the operation is restarted. Unlike the Lazy Linked List,
however, if the physical removal fails (e.g., a concurrent update performed a
successful CAS on the preceding node) the operation completes, and unlink-
ing the logically deleted node from the list is then left for a future operation.
Every update operation, as it traverses the list, attempts to physically remove
such nodes. If the attempt fails, the operation is restarted. The delegation of
physical removals to future operations is crucial for lock-freedom: an operation
may only be restarted if there is a concurrent operation that took effect, i.e.,
global progress is made. But, as we show below, this delegation precludes some
legitimate schedules.

Strictly speaking, this algorithm is not locally serializable with respect to
the sequential implementation LL. Indeed, if a remove operation completes after
logical deletion, we may not be able to map its steps to a write to a next field
of the preceding node without “over-writing” a concurrent update. Therefore,
for the sake of concurrency analysis, we consider a variant of LLin which remove
operations only remove nodes logically and physical removals are put to the
traversal procedure of future update operations. Now to define the schedule
incurred by an execution of the algorithm, we consider the read and write steps
that are part of the last traversal of an operation, node creation steps by insert
operations, and successful logical deletions by remove operations. However, the
Harris-Michael Linked List is not concurrency-optimal even with respect to this
adjusted sequential specification.

Consider the schedule depicted in Figure 3. Two operations, insert(1) and
remove(2) are concurrently applied to the list containing three nodes, X2, X3

and X4, storing values 2, 3 and 4, respectively. Note that operation remove(2)
marks node X2 for deletion but does not remove it physically by unlinking it from
h. (Here we omit steps that are not important for the illustration.) Note that so
far the schedule is accepted by the Harris-Michael algorithm: an earlier update
of h by operation insert(1) causes the corresponding CAS primitive performed
on h by remove(2) to fail.

After the operation completes, we schedule two concurrent operations,
insert(4) and insert(3). Suppose that the two operations concurrently read head,
X1 and X2. As they both witness X2 to be marked for logical deletion, they both
will try to physically remove it by modifying the next field of X1. We let insert(3)
to do it first and complete by reading X3 and returning false. In the schedule
depicted in Figure 3, insert(4) also writes to X1, and then successfully reads X3

and X4, and returns false. However, in the execution of the Harris-Michael al-
gorithm, the attempt of insert(4) to physically remove X2 will fail, causing it to
restart traversing the list from the head. Thus, this schedule cannot be accepted.



3 The VBL list

In this section, we address the challenges of extracting maximum concurrency
from list-based sets and present our VBL list. As we have shown in the previous
section, an update in the Lazy Linked List acquires locks on nodes it is about to
modify prior to checking the node’s state. Thus, it may reject a correct schedule
in which the operation does not modify the list. The schedule rejected by the
Harris-Michael Linked List (Figure 3) is a bit more intricate: it exploits the
fact that Harris-Michael List involves helping which in turn induces additional
synchronization steps leading to rejection of correct schedules.

Deriving a concurrency-optimal list requires introducing value-based node
validation along with the logical-deletion technique. This observation inspired
our value-aware try-lock.

3.1 Value-aware try-lock

The class Node now contains the fields: (i) val for the value of the node; (ii) next
providing a reference to the next node in the list; (iii) a boolean deleted to
indicate a node to be marked for deletion and (iv) a lock to indicate a mutex
associated with the node.

The value-aware try-lock supports the following operations:
(1) lockNextAt(Node node) first acquires the lock on the invoked node, checks if

the node is marked for deletion or if the next field does not point to the node
passed as an argument, then releases the lock and returns false; otherwise,
the operation returns true.

(2) lockNextAtValue(V val) acquires the lock on the invoked node, checks if the
node is marked for deletion or if the value of the next node is not val, then
releases the lock and returns false; otherwise returns true.

3.2 VBL list

We now describe our VBL implementation. The list is initialized with 2 nodes:
head (storing the minimum sentinel value) and tail (storing the maximum value),
head .next stores the pointer to tail , both deleted flags are set to false. The
pseudo-code is presented in Figure 2.

Contains. The contains(v) algorithm starts from the head node and follows next
pointers until it finds a node with the value that is equal to or bigger than v.
Then, the algorithm simply compares the value in the found node with v.

Inserting a node. The algorithm of insert(v) starts with the traversal (Line 24)
to find a pair of nodes 〈prev , curr〉 such that prev .val is less than v and curr .val
is equal to or bigger than v. The traversal is simple: it starts from head and
traverses the list in a wait-free manner until it finds the desired nodes. If curr .val
is equal to v (Line 25) then there is no need to insert. Otherwise, the new node
with value v should be between prev and curr . We create a node with value v
(Lines 26-27). Then, the algorithm locks prev and checks that it still can insert



the node correctly (Line 28): prev .next still equals to curr and prev is not marked
as deleted. If both of these conditions are satisfied, the new node can be linked.
Otherwise, it cannot: the correctness of the algorithm (namely, linearizability)
would be violated; so the operation restarts from the traversal (Line 24). Note
that to improve the performance, the algorithm starts the traversal not from
head but from prev .

Removing a node. The algorithm of remove(v) follows the lines of insert(v):
first it finds the desired pair of nodes 〈prev, curr〉. If curr .val is not equal to
v then there is nothing to remove (Line 36). Otherwise, the algorithm has to
remove the node with value v. At first, it takes the lock on prev and checks
two conditions (Line 39): prev .next .val equals to v and prev is not marked as
deleted. The first condition ensures concurrency-optimality by taking care of
the scenario described above: one could have removed and inserted v while the
thread was asleep. The second condition is necessary to guarantee correctness,
i.e., the node next is not linked to deleted node, which might result in a “lost
update” scenario. If any of the conditions is violated, the algorithm restarts from
Line 35. Then, the algorithm takes the lock on curr = prev .next and checks a
condition curr .next equals to next in Line 41 (note that the second condition is
satisfied by the lock on prev as curr is not marked as deleted). This condition
ensures correctness: otherwise, the link next to prev will be incorrect. If it is not
satisfied, the algorithm restarts from Line 35. Afterwards, the algorithm sets
curr .deleted to true (Line 44) and unlinks curr (Line 45).

Correctness. We show that the VBL list accepts only correct schedules of the
list-based set. We then show that the VBL list accepts every correct schedule of
the list-based set, thus establishing its concurrency-optimality.

Theorem 1. Every schedule of the VBL list is linearizable w.r.t the set.

The full proof is deferred to the companion technical report. Observe that the
only nontrivial case to analyse for proving deadlock-freedom is the execution
of the update operations. Suppose that an update operation π fails to return a
matching response after taking infinitely many steps. However, this means that
there exists a concurrent insert or remove that successfully acquires its locks and
completes its operation, thus implying progress for at least one correct process.

Theorem 2. The VBL implementation accepts only correct list-based set sched-
ules locally serializable (wrt LL).

Concurrency-optimality. We prove that the VBL accepts every correct in-
terleaving of the sequential code. The goal is to show that any finite schedule
rejected by our algorithm is not correct. Recall that a correct schedule σ is lo-
cally serializable and, when extended with all its update operations completed
and contains(v), for any v ∈ Z, we obtain a linearizable schedule.

Note that given a correct schedule, we can define the contents of the list
from the order of the schedule’s write operations. For each node that has ever
been created in this schedule, we derive the resulting state of its next field from
the last write in the schedule. Since in a correct schedule each new node is first



Algorithm 2 VBL list

1: Shared variables:
2: head.val ← −∞
3: tail.val ← +∞
4: head.next ← tail
5: head.deleted ← false
6: tail.deleted ← false
7: head.lock ← new Lock()
8: tail.lock ← new Lock()

9: contains(v):
10: curr ← head
11: while curr.val < v do
12: curr ← curr.next
13: return curr.val = v

14: waitfreeTraversal(v, prev):
15: if prev.deleted then
16: prev ← head

17: curr ← prev.next
18: while curr.val < v do
19: prev ← curr
20: curr ← curr.next
21: return 〈prev, curr〉

22: insert(v):
23: prev ← head
24: 〈prev, curr〉 ← waitfreeTraversal(v,

prev)
25: if curr.val = v then return false
26: newNode.val ← v
27: newNode.next ← curr
28: if not prev.lockNextAt(curr) then
29: goto Line 24

30: prev.next ← newNode
31: prev.lock.unlock()
32: return true

33: remove(v):
34: prev ← head
35: 〈prev, curr〉 ← waitfreeTraversal(v,

prev)
36: if curr.val 6= v then
37: return false
38: next ← curr.next
39: if not prev.lockNextAtValue(v) then

goto Line 35

40: curr = prev.next
41: if not curr.lockNextAt(next) then
42: prev.unlock()
43: goto Line 35

44: curr.deleted ← true
45: prev.next ← curr.next
46: curr.lock.unlock()
47: prev.lock.unlock()
48: return true

created and then linked to the list, we can reconstruct the state of the list by
iteratively traversing it, starting from the head .

Theorem 3 (Optimality). VBL implementation accepts all correct schedules.

4 Experimental evaluation

Experimental setup. In this section, we compare the performance of our so-
lution to two state-of-the-art list-based set algorithms written in different lan-
guages (Java and C++) and on two multicore machines from different manufac-
turers: A 4-socket Intel Xeon Gold 6150 2.7 GHz server (Intel) with 18 cores per
socket (yielding 72 cores in total), 512 Gb of RAM, running Debian 9.9. This
machine has OpenJDK 11.0.3; A 4-socket AMD Opteron 6276 2.3 GHz server



(AMD) with 16 cores per socket (yielding 64 cores in total), running Ubuntu
14.04. This machine has OpenJDK 1.8.0 222 (We delegate the AMD results to
the tech report).

Concurrent list implementations. We compared our VBL algorithm (VBL)
to the lock-based Lazy Linked List (Lazy) [3] and Harris-Michael’s non-blocking
list (Harris-Michael) [5,6] with its wait-free and RTTI optimization suggested by
Heller et al. [3] using the Synchrobench benchmark suite [11]. To compare these
algorithms on the same ground we primarily used Java as it is agnostic of the un-
derlying set up. The evaluation of the C++ implementations of these algorithms
is deferred to the companion technical report [10]. The code of the implementa-
tions is part of Synchrobench at https://github.com/gramoli/synchrobench.

Experimental methodology. We considered the following parameters:

– Workloads. Each workload distribution is characterized by the percent x%
of update operations. This means that the list will be requested to make
(100 − x)% of contains calls, x/2% of insert calls and x/2% of remove calls.
We considered three different workload distribution: 0%, 20%, and 100%.
Percentages 0% and 100% were chosen as the extreme workloads, while 20%
update ratio corresponds to the standard load on databases. Each operation
contains, insert, and remove chooses its argument uniformly at random from
the fixed key range.

– List size. On the workloads described above, the size of the list depends on
the range from which the operations take the arguments. Under the described
workload the size of the list is approximately equal to the half of the key
range. We consider four different key ranges: 50, 200, 2 · 103, and 2 · 104. To
ensure consistent results we pre-populated the list: each element is present
with probability 1

2 .
– Degree of contention. This depends on the number of cores in a machine.

We take enough points to reason about the behavior of the curves.

Results. We run experiments for each workload 5 times for 5 seconds with a
warm-up of 5 seconds. Figure 4 contains the results on Intel machine. Our new
list algorithm outperforms both Harris-Michael’s and the Lazy Linked List algo-
rithms, and remains scalable except for the situation with very high contention,
i.e., high update ratio with small range. We find this behavior normal at least
in our case, since the processes contend to get the cache-lines in exclusive mode
and this traffic becomes the dominant factor of performance in the execution.

Comparison against Harris-Michael. Harris-Michael’s algorithm in gen-
eral scales well and performs well under high contention. Even though the
three algorithms feature the wait-free contains, our original implementation of
the Harris-Michael’s contains was slower than the other two. The reason is
the extra indirection needed when reading the next pointer in the combined
pointer-plus-boolean structure. To avoid reading an extra field when fetching the
Java AtomicMarkableReference we implemented the run-time type identification
(RTTI) variant with two subclasses that inherit from a parent node class and
that represent the marked and unmarked states of the node as previously sug-

https://github.com/gramoli/synchrobench
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Fig. 4: Evaluation on Intel

gested [3]. This optimization requires, on the one hand, that a remove casts
the subclass instance to the parent class to create a corresponding node in the
marked state. It allows, on the other hand, the traversal to simply check the mark
of each node by simply invoking instanceof on it to check the subclass the node
instantiates. As we see, Harris-Michael’s algorithm has very efficient updates
because it only uses CAS, however it spends much longer on list traversals.

Comparison against the Lazy Linked List. The Lazy Linked List has al-
most the same performance as our algorithm under low contention because both
algorithms share the same wait-free list traversal with zero overhead (as the
sequential code does) and for the updates, when there is no interference from
concurrent operations, the difference between the two algorithms becomes neg-



ligible. The difference comes back however as the contention grows. The Lazy
Linked List performance drops significantly due to its intense lock competition
(as briefly explained in Section 1). By contrast, there are several features in our
implementation that reduce significantly the amount of contention on the locks.
We observed a tremendous increase in execution time for the Lazy Linked List
because of the contention on locks.

5 Related work and concluding remarks
List-based sets. Heller et al. [3] proposed the Lazy Linked List and mentioned
the option of validating prior to locking, and using a single lock within an insert.
One of the reasons why our implementation is faster than the Lazy Linked List is
the use of a novel value-aware try-lock mechanism that allows validating before
acquiring the lock.

Harris [5] proposed a non-blocking linked list algorithm that splits the re-
moval of a node into two atomic steps: a logical deletion that marks the node
and a physical removal that unlinks the node from the list. Michael [6] proposed
advanced memory reclamation algorithms for the algorithm of Harris. In our im-
plementation, we rely on Java’s garbage collector for memory reclamation [13].
We believe that our implementation could outperform Michael’s variant for the
same reason it outperforms Harris’ one because it does not combine the logical
deletion mark with the next pointer of a node but separates metadata (log-
ical deletion and versions) from the structural data (check [4] for variants of
these list-based sets). Fomitchev and Ruppert [14] proposed a lock-free linked
list where nodes have a backlink field that allows to backtrack in the list in
case a conflict is detected instead of restarting from the beginning of the list.
Its contains operation also helps remove marked nodes from the list. Gibson
and Gramoli [15] proposed the selfish linked list, as a more efficient variant of
this approach with the same amortized complexity, relying on wait-free contains
operations. These algorithms are, however, not concurrency-optimal: schedule
constructions similar to those outlined for the Harris-Michael and Lazy linked
lists apply here.

Concurrency metrics. Sets of accepted schedules are commonly used as a
metric of concurrency provided by a shared-memory implementation. For static
database transactions, Kung and Papadimitriou [16] use the metric to capture
the parallelism of a locking scheme. While acknowledging that the metric is the-
oretical, they insist that it may have “practical significance as well, if the sched-
ulers in question have relatively small scheduling times as compared with wait-
ing and execution times.” Herlihy [17] employed the metric from [16] to compare
various optimistic and pessimistic synchronization techniques using commuta-
tivity [18] of operations constituting high-level transactions. A synchronization
technique is implicitly considered in [17] as highly concurrent, namely “optimal”,
if no other technique accepts more schedules. In contrast to [16, 17], we focus
here on a dynamic model where the scheduler cannot use the prior knowledge
of all the shared addresses to be accessed.

Optimal concurrency, originally introduced in [1], can also be seen as a variant
of metrics like permissiveness [19] and input acceptance [20] defined for transac-



tional memory. The concurrency framework considered in this paper though is
independent of the synchronization technique and, thus, more general. Our no-
tion of local seriazability, also introduced in [1], is also reminiscent to the notion
of local linearizability [21].

Concurrent interleavings of sequential code has been used as a base-line for
evaluating performance of search data structures [22]. Defining optimal concur-
rency as the ability of accepting all correct interleavings has been originally
proposed and used to compare concurrency properties of optimistic and pes-
simistic techniques in [1].

The case for concurrency-optimal data structures. Intuitively, the ability
of an implementation to successfully process interleaving steps of concurrent
threads is an appealing property that should be met by performance gains.

In this paper, we support this intuition by presenting a concurrency-optimal
list-based set that outperforms (less concurrent) state-of-the-art algorithms.
Does the claim also hold for other data structures? We believe that general-
izations of linked lists, such as skip-lists or tree-based dictionaries, may allow
for optimizations similar to the ones proposed in this paper. The recently pro-
posed concurrency-optimal tree-based dictionary [9] justifies this belief. This
work presents the opportunity to construct a rigorous methodology for deriving
concurrency-optimal data structures that also perform well.

Also, there is an interesting intermingling between progress conditions, con-
currency properties, and performance. For example, the Harris-Michael algo-
rithm is superior with respect to both the Lazy Linked List and VBL in terms of
progress (lock-freedom is a strictly stronger progress condition than deadlock-
freedom). However, as we observe, this superiority does not necessarily imply
better performance. Improving concurrency seems to provide more performance
benefits than boosting liveness. Relating concurrency and progress in concurrent
data structures remains an interesting research direction.
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