
Unexpected Scaling in Path Copying Trees
Ilya Kokorin
ITMO University

Russia
kokorin.ilya.1998@gmail.com

Alexander Fedorov
IST Austria
Austria

afedorov2602@gmail.com

Trevor Brown
University of Waterloo, Canada

Canada
trevor.brown@uwaterloo.ca

Vitaly Aksenov
ITMO University, Russia

Russia
aksenov.vitaly@gmail.com

Abstract
Although a wide variety of handcrafted concurrent data
structures have been proposed, there is considerable interest
in universal approaches (henceforth called Universal Con-
structions or UCs) for building concurrent data structures.
These approaches (semi-)automatically convert a sequential
data structure into a concurrent one. The simplest approach
uses locks that protect a sequential data structure and al-
low only one process to access it at a time. The resulting
data structures use locks, and hence are blocking. Most work
on UCs instead focuses on obtaining non-blocking progress
guarantees such as obstruction-freedom, lock-freedom, or
wait-freedom. Many non-blocking UCs have appeared. Key
examples include the seminal wait-free UC by Herlihy, a
NUMA-aware UC by Yi et al., and an efficient UC for large
objects by Fatourou et al.

We borrow ideas from persistent data structures andmulti-
version concurrency control (MVCC), most notably path
copying, and use them to implement concurrent versions of
sequential persistent data structures. Despite our expectation
that our data structures would not scale under write-heavy
workloads, they scale in practice. We confirm this scaling
analytically in our model with private per-process caches.

1 Introduction
Although a wide variety of handcrafted concurrent data
structures have been proposed, there is considerable interest
in universal approaches (henceforth called Universal Con-
structions or UCs) for building concurrent data structures.
These approaches (semi-)automatically convert a sequential
data structure into a concurrent one. The simplest approach
uses locks [3, 5] that protect a sequential data structure and
allow only one process to access it at a time. The resulting
data structures use locks, and hence are blocking. Most work
on UCs instead focuses on obtaining non-blocking progress
guarantees such as obstruction-freedom, lock-freedom or wait-
freedom. Many non-blocking UCs have appeared. Key ex-
amples include the seminal wait-free UC [2] by Herlihy, a

PL’18, January 01–03, 2018, New York, NY, USA
2018.

NUMA-aware UC [9] by Yi et al., and an efficient UC for
large objects [1] by Fatourou et al.
In this work, we consider the simpler problem of imple-

menting persistent (also called functional) data structures,
which preserve the old version whenever the data structure
is modified [6]. Usually this entails copying a part of the data
structure, for example, the path from the root to a modified
node in a tree [4], so that none of the existing nodes need to
be changed directly.

We borrow ideas from persistent data structures and multi
version concurrency control (MVCC) [8], most notably path
copying, and use them to implement concurrent versions of
sequential persistent data structures. Data structures imple-
mented this way can be highly efficient for searches, but we
expect them to not scale in write-heavy workloads. Surpris-
ingly, we found that a concurrent treap implemented in this
way obtained up to 2.4x speedup compared to a sequential
treap [7] with 4 processes in a write-heavy workload. We
present this effect experimentally, and analyze it in a model
with private per-processor caches: informally, as the number
of processes grows large, speedup in our treap of size 𝑁

tends to Ω(log𝑁 ).

2 Straightforward Synchronization for
Persistent Data Structures

In the following discussion, we focus on rooted data struc-
tures, but one could imagine generalizing these ideas by
adding a level of indirection in data structures with more
than one entry point (e.g., one could add a dummy root node
containing all entry points).

We store a pointer to the current version of the persistent
data structure (e.g., to the root of the current version of a
persistent tree) in a Read/CAS register called Root_Ptr.
Read-only operations (queries) read the current version

and then execute sequentially on the obtained version. Note
that no other process can modify this version, so the sequen-
tial operation is trivially atomic.
Modifying operations are implemented in the following

way: 1) read the current version; 2) obtain the new version by
applying the sequential modification using path copying (i.e.,
by copying the root, and copying each visited node); 3) try to

1



PL’18, January 01–03, 2018, New York, NY, USA Ilya Kokorin, Alexander Fedorov, Trevor Brown, and Vitaly Aksenov

atomically replace the current version with the new one us-
ing CAS; if the CAS succeeds, return: the modifying operation
has been successfully applied; otherwise, the data structure
has been modified by some concurrent process: retry the
execution from step (1). This approach clearly produces a
lock-free linearizable data structure.
We expect read-only operations to scale extremely well.

Indeed, two processes may concurrently read the current
version of the persistent data structure and execute read-only
persistent operations in parallel.

However, modification operations seemingly afford no op-
portunity for scaling. When multiple modifications contend,
only one can finish successfully, and the others must retry.
For example, consider concurrent modification operations
on a set: 1) process P calls insert(2) and fetches the cur-
rent pointer RP; 2) process Q calls remove(5) and fetches the
current pointer RP; 3) P constructs a new version RPP with
key 2; 4) Q constructs a new version RPQ without key 5; 5) P
successfully executes CAS(&Set.Root_Pointer, RP, RPP);
6) Q executes CAS from RP to RPQ but fails; thus, Q must retry
its operation.

Successful modifications are applied sequentially, one after
another. Intuitively, this should not scale at all in a workload
where all operations must perform successful modifications.
As we will see in Section 4, this intuition would be incorrect.

3 Analysis
The key insight is that failed attempts to perform updates
load data into processor caches that may be useful on future
attempts. To better understand, consider the binary search
tree modification depicted in Fig. 1. Suppose we want to
insert two keys: 5 and 75. We compare how these insertions
are performed sequentially and concurrently.
At first, we consider the sequential execution. We insert

key 5 into the tree. It should be inserted as a left child of 10.
Thus, we traverse the tree from the root to the leaf 10. On the
way, we fetch nodes {40, 30, 20, 10} into the processor’s
cache. Note this operation performs four uncached loads.

Now, we insert 75. It should be inserted as the right child
of 70. Our traversal loads four nodes: {40, 50, 60, 70}.
Node 40 is already cached, while three other nodes must
be loaded from memory. Thus, we perform three uncached
loads, for a total of seven uncached loads.
Now, we consider a concurrent execution with two pro-

cesses, in which P inserts 5 and Q inserts 75. Initially, both
processes read Root_Ptr to load the current version. Then,
1) P traverses from the root to 10, loading nodes {40, 30,
20, 10}, and 2) Q traverses from the root to 70, loading
nodes {40, 50, 60, 70}.
Each process constructs a new version of the data struc-

ture, and tries to replace the root pointer using CAS. Suppose
P succeeds and Q fails. Q retries the operation, but on the new

Figure 1. The new version (green) of the tree shares its nodes
with the old version (white)

version (Fig. 1). Note that the new version shares most nodes
with the old one.

Q inserts 75 into the new version. Again, the key should
be inserted as the right child of 70. Q loads four nodes {40,
50, 60, 70} from the new version of the tree. Crucially,
nodes {50, 60, 70} are already cached by Q. This retry
only incurs one cache miss!

Thus, there are only five serialized loads in the concurrent
execution, compared to seven in the sequential execution.

3.1 High-level analysis
We use a simple model that allows us to analyze this effect.
(The full proof appears in Appendix A.) In this model, the
processes are synchronous, i.e., they perform one primitive
operation per tick, and each process has its own cache of
size𝑀 . We show that for a large number of processes 𝑃 , the
speedup is Ω(log𝑁 ), where 𝑁 is the size of the tree.

Now, we give the intuition behind the proof. To simplify it,
we suppose that the tree is external and balanced, i.e., each
operation passes though log𝑁 nodes. We also assume that
the workload consists of successful modification operations
on keys chosen uniformly at random. We first calculate the
cost of an operation for one process: (log𝑁−log𝑀)·𝑅+log𝑀
where 𝑀 = 𝑂 (𝑁 1−𝜀) is the cache size and 𝑅 is the cost of
an uncached load. This expression captures the expected
behaviour under least-recently-used caching. The process
should cache the first log𝑀 levels of the tree, and thus, log𝑀
nodes on a path are in the cache and log𝑁 − log𝑀 are not.

To calculate the throughput in a system with 𝑃 processes,
we suppose that 𝑃 is quite large (≈ Ω(𝑚𝑖𝑛(𝑅, log𝑁 ))). Thus,
each operation performs several unsuccessful attempts, end-
ing with one successful attempt, and all successful attempts
(over all operations) are serialized. Since the system is syn-
chronous, each operation attempt 𝐴 loads the version of
the data structure which is the result of a previous success-
ful attempt 𝐴′. The nodes evicted since the beginning of
𝐴 are those created by 𝐴′. One can show that in expecta-
tion only two nodes on the path to the key are uncached.
Finally, the successful attempt of an operation incurs cost

2



Unexpected Scaling in Path Copying Trees PL’18, January 01–03, 2018, New York, NY, USA

2 · 𝑅 + (log𝑁 − 2). Since successful attempts are serial-
ized, the expected total speedup is (log𝑁−log𝑀) ·𝑅+log𝑀

2·𝑅+(log𝑁−2) giving
Ω(log𝑁 ) with 𝑅 = Ω(log𝑁 ).

4 Experiments
We implemented a lock-free treap and ran experiments com-
paring it with a sequential treap in Java on a system with
an 18 core Intel Xeon 5220. Each data point is an average of
15 trials. We highlight the following two workloads. (More
results appear in Appendix B.)

4.1 Batch inserts and batch removes
Suppose we have 𝑃 concurrent processes in the system. Ini-
tially the set consists of 106 random integer keys. Processes
operate on mutually disjoint sets of keys. Each process re-
peatedly: inserts all of its keys, one by one, then removes
all of its keys. Since the key sets are disjoint, each operation
successfully modifies the treap. We report the speedup for
our treap over the sequential treap below.

4.2 Random inserts and removes
In this workload, we first insert 106 random integers in
[−106; 106], then each process repeatedly generates a ran-
dom key and tries to insert/remove it with equal probability.
Some operations do not modify the data structure (e.g., in-
serting a key that already exists).

Workload Seq Treap UC 1p UC 4p UC 10p UC 17p
Batch 451 940 0.89x 1.23x 1.47x 1.47x

Random 419 736 1.48x 2.38x 3.07x 3.19x

References
[1] Panagiota Fatourou, Nikolaos D Kallimanis, and Eleni Kanellou. 2020.

An efficient universal construction for large objects. arXiv (2020).
[2] Maurice Herlihy. 1991. Wait-free synchronization. ACM Transactions on

Programming Languages and Systems (TOPLAS) 13, 1 (1991), 124–149.
[3] Maurice Herlihy, Nir Shavit, Victor Luchangco, and Michael Spear. 2020.

The art of multiprocessor programming. Newnes.
[4] Haim Kaplan. 2018. Persistent data structures. In Handbook of Data

Structures and Applications. Chapman and Hall/CRC, 511–527.
[5] Leslie Lamport. 1987. A fast mutual exclusion algorithm. ACM Trans-

actions on Computer Systems (TOCS) 5, 1 (1987), 1–11.
[6] Chris Okasaki. 1999. Purely functional data structures. Cambridge

University Press.
[7] Raimund Seidel and Cecilia R Aragon. 1996. Randomized search trees.

Algorithmica 16, 4 (1996), 464–497.
[8] Y Sun, G Blelloch, W Lim, and A Pavlo. 2019. On supporting efficient

snapshot isolation for hybrid workloads with multi-versioned indexes.
VLDB 13, 2 (2019).

[9] Z Yi, Y Yao, and K Chen. 2021. A Universal Construction to implement
Concurrent Data Structure for NUMA-muticore. In 50th ICPP. 1–11.

A Mathematical model
A.1 Sequential execution
Let us estimate how much time is spent on executing 𝑇 op-
erations sequentially on a binary search tree. Suppose our

binary search tree is external, i.e., data is contained only in
leaves, while internal nodes maintain only routing informa-
tion. Suppose tree contains 𝑁 keys and the tree is balanced,
therefore the tree height is 𝑂 (log𝑁 ). We suppose uniform
workload: all keys from the tree are accessed uniformly at
random.
Suppose the cache size is 𝑀 = 𝑂 (𝑁 1−𝜀), therefore, ap-

proximately upper log𝑀 levels of the tree are cached, while
log𝑁 − log𝑀 lower levels of the tree are not (Fig. 2).

Figure 2. Upper levels of the tree are cached, while lower
levels reside in RAM

Each operation first loads log𝑀 nodes from the cache,
spending 1 time unit per each cache fetch. After that, it loads
log𝑁 − log𝑀 nodes from the RAM, spending 𝑅 time units
per RAM fetch.

Thus, the sequential execution will take
𝑇 · (log𝑀 + 𝑅 · (log𝑁 − log𝑀)) time units to finish, where
𝑇 is the number of operations.

A.2 Concurrent execution
Suppose we have 𝑃 concurrent processes {𝑡𝑖 }𝑃𝑖=1 executing
operations concurrently, while each process has its own
cache of size larger than log𝑁 .

In our model we assume that each successful try of a mod-
ifying operation causes 𝑝 − 1 unsuccessful tries of modifying
operations on other processes (Fig. 3).

Figure 3. Each successful try of an operation causes unsuc-
cessful tries of 𝑝 − 1 operations

3



PL’18, January 01–03, 2018, New York, NY, USA Ilya Kokorin, Alexander Fedorov, Trevor Brown, and Vitaly Aksenov

We also assume that operation completion events are dis-
tributed among processes in a round-robin pattern: first pro-
cess 𝑡1 executes its successful try of the operation, then pro-
cess 𝑡2 executes its successful try of the operation, and so
on. Finally, 𝑡𝑃 manages to complete its operation, the next
process to get its successful try is yet again 𝑡1 (Fig. 4).

Figure 4. Nearly each successful modifying operation con-
sists of 𝑃 retries: 𝑃 − 1 unsuccessful and one successful

As follows from the diagram, almost each successful try of
an operation is preceded by 𝑃 −1 unsuccessful retries (except
for 𝑃 − 1 first successful operation, which are preceded by
the lower number of unsuccessful retries).
Let us estimate, how long the first retry takes to execute.

We must load log𝑁 nodes, none of which might be cached.
Thus, we spend 𝑅 · log𝑁 time units on the first retry.

Let us estimate now how much time we spend on subse-
quent retries. We begin with estimating, how many nodes
on the path to the requested leaf have been modified (Fig. 5).

Figure 5. The number of modified nodes on the path to the
requested node

Consider the successful modifying operation 𝑜𝑝 , that led
to a latest failure of our CAS and made us retry our operation
the last time. Remember, that arguments of operations are
chosen uniformly at random, therefore:

• There is 1
2 probability that 𝑜𝑝 modified some leaf from

Root->Right subtree, thus, the number of modified
nodes on our path is 1;

• Similarly, there is 1
4 probability that the number of

modified nodes on our path is 2;
. . .

• Similarly, there is 1
2𝑘 probability that the number of

modified nodes on our path is 𝑘 .
Thus, we can calculate the expected number of modified

nodes on our path
log𝑁∑
𝑘=1

𝑘

2𝑘 ≤
∞∑
𝑘=1

𝑘

2𝑘 = 2. Thus, the expected

number of modified nodes on our path is not greater than 2.
Modified nodes were created by another process, thus they

do not exist in our process cache. Therefore, they should be
loaded out-of-cache, while all the remaining nodes reside in
the local cache and can be loaded directly from it. Therefore,
we spend 2 ·𝑅 time on average to load all the necessary nodes.
In addition, we spend log𝑁 − 2 time on average to load all
the necessary nodes from the the local cache. Therefore, we
spend 2 · 𝑅 + log𝑁 − 2 time to fetch all the nodes required
for a last operation retry.

An operation execution consists of the first retry, executed
in 𝑅 · log𝑁 and 𝑃 − 1 subsequent retries executed in (𝑃 −
1) · (2 · 𝑅 + log𝑁 − 2). Thus, a single operation is executed
in 𝑅 · log𝑁 + (𝑃 − 1) · (2 · 𝑅 + log𝑁 − 2).
Therefore, we execute 𝑇 operations in

𝑇 ·𝑅 ·log𝑁+𝑇 · (𝑃−1) · (2·𝑅+log𝑁−2)
𝑃

time, since we execute these op-
erations in parallel on 𝑃 processes.
To measure the speedup we simply divide the sequential

execution time by parallel execution time:
𝑇 · (log𝑀+𝑅 · (log𝑁−log𝑀))
𝑇 ·𝑅·log𝑁 +𝑇 · (𝑃−1) ·(2·𝑅+log𝑁−2)

𝑃

= 𝑃 · log𝑀+𝑅 · (log𝑁−log𝑀)
𝑅 ·log𝑁+(𝑃−1) · (2·𝑅+log𝑁−2) . This

gives us Ω(log𝑁 ) speedup when 𝑃 = Ω(𝑚𝑖𝑛(𝑅, log𝑁 )) and
𝑅 = Ω(log𝑁 ).

B Experiments on other processors
We did the same experiments on Intel Xeon Platinum 8160
with 24 cores and AMD EPYC 7662 with 64 cores.

Workload Seq Treap UC 1p UC 6p UC 12p UC 23p
Batch 638 600 0.93x 1.31x 1.37x 1.08x

Random 487 161 1.24x 3.23x 3.55x 2.8x
Table 1. Results for Intel Xeon Platinum 8160.

Workload Seq Treap UC 1p UC 8p UC 16p UC 32p UC 63p
Batch 459 580 0.96x 1.7x 1.91x 1.55x 1.02x

Random 396 898 1.36x 3.63x 2.41x 2.81x 2.3x
Table 2. Results for AMD EPYC 7662.

Unfortunately, one can see that the results are not so im-
pressive when the number of processes is large enough. We
suggest that the bottleneck for our benchmarks occurs in
Java memory allocator.

4


	Abstract
	1 Introduction
	2 Straightforward Synchronization for Persistent Data Structures
	3 Analysis
	3.1 High-level analysis

	4 Experiments
	4.1 Batch inserts and batch removes
	4.2 Random inserts and removes

	References
	A Mathematical model
	A.1 Sequential execution
	A.2 Concurrent execution

	B Experiments on other processors

