Bullet Collision Detection & Physics Library
btContinuousConvexCollision.cpp
Go to the documentation of this file.
1 /*
2 Bullet Continuous Collision Detection and Physics Library
3 Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
4 
5 This software is provided 'as-is', without any express or implied warranty.
6 In no event will the authors be held liable for any damages arising from the use of this software.
7 Permission is granted to anyone to use this software for any purpose,
8 including commercial applications, and to alter it and redistribute it freely,
9 subject to the following restrictions:
10 
11 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
12 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
13 3. This notice may not be removed or altered from any source distribution.
14 */
15 
16 
22 
23 #include "btGjkPairDetector.h"
24 #include "btPointCollector.h"
26 
27 
28 
30 :m_simplexSolver(simplexSolver),
31 m_penetrationDepthSolver(penetrationDepthSolver),
32 m_convexA(convexA),m_convexB1(convexB),m_planeShape(0)
33 {
34 }
35 
36 
38 :m_simplexSolver(0),
39 m_penetrationDepthSolver(0),
40 m_convexA(convexA),m_convexB1(0),m_planeShape(plane)
41 {
42 }
43 
44 
47 #define MAX_ITERATIONS 64
48 
50 {
51  if (m_convexB1)
52  {
53  m_simplexSolver->reset();
56  input.m_transformA = transA;
57  input.m_transformB = transB;
58  gjk.getClosestPoints(input,pointCollector,0);
59  } else
60  {
61  //convex versus plane
62  const btConvexShape* convexShape = m_convexA;
63  const btStaticPlaneShape* planeShape = m_planeShape;
64 
65  const btVector3& planeNormal = planeShape->getPlaneNormal();
66  const btScalar& planeConstant = planeShape->getPlaneConstant();
67 
68  btTransform convexWorldTransform = transA;
69  btTransform convexInPlaneTrans;
70  convexInPlaneTrans= transB.inverse() * convexWorldTransform;
71  btTransform planeInConvex;
72  planeInConvex= convexWorldTransform.inverse() * transB;
73 
74  btVector3 vtx = convexShape->localGetSupportingVertex(planeInConvex.getBasis()*-planeNormal);
75 
76  btVector3 vtxInPlane = convexInPlaneTrans(vtx);
77  btScalar distance = (planeNormal.dot(vtxInPlane) - planeConstant);
78 
79  btVector3 vtxInPlaneProjected = vtxInPlane - distance*planeNormal;
80  btVector3 vtxInPlaneWorld = transB * vtxInPlaneProjected;
81  btVector3 normalOnSurfaceB = transB.getBasis() * planeNormal;
82 
83  pointCollector.addContactPoint(
84  normalOnSurfaceB,
85  vtxInPlaneWorld,
86  distance);
87  }
88 }
89 
91  const btTransform& fromA,
92  const btTransform& toA,
93  const btTransform& fromB,
94  const btTransform& toB,
95  CastResult& result)
96 {
97 
98 
100  btVector3 linVelA,angVelA,linVelB,angVelB;
101  btTransformUtil::calculateVelocity(fromA,toA,btScalar(1.),linVelA,angVelA);
102  btTransformUtil::calculateVelocity(fromB,toB,btScalar(1.),linVelB,angVelB);
103 
104 
105  btScalar boundingRadiusA = m_convexA->getAngularMotionDisc();
106  btScalar boundingRadiusB = m_convexB1?m_convexB1->getAngularMotionDisc():0.f;
107 
108  btScalar maxAngularProjectedVelocity = angVelA.length() * boundingRadiusA + angVelB.length() * boundingRadiusB;
109  btVector3 relLinVel = (linVelB-linVelA);
110 
111  btScalar relLinVelocLength = (linVelB-linVelA).length();
112 
113  if ((relLinVelocLength+maxAngularProjectedVelocity) == 0.f)
114  return false;
115 
116 
117 
118  btScalar lambda = btScalar(0.);
119  btVector3 v(1,0,0);
120 
121  int maxIter = MAX_ITERATIONS;
122 
123  btVector3 n;
124  n.setValue(btScalar(0.),btScalar(0.),btScalar(0.));
125  bool hasResult = false;
126  btVector3 c;
127 
128  btScalar lastLambda = lambda;
129  //btScalar epsilon = btScalar(0.001);
130 
131  int numIter = 0;
132  //first solution, using GJK
133 
134 
135  btScalar radius = 0.001f;
136 // result.drawCoordSystem(sphereTr);
137 
138  btPointCollector pointCollector1;
139 
140  {
141 
142  computeClosestPoints(fromA,fromB,pointCollector1);
143 
144  hasResult = pointCollector1.m_hasResult;
145  c = pointCollector1.m_pointInWorld;
146  }
147 
148  if (hasResult)
149  {
150  btScalar dist;
151  dist = pointCollector1.m_distance + result.m_allowedPenetration;
152  n = pointCollector1.m_normalOnBInWorld;
153  btScalar projectedLinearVelocity = relLinVel.dot(n);
154  if ((projectedLinearVelocity+ maxAngularProjectedVelocity)<=SIMD_EPSILON)
155  return false;
156 
157  //not close enough
158  while (dist > radius)
159  {
160  if (result.m_debugDrawer)
161  {
162  result.m_debugDrawer->drawSphere(c,0.2f,btVector3(1,1,1));
163  }
164  btScalar dLambda = btScalar(0.);
165 
166  projectedLinearVelocity = relLinVel.dot(n);
167 
168 
169  //don't report time of impact for motion away from the contact normal (or causes minor penetration)
170  if ((projectedLinearVelocity+ maxAngularProjectedVelocity)<=SIMD_EPSILON)
171  return false;
172 
173  dLambda = dist / (projectedLinearVelocity+ maxAngularProjectedVelocity);
174 
175 
176 
177  lambda = lambda + dLambda;
178 
179  if (lambda > btScalar(1.))
180  return false;
181 
182  if (lambda < btScalar(0.))
183  return false;
184 
185 
186  //todo: next check with relative epsilon
187  if (lambda <= lastLambda)
188  {
189  return false;
190  //n.setValue(0,0,0);
191  break;
192  }
193  lastLambda = lambda;
194 
195 
196 
197  //interpolate to next lambda
198  btTransform interpolatedTransA,interpolatedTransB,relativeTrans;
199 
200  btTransformUtil::integrateTransform(fromA,linVelA,angVelA,lambda,interpolatedTransA);
201  btTransformUtil::integrateTransform(fromB,linVelB,angVelB,lambda,interpolatedTransB);
202  relativeTrans = interpolatedTransB.inverseTimes(interpolatedTransA);
203 
204  if (result.m_debugDrawer)
205  {
206  result.m_debugDrawer->drawSphere(interpolatedTransA.getOrigin(),0.2f,btVector3(1,0,0));
207  }
208 
209  result.DebugDraw( lambda );
210 
211  btPointCollector pointCollector;
212  computeClosestPoints(interpolatedTransA,interpolatedTransB,pointCollector);
213 
214  if (pointCollector.m_hasResult)
215  {
216  dist = pointCollector.m_distance+result.m_allowedPenetration;
217  c = pointCollector.m_pointInWorld;
218  n = pointCollector.m_normalOnBInWorld;
219  } else
220  {
221  result.reportFailure(-1, numIter);
222  return false;
223  }
224 
225  numIter++;
226  if (numIter > maxIter)
227  {
228  result.reportFailure(-2, numIter);
229  return false;
230  }
231  }
232 
233  result.m_fraction = lambda;
234  result.m_normal = n;
235  result.m_hitPoint = c;
236  return true;
237  }
238 
239  return false;
240 
241 }
242 
#define SIMD_EPSILON
Definition: btScalar.h:448
void computeClosestPoints(const btTransform &transA, const btTransform &transB, struct btPointCollector &pointCollector)
btScalar length(const btQuaternion &q)
Return the length of a quaternion.
Definition: btQuaternion.h:835
int getShapeType() const
virtual btVector3 localGetSupportingVertex(const btVector3 &vec) const =0
void setValue(const btScalar &_x, const btScalar &_y, const btScalar &_z)
Definition: btVector3.h:640
float dist(const Point3 &pnt0, const Point3 &pnt1)
ConvexPenetrationDepthSolver provides an interface for penetration depth calculation.
const btVector3 & getPlaneNormal() const
btScalar dot(const btVector3 &v) const
Return the dot product.
Definition: btVector3.h:235
btTransform inverseTimes(const btTransform &t) const
Return the inverse of this transform times the other transform.
Definition: btTransform.h:230
#define MAX_ITERATIONS
This maximum should not be necessary.
The btConvexShape is an abstract shape interface, implemented by all convex shapes such as btBoxShape...
Definition: btConvexShape.h:31
virtual void DebugDraw(btScalar fraction)
Definition: btConvexCast.h:40
btIDebugDraw * m_debugDrawer
Definition: btConvexCast.h:58
RayResult stores the closest result alternatively, add a callback method to decide about closest/all ...
Definition: btConvexCast.h:36
btVector3 & getOrigin()
Return the origin vector translation.
Definition: btTransform.h:117
#define btSimplexSolverInterface
btSimplexSolverInterface * m_simplexSolver
btVector3 m_pointInWorld
btMatrix3x3 & getBasis()
Return the basis matrix for the rotation.
Definition: btTransform.h:112
btScalar length() const
Return the length of the vector.
Definition: btVector3.h:263
btTransform inverse() const
Return the inverse of this transform.
Definition: btTransform.h:188
virtual btScalar getMargin() const =0
btConvexPenetrationDepthSolver * m_penetrationDepthSolver
virtual btScalar getAngularMotionDisc() const
getAngularMotionDisc returns the maximus radius needed for Conservative Advancement to handle time-of...
btVector3 can be used to represent 3D points and vectors.
Definition: btVector3.h:83
static void integrateTransform(const btTransform &curTrans, const btVector3 &linvel, const btVector3 &angvel, btScalar timeStep, btTransform &predictedTransform)
The btTransform class supports rigid transforms with only translation and rotation and no scaling/she...
Definition: btTransform.h:34
virtual void addContactPoint(const btVector3 &normalOnBInWorld, const btVector3 &pointInWorld, btScalar depth)
virtual bool calcTimeOfImpact(const btTransform &fromA, const btTransform &toA, const btTransform &fromB, const btTransform &toB, CastResult &result)
cast a convex against another convex object
btGjkPairDetector uses GJK to implement the btDiscreteCollisionDetectorInterface
btContinuousConvexCollision(const btConvexShape *shapeA, const btConvexShape *shapeB, btSimplexSolverInterface *simplexSolver, btConvexPenetrationDepthSolver *penetrationDepthSolver)
The btStaticPlaneShape simulates an infinite non-moving (static) collision plane. ...
static void calculateVelocity(const btTransform &transform0, const btTransform &transform1, btScalar timeStep, btVector3 &linVel, btVector3 &angVel)
virtual void drawSphere(btScalar radius, const btTransform &transform, const btVector3 &color)
Definition: btIDebugDraw.h:63
virtual void reportFailure(int errNo, int numIterations)
Definition: btConvexCast.h:42
btVector3 m_normalOnBInWorld
float btScalar
The btScalar type abstracts floating point numbers, to easily switch between double and single floati...
Definition: btScalar.h:266
const btScalar & getPlaneConstant() const
const btStaticPlaneShape * m_planeShape